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Abstract. We introduce hom-associative versions of the higher order Weyl

algebras, generalizing the construction of the first hom-associative Weyl alge-

bras. We then show that the higher order hom-associative Weyl algebras are

simple, and that all their one-sided ideals are principal.
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1. Introduction

Dixmier [5] has shown that every left (right) ideal of the first Weyl algebra A1

over a field K of characteristic zero can be generated by two elements. Later, and

more generally, Stafford [9] has shown that every left (right) ideal of a simple left

(right) Noetherian ring with Krull dimension n can be generated by n+1 elements;

in particular, this result applies to the nth Weyl algebra An over K. Stafford [10]

has further improved this result for An and shown that every left (right) ideal of An

over K can be generated by two elements, a classical result today more commonly

known as Stafford’s theorem.

In this article, we introduce higher order hom-associative Weyl algebras as hom-

associative deformations of the higher order Weyl algebras over K and consider

what a hom-associative version of Stafford’s theorem would look like. We prove

that, subject to a non-triviality condition on the deformation, the higher order

hom-associative Weyl algebras are simple (Corollary 3.7) and that all their one-

sided ideals are principal (Theorem 3.11).

2. Preliminaries

Throughout this article, we denote by N the set of non-negative integers. By

a non-associative algebra over an associative, commutative, and unital ring R, we

mean an R-algebra A which is not necessarily associative and not necessarily unital.
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2.1. Hom-associative algebras. Hom-associative algebras were introduced in [8]

as non-associative algebras with a “twisted” associativity condition. In particular,

by using the commutator as a bracket, any hom-associative algebra gives rise to a

hom-Lie algebra; the latter introduced in [7] as a generalization of a Lie algebra,

now with a twisted Jacobi identity.

Definition 2.1. (Hom-associative algebra) A hom-associative algebra over an as-

sociative, commutative, and unital ring R, is a non-associative R-algebra A with

an R-linear map α, where for all a, b, c ∈ A, the hom-associative condition holds,

α(a)(bc) = (ab)α(c).

Since α in the above definition “twists” the associativity condition, it is referred

to as a twisting map.

For hom-associative algebras it is usually too restrictive to expect them to be

unital. Instead, a related condition, called weak unitality, is of interest.

Definition 2.2. (Weak unitality) Let A be a hom-associative algebra. If for all

a ∈ A, ea = ae = α(a) for some e ∈ A, we say that A is weakly unital with weak

identity element e.

The so-called Yau twist gives a way of constructing (weakly unital) hom-asso-

ciative algebras from (unital) associative algebras.

Proposition 2.3. ([6,11]) Let A be an associative algebra and let α be an algebra

endomorphism on A. Define a new product ∗ on A by a∗b := α(ab) for any a, b ∈ A.

Then A with product ∗, called the Yau twist of A, is a hom-associative algebra with

twisting map α. If A is unital with identity element 1A, then the Yau twist of A is

weakly unital with weak identity element 1A.

By a left (right) hom-ideal in a hom-associative algebra, we mean a left (right)

ideal that is also invariant under the twisting map. If the algebra is weakly uni-

tal, then all ideals, one-sided and two-sided, are automatically invariant under the

twisting map.

2.2. The nth Weyl algebra. The nth Weyl algebra, An, over a field K of charac-

teristic zero is the free, associative, and unital algebra with generators x1, x2, . . . , xn
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and y1, y2, . . . , yn, K⟨x1, x2, . . . , xn, y1, y2, . . . , yn⟩, modulo the commutation rela-

tions

xixj = xjxi for all i, j ∈ {1, 2, . . . , n},

yiyj = yjyi for all i, j ∈ {1, 2, . . . , n},

xiyj = yjxi for all i, j ∈ {1, 2, . . . , n} such that i ̸= j,

xiyi = yixi + 1 for all i ∈ {1, 2, . . . , n}.

2.3. The first hom-associative Weyl algebras. In [3], a family of hom-asso-

ciative Weyl algebras {Ak
1}k∈K was constructed as a generalization of A1 to the

hom-associative setting (see also [2] for the case when K has prime characteristic),

including A1 as the member corresponding to k = 0. The definition of Ak
1 is as

follows:

Definition 2.4. (The first hom-associative Weyl algebra) Let αk be the K-auto-

morphism on A1 defined by αk(x) := x, αk(y) := y+k, and αk(1A1
) := 1A1

for any

k ∈ K. The first hom-associative Weyl algebra Ak
1 is the Yau twist of A1 by αk.

For each k ∈ K, we thus get a hom-associative Weyl algebra Ak
1 which is weakly

unital with weak identity element 1A1
. In [3], it was proven that Ak

1 is simple for

all k ∈ K. In [1], the study of Ak
1 was continued. The morphisms and derivations

on Ak
1 were characterized, and an analogue of the famous Dixmier conjecture, first

introduced by Dixmier [4], was proven. It was also shown that Ak
1 is a formal defor-

mation of A1 with k as deformation parameter, this in contrast to the associative

setting where A1 is formally rigid and thus cannot be formally deformed.

2.4. Monomial orderings. We introduce an ordering, the so-called graded lexi-

cographic ordering on Nn, where a vector is larger than another vector if it has

larger sum of all its elements. In case of a tie, we apply lexicographic order-

ing, that is, (1, 0, 0, . . . , 0) > (0, 1, 0, . . . , 0) > · · · > (0, 0, 0, . . . , 1). For example,

(0, 0, 3) > (1, 1, 0) > (0, 2, 0) > (0, 1, 0) > (0, 0, 0). Note that this is a total ordering

on Nn and that any subset has a smallest element. Furthermore, it is impossible to

find an infinite decreasing sequence in Nn. Note that this gives an ordering of the

monomials in K[y1, y2, . . . , yn].

Any p ∈ An can be written as
∑

l∈Nn plx
l1
1 x

l2
2 · · ·xln

n where pl ∈ K[y1, y2, . . . , yn],

l = (l1, l2, . . . , ln) ∈ Nn, and only finitely many of the pl are non-zero. We define

degx(p) as the largest l in graded lexicographic order such that pl is non-zero, and

L(p) = pdegx(p)
. We also define degy in a similar way. We will often write degy(p) =

0, where 0 should be understood as the zero vector of appropriate dimension.
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3. Ideals in higher order hom-associative Weyl algebras

We define the nth hom-associative Weyl algebra in anaology with how the first

hom-associative Weyl algebra is defined.

Definition 3.1. (The nth hom-associative Weyl algebra) Let K be a field of char-

acteristic zero and let k = (k1, k2, . . . , kn) ∈ Kn. Define the K-automorphism αk

on An by αk(xi) := xi, αk(yi) := yi + ki, and αk(1An) := 1An for 1 ≤ i ≤ n. The

nth hom-associative Weyl algebra Ak
n is the Yau twist of An by αk.

We will suppose k1k2 . . . kn ̸= 0.

Proposition 3.2. If I is a left (right) ideal of An, then I is a left (right) ideal of

Ak
n if and only if αk(I) ⊆ I if and only if αk(I) = I.

Proof. We show the left case; the right case is similar. To this end, let I be a left

ideal of An. If αk(I) ⊆ I, p ∈ An, and q ∈ I, then p ∗ q = αk(pq) ∈ αk(I) ⊆ I.

If I is a left ideal of Ak
n and q ∈ I, then αk(q) = 1An ∗ q ∈ I, so αk(I) ⊆ I. □

Example 3.3. Let I be the left ideal of A1 generated by xn for some n ∈ N>0.

Then I is a non-trivial left ideal (for example, y ̸∈ I). Any element in I may be

written as pxn for some p ∈ A1. We have αk(px
n) = αk(p)αk(x

n) = αk(p)x
n ∈ I,

so αk(I) ⊆ I. Similarly, if I is the right ideal of A1 generated by xn, then I is a

non-trivial right ideal such that αk(I) ⊆ I. By Proposition 3.2, I is a non-trivial

left (right) ideal of Ak
1 .

By the next example, not all left (right) ideals of A1 are left (right) ideals of Ak
1

when k ̸= 0.

Example 3.4. Let I be the left (right) ideal of A1 generated by y. Then x ̸∈ I,

so I ̸= A1. Assume that k ̸= 0 and αk(I) ⊆ I. Then y + k = αk(y) ∈ I, so

k = (y + k) − y ∈ I. Hence 1A1
∈ I, which implies I = A1; a contradiction. By

Proposition 3.2, I is not a left (right) ideal of Ak
1 .

Lemma 3.5. If I is a left (right) ideal of Ak
n where k1k2 · · · kn ̸= 0, then αk(I) = I.

Proof. Since any left (right) ideal I of Ak
n is also a left (right) hom-ideal, αk(I) ⊆ I.

Now, let I be a left ideal of Ak
n. If 0 ̸= p ∈ I, we claim that we can find an

element p′ ∈ I such that degx(p
′) = degx(p) and L(p′) = 1. If L(p) = c ∈ K, we

can take p′ = c−1 ∗ p. Otherwise, we note that degx(αk(p) − p) = degx(p), and

that L(αk(p)) and L(p) have the same leading term using our monomial ordering

on K[y1, y2, . . . , yn]. Thus, L(αk(p) − p) has lower degree than L(p) using our
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monomial ordering. We can repeat this process until we get an element in I with

a constant as leading coefficient w.r.t. x1, x2, . . . , xn, and with the same degree in

x1, x2, . . . , xn as p.

Now suppose I ̸⊆ αk(I). Then there is at least one element in I that does

not belong to αk(I). Pick such an element, q, of lowest possible degree w.r.t.

x1, x2, . . . , xn. Find an element q′ ∈ I such that degx(q
′) = degx(q) and L(q′) = 1.

Set r := α2
k(α

−2
k (L(q))q′) = αk(α

−2
k (L(q)) ∗ q′). Note that degx(r) = degx(q) and

that L(r) = L(q). Since α−2
k (L(q))∗q′ ∈ I, we have r ∈ αk(I) ⊆ I. Hence q−r ∈ I,

and by the minimality of q, we must have q−r ∈ αk(I). However, this would imply

that also q ∈ αk(I), which is a contradiction.

Now let I be a right ideal of Ak
n. If 0 ̸= p ∈ I, we can find an element p′ ∈ I such

that degx(p
′) = degx(p) and L(p′) = 1. If L(p) = c ∈ K, we can take p′ = p ∗ c−1.

Otherwise we proceed like in the left case.

Now suppose I ̸⊆ αk(I). Then there is at least one element in I that does

not belong to αk(I). Pick such an element, q, of lowest possible degree w.r.t.

x1, x2, . . . , xn. Find an element q′ ∈ I such that degx(q
′) = degx(q) and L(q′) = 1.

Set r := α2
k(q

′α−2
k (L(q))) = αk(q

′∗α−2
k (L(q))). As in the left case, we get r ∈ αk(I)

and q − r ∈ I. By the minimality of q, we get q − r ∈ αk(I), which gives the

contradiction q ∈ αk(I). □

Proposition 3.6. Any left (right) ideal of Ak
n for k1k2 · · · kn ̸= 0 is a left (right)

ideal of An.

Proof. Let us prove the left case; the right case is similar. To this end, suppose I

is a left ideal of Ak
n. To show that I is also a left ideal of An, it is enough to show

that AnI ⊆ I. Since I is a left ideal of Ak
n, we know that An ∗ I ⊆ I. Moreover,

An ∗I = αk(AnI), so AnI ⊆ α−1
k (I). By Lemma 3.5, αk(I) = I, so α−1

k (I) = I. □

Corollary 3.7. Ak
n is simple for k1k2 · · · kn ̸= 0.

Proof. Let I be an ideal of Ak
n for k1k2 · · · kn ̸= 0. By Proposition 3.6, I is also

an ideal of An. Since it is well known that An is simple, I must be trivial. □

Corollary 3.8. Any left (right) ideal of Ak
n for k1k2 · · · kn ̸= 0 is generated by two

elements.

Proof. Let I be a left ideal of Ak
n. Since I is also a left ideal of An, we know that

it is generated as an ideal of An by two elements, say p and q. We want to show

that α−1(p) and α−1(q) generate I as a left ideal of Ak
n. If r ∈ I, then there are

a, b ∈ An such that r = ap + bq = α(α−1(a)α−1(p) + α−1(b)α−1(q)) = α−1(a) ∗
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α−1(p) + α−1(b) ∗ α−1(q). Clearly this shows that α−1(p) and α−1(q) generate I

as a left ideal of Ak
n. (That they are elements of I follows from Lemma 3.5.)

The right case is similar. □

Lemma 3.9. Any left (right) ideal, I, of An generated by elements p1, p2, . . . , pm

with degy(p1) = degy(p2) = · · · = degy(pm) = 0 is a principal left (right) ideal of

Ak
n if k ̸= 0.

Proof. Assume, without loss of generality, that k1 ̸= 0. We first show that I is a

left ideal of Ak
n. If q ∈ I, then we can write q =

∑m
i=1 ripi for some ri ∈ An and

αk(q) =
∑m

i=1 αk(ri)pi ∈ I. Hence, by Proposition 3.2, I is a left ideal of Ak
n. It

remains to show it is a principal left ideal of Ak
n.

We will proceed by induction, and in fact we will show that I of An is generated

as a left ideal of Ak
n by t = p1 + y1p2 + · · · + ym−1

1 pm. To handle the case m = 2

set t := p1 + y1p2. Let J be the left ideal of Ak
n generated by t. Then αk(t) =

p1+y1p2+k1p2 ∈ J , so p2 = k−1
1 ∗(αk(t)−t) ∈ J , and hence p1 = t−(y1−k1)∗p2 ∈ J .

Hence I = J .

Now assume we have proven the result for m and wish to prove it for m + 1.

Set t := p1 + y1p2 + · · · + ym1 pm+1. Let J be the left ideal of Ak
n generated by t.

Obviously, J ⊆ I. Note that t1 := αk(t) − t = r1,2p2 + r1,3p3 + · · · + r1,m+1pm+1,

where r1,i ∈ K[y1] and degy1
(r1,i) = i−2 for all i ∈ {2, 3, . . . ,m+1}. Also note that

t1 ∈ J . We can then set t2 := αk(t1)−t1 and note that t2 = r2,3p3+· · ·+r2,m+1pm+1

where r2,i ∈ K[y1] and degy1
(r2,i) = i− 3 for all i ∈ {3, 4, . . . ,m+ 1}. Also t2 ∈ J .

Proceeding in a similar way, we get an element tm ∈ J such that tm = rm,m+1pm+1,

where rm,m+1 ∈ K and rm,m+1 ̸= 0. Thus pm+1 ∈ J and p1+y1p2+· · ·+ym−1
1 pm ∈

J , so by the induction assumption, J = I.

The right case is similar; one sets t := p1 + p2y1 + · · · pmym−1
1 instead. □

Lemma 3.10. For any p ∈ An, there are q1, q2, . . . , qm ∈ An with degy(q1) =

degy(q2) = · · · = degy(qm) = 0, such that the left (right) ideal of Ak
n for k1k2 · · · kn ̸=

0 generated by p equals the left (right) ideal of Ak
n generated by q1, q2, . . . , qm.

Proof. Let I be the left ideal ofAk
n generated by p. Set p =

∑
a∈Nn pax

a1
1 xa2

2 . . . xan
n ,

where each pa ∈ K[y1, y2, . . . , yn], and let E(p) = {a ∈ Nn | pa ̸= 0}. We prove the

lemma by induction over |E(p)|.
We begin with the case when |E(p)| = 1. If degy(p) = 0, we are done. Otherwise,

set p′ = p−αk(p). Then E(p′) = E(p) and degy(p
′) < degy(p). Repeat as necessary

until we find q1 ∈ I such that E(q1) = E(p) and degy(q1) = 0. Then there is

r ∈ K[y1, y2, . . . , yn] such that p = rq1, so p is in the left ideal of An generated by
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p, and thus also in the left ideal of Ak
n generated by q1. Hence the left ideal of Ak

n

generated by q1 is I.

Now suppose we have proven the lemma when |E(p)| ≤ ℓ. Assume |E(p)| = ℓ+1.

If degy(p) = 0, we are done, so let degy(p) > 0. Set p′ = p − αk(p). Note that

E(p′) ⊆ E(p), p′ ̸= 0, and that if E(p′) = E(p), then degy(p
′) < degy(p). Repeat as

necessary until we find q1 ∈ I such that E(q1) ⊆ E(p), q1 ̸= 0, and degy(q1) = 0. We

can then find r ∈ K[y1, y2, . . . , yn] such that E(p− rq1) ⊊ E(p). By the induction

assumption, there are q2, q3, . . . qm with degy(q2) = degy(q3) = · · · = degy(qm) = 0

that generate the same left ideal of Ak
n as p− rq1. Then q1, q2, . . . , qm are elements

that generate I as a left ideal of Ak
n and degy(q1) = degy(q2) = · · · = degy(qm) = 0.

The right case is similar. □

Theorem 3.11. Any left (right) ideal of Ak
n for k1k2 · · · kn ̸= 0 is principal.

Proof. Let I be a left ideal of Ak
n. We know it is generated by elements p, q as a left

ideal of An. By Lemma 3.10, we can find p1, p2, . . . , pℓ and q1, q2, . . . , qm such that

the pi generate the same left ideal of Ak
n as p, the qi generate the same left ideal of

Ak
n as q, and degy(p1) = degy(p2) = · · · = degy(pℓ) = degy(q1) = degy(q2) = · · · =

degy(qm) = 0. Clearly, p1, p2, . . . , pℓ, q1, q2, . . . , qm generate I as a left ideal of Ak
n.

By Lemma 3.9 we are done.

The right case is similar. □
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