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ABSTRACT. We introduce hom-associative versions of the higher order Weyl
algebras, generalizing the construction of the first hom-associative Weyl alge-
bras. We then show that the higher order hom-associative Weyl algebras are

simple, and that all their one-sided ideals are principal.
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1. Introduction

Dixmier [5] has shown that every left (right) ideal of the first Weyl algebra A;
over a field K of characteristic zero can be generated by two elements. Later, and
more generally, Stafford [9] has shown that every left (right) ideal of a simple left
(right) Noetherian ring with Krull dimension n can be generated by n+1 elements;
in particular, this result applies to the nth Weyl algebra A,, over K. Stafford [10]
has further improved this result for A,, and shown that every left (right) ideal of A,,
over K can be generated by two elements, a classical result today more commonly
known as Stafford’s theorem.

In this article, we introduce higher order hom-associative Weyl algebras as hom-
associative deformations of the higher order Weyl algebras over K and consider
what a hom-associative version of Stafford’s theorem would look like. We prove
that, subject to a non-triviality condition on the deformation, the higher order
hom-associative Weyl algebras are simple (Corollary 3.7) and that all their one-

sided ideals are principal (Theorem 3.11).

2. Preliminaries

Throughout this article, we denote by N the set of non-negative integers. By
a non-associative algebra over an associative, commutative, and unital ring R, we

mean an R-algebra A which is not necessarily associative and not necessarily unital.
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2.1. Hom-associative algebras. Hom-associative algebras were introduced in [8]
as non-associative algebras with a “twisted” associativity condition. In particular,
by using the commutator as a bracket, any hom-associative algebra gives rise to a
hom-Lie algebra; the latter introduced in [7] as a generalization of a Lie algebra,

now with a twisted Jacobi identity.

Definition 2.1. (Hom-associative algebra) A hom-associative algebra over an as-
sociative, commutative, and unital ring R, is a non-associative R-algebra A with

an R-linear map «, where for all a,b,c € A, the hom-associative condition holds,

ala)(be) = (ab)a(c).

Since « in the above definition “twists” the associativity condition, it is referred
to as a twisting map.
For hom-associative algebras it is usually too restrictive to expect them to be

unital. Instead, a related condition, called weak unitality, is of interest.

Definition 2.2. (Weak unitality) Let A be a hom-associative algebra. If for all
a € A, ea = ae = a(a) for some e € A, we say that A is weakly unital with weak

identity element e.

The so-called Yau twist gives a way of constructing (weakly unital) hom-asso-

ciative algebras from (unital) associative algebras.

Proposition 2.3. ([6,11]) Let A be an associative algebra and let « be an algebra
endomorphism on A. Define a new product x on A by axb := a(ab) for any a,b € A.
Then A with product *, called the Yau twist of A, is a hom-associative algebra with
twisting map «. If A is unital with identity element 14, then the Yau twist of A is

weakly unital with weak identity element 14.

By a left (right) hom-ideal in a hom-associative algebra, we mean a left (right)
ideal that is also invariant under the twisting map. If the algebra is weakly uni-
tal, then all ideals, one-sided and two-sided, are automatically invariant under the

twisting map.

2.2. The nth Weyl algebra. The nth Weyl algebra, A,,, over a field K of charac-

teristic zero is the free, associative, and unital algebra with generators x1,zs, ..., T,
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and y1, Y2, -5 Yn, K(T1,Z2, ..., TnyY1,Y2,- -, Yn), modulo the commutation rela-

tions
iz = xjz; for all i,5 € {1,2,...,n},
yiy; = y;y; for all i, j € {1,2,...,n},
ziy; =y, for all 4,5 € {1,2,...,n} such that i # j,
xy; = yiw; + 1 for all i € {1,2,...,n}.

2.3. The first hom-associative Weyl algebras. In [3], a family of hom-asso-
ciative Weyl algebras {A¥}rcx was constructed as a generalization of A; to the
hom-associative setting (see also [2] for the case when K has prime characteristic),
including A; as the member corresponding to k = 0. The definition of A¥ is as

follows:

Definition 2.4. (The first hom-associative Weyl algebra) Let «y be the K-auto-
morphism on A; defined by ay(z) := z, ag(y) := y+k, and ag(la,) := 14, for any
k € K. The first hom-associative Weyl algebra A is the Yau twist of A; by ay.

For each k € K, we thus get a hom-associative Weyl algebra A¥ which is weakly
unital with weak identity element 14,. In [3], it was proven that A% is simple for
all k € K. In [1], the study of A¥ was continued. The morphisms and derivations
on A¥ were characterized, and an analogue of the famous Dizmier conjecture, first
introduced by Dixmier [4], was proven. It was also shown that A¥ is a formal defor-
mation of Ay with k as deformation parameter, this in contrast to the associative

setting where A; is formally rigid and thus cannot be formally deformed.

2.4. Monomial orderings. We introduce an ordering, the so-called graded lexi-
cographic ordering on N™, where a vector is larger than another vector if it has
larger sum of all its elements. In case of a tie, we apply lexicographic order-
ing, that is, (1,0,0,...,0) > (0,1,0,...,0) > --- > (0,0,0,...,1). For example,
(0,0,3) > (1,1,0) > (0,2,0) > (0,1,0) > (0,0,0). Note that this is a total ordering
on N" and that any subset has a smallest element. Furthermore, it is impossible to
find an infinite decreasing sequence in N™. Note that this gives an ordering of the
monomials in K[y1,y2, .., Yn]-

Any p € A, can be written as ) ;yn plxlfxlf -~ xln where p; € K[y1,y2, .-+, Yn),
Il =(li,ls,...,1,) € N, and only finitely many of the p; are non-zero. We define
deg, (p) as the largest [ in graded lexicographic order such that p; is non-zero, and
L(p) = Paeg, (p)- We also define deg, in a similar way. We will often write deg, (p) =

0, where 0 should be understood as the zero vector of appropriate dimension.
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3. Ideals in higher order hom-associative Weyl algebras

We define the nth hom-associative Weyl algebra in anaology with how the first

hom-associative Weyl algebra is defined.

Definition 3.1. (The nth hom-associative Weyl algebra) Let K be a field of char-
acteristic zero and let k = (k1,ka,...,k,) € K™. Define the K-automorphism
on A, by ag(x;) := x;, ar(y;) = y; + ki, and ag(la,) := 14, for 1 <i < n. The
nth hom-associative Weyl algebra AF is the Yau twist of A, by ay.

We will suppose ki1ks ...k, # 0.

Proposition 3.2. If I is a left (right) ideal of A, then I is a left (right) ideal of
Ak if and only if cy.(I) C I if and only if ax(I) = 1.

Proof. We show the left case; the right case is similar. To this end, let I be a left
ideal of A,. If a,(I) C I, p € Ay, and ¢ € I, then p* g = ax(pq) € ax(I) C I.
If I is a left ideal of A* and g € I, then ay.(q) = 14, xq€ I, 50 ay,(I) CI. O

Example 3.3. Let I be the left ideal of A; generated by z" for some n € Nyg.
Then [ is a non-trivial left ideal (for example, y € I). Any element in I may be
written as pz™ for some p € A;. We have ay(pz™) = ap(p)ak(z™) = ax(p)z™ € 1,
so ax(I) C I. Similarly, if T is the right ideal of A; generated by z™, then I is a
non-trivial right ideal such that ay(I) C I. By Proposition 3.2, I is a non-trivial
left (right) ideal of A}.

By the next example, not all left (right) ideals of A; are left (right) ideals of A%
when k # 0.

Example 3.4. Let I be the left (right) ideal of A; generated by y. Then = & I,
so I # Aj. Assume that k£ # 0 and ai(I) € I. Then y+k = ax(y) € I, so
k= (y+k)—y €l Hencels, €I, which implies I = A;; a contradiction. By
Proposition 3.2, I is not a left (right) ideal of A¥.

Lemma 3.5. If I is a left (right) ideal of A where kiky -+ -k, # 0, then ay(I) = I.

Proof. Since any left (right) ideal I of A¥ is also a left (right) hom-ideal, ax(I) C I.

Now, let I be a left ideal of AX. If 0 # p € I, we claim that we can find an
element p’ € I such that deg,(p’) = deg,(p) and L(p') = 1. If L(p) = c € K, we
can take p’ = ¢! x p. Otherwise, we note that deg,(ax(p) — p) = deg,(p), and
that L(ag(p)) and L(p) have the same leading term using our monomial ordering

on Klyi,y2,...,yn]. Thus, L(ag(p) — p) has lower degree than L(p) using our
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monomial ordering. We can repeat this process until we get an element in I with
a constant as leading coefficient w.r.t. z1,zs,...,z,, and with the same degree in
X1,T2,...,Tpn as P.

Now suppose I € «ai(I). Then there is at least one element in I that does
not belong to ax(I). Pick such an element, ¢, of lowest possible degree w.r.t.
Z1,%2,...,%,. Find an element ¢’ € I such that deg,(¢’) = deg,(¢) and L(¢') = 1.
Set == a?(a; *(L(q))d) = ar(a; *(L(q)) * ¢'). Note that deg,(r) = deg,(g) and
that L(r) = L(q). Since o *(L(q))*q' € I, we have r € ay(I) C I. Hence g—r € I,
and by the minimality of ¢, we must have ¢ —r € ay(I). However, this would imply
that also ¢ € a(I), which is a contradiction.

Now let I be a right ideal of A®. If 0 # p € I, we can find an element p’ € I such
that deg, (p') = deg,(p) and L(p') = 1. If L(p) = ¢ € K, we can take p’ = p*c~ L.
Otherwise we proceed like in the left case.

Now suppose I & «g(I). Then there is at least one element in I that does
not belong to ax(I). Pick such an element, ¢, of lowest possible degree w.r.t.
x1,%2,...,%,. Find an element ¢’ € I such that deg,(¢’') = deg,(¢) and L(¢’) = 1.
Set 7 := a2 (q'a; 2(L(q))) = ax(q *a;, >(L(q))). As in the left case, we get r € ay(I)
and ¢ — r € I. By the minimality of ¢, we get ¢ — r € «ay(I), which gives the
contradiction ¢ € ay(I). O

Proposition 3.6. Any left (right) ideal of AX for kiks-- -k, # 0 is a left (right)
ideal of A,.

Proof. Let us prove the left case; the right case is similar. To this end, suppose I
is a left ideal of A%. To show that I is also a left ideal of A,, it is enough to show
that A, I C I. Since I is a left ideal of A®, we know that A, * I C I. Moreover,

no

Ap I = ag(AnT), s0 AT C o '(I). By Lemma 3.5, ap.(I) = I, s0oap '(I) = 1. O
Corollary 3.7. A% is simple for kiko -k, # 0.

Proof. Let I be an ideal of A* for kiky---k, # 0. By Proposition 3.6, I is also

an ideal of A,,. Since it is well known that A,, is simple, I must be trivial. O

Corollary 3.8. Any left (right) ideal of AX for kiky-- -k, # 0 is generated by two

elements.

Proof. Let I be a left ideal of A*. Since I is also a left ideal of A,,, we know that
it is generated as an ideal of A,, by two elements, say p and q. We want to show
that a~1(p) and a~!(q) generate I as a left ideal of AX. If r € I, then there are
a,b € A, such that r = ap + bg = a(a " (a)a" (p) + a1 (b)a"1(q)) = a(a) *
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a 1(p) + a=1(b) * a=t(q). Clearly this shows that a~!(p) and a~!(q) generate I
as a left ideal of A¥. (That they are elements of I follows from Lemma 3.5.)

The right case is similar. (Il

Lemma 3.9. Any left (right) ideal, I, of A, generated by elements p1,p2, ..., Pm
with deg, (p1) = deg,(p2) = -+ = deg,(pm) = 0 is a principal left (right) ideal of
Ak if K #0.

Proof. Assume, without loss of generality, that ky # 0. We first show that I is a
left ideal of A*. If ¢ € I, then we can write ¢ = S, rip; for some r; € A, and
ar(q) = S ag(ri)p; € I. Hence, by Proposition 3.2, I is a left ideal of AX. Tt
remains to show it is a principal left ideal of A% .

We will proceed by induction, and in fact we will show that I of A,, is generated
as a left ideal of AX by t = p; +yipa + -+ + y{"_lpm. To handle the case m = 2
set t := p; + y1p2. Let J be the left ideal of A generated by t. Then ay(t) =
p1+y1pe+kips € J,s0 ps = szl*(ak(t)—t) € J, and hence p; = t—(y1—k1)*p2 € J.
Hence I = J.

Now assume we have proven the result for m and wish to prove it for m + 1.
Set t :=p; + yip2 + -+ Y"Pms1. Let J be the left ideal of A* generated by t.
Obviously, J C I. Note that t1 := a(t) —t = r12D2 + 1303 + - - + "1, m+1Pm+1,
where ry ; € K[y1] and deg,, (r1,;) =i—2foralli € {2,3,...,m+1}. Also note that
t1 € J. We can then set to := ay(t1)—t1 and note that to = 72 3ps+- - +72 mt1Pm+1
where ro; € K[y1] and deg,, (ro;) =i —3 for alli € {3,4,...,m+1}. Alsoty € J.
Proceeding in a similar way, we get an element ¢,, € J such that ¢, = rp m+1Pm+1,
where 7, 41 € K and 7, ;41 7 0. Thus p,11 € J and p1 +y1p2+- - ~+y1"_1pm S
J, so by the induction assumption, J = I.

m—1

The right case is similar; one sets t := p; + pa2y1 + - - P ¥ instead. (]

Lemma 3.10. For any p € A,, there are q1,q2,...,qm € An with deg,(q1) =
deg, (q2) = - -+ = deg, (gm) = 0, such that the left (right) ideal of A% for kiks - -k, #
0 generated by p equals the left (right) ideal of A generated by q1,qo,. .., qm-

L,

where each p, € K[y1,y2,...,yn), and let E(p) = {a € N"|p, # 0}. We prove the

Proof. Let I be the left ideal of A% generated by p. Set p =Y cxn Pa®? 5% ... 28n

lemma by induction over |E(p)|.

We begin with the case when |E(p)| = 1. If deg, (p) = 0, we are done. Otherwise,
set p’ = p—ag(p). Then E(p') = E(p) and deg, (p') < deg, (p). Repeat as necessary
until we find ¢; € I such that F(q;) = E(p) and deg,(q1) = 0. Then there is
r € K[y1,y2,...,Yn] such that p = rqq, so p is in the left ideal of A,, generated by
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p, and thus also in the left ideal of A® generated by g;. Hence the left ideal of A*
generated by ¢ is I.

Now suppose we have proven the lemma when |E(p)| < ¢. Assume |E(p)| = £+1.
If deg,(p) = 0, we are done, so let deg,(p) > 0. Set p’ = p — ax(p). Note that
E(p') € E(p), p' # 0, and that if E(p) = E(p), then deg, (p') < deg, (p). Repeat as
necessary until we find ¢, € I such that F(q1) C E(p),q1 # 0, and deg, (q1) = 0. We
can then find r € K[y1,y2,...,ys] such that E(p —rq;) € E(p). By the induction

assumption, there are g2, qs, . .. ¢m with deg,(q2) = deg,(g3) = - = deg,(gm) =0
that generate the same left ideal of A* as p—rg;. Then g1, ¢, ..., gm are elements
that generate I as a left ideal of A¥ and deg, (q1) = deg,(q2) = - - = deg, (¢m) = 0.

The right case is similar. O

Theorem 3.11. Any left (right) ideal of AX for kiky -k, # 0 is principal.

Proof. Let I be a left ideal of AX. We know it is generated by elements p, q as a left
ideal of A,,. By Lemma 3.10, we can find p1,po,...,pe and q1, g2, .. ., ¢m such that
the p; generate the same left ideal of A* as p, the ¢; generate the same left ideal of
A} as g, and deg, (p1) = deg, (p2) = - - - = deg, (pe) = deg, (q1) = deg,(g2) = - =
degy(qm) = 0. Clearly, p1,p2,...,DPe,q1,G2, - -, qm generate I as a left ideal of A%,
By Lemma 3.9 we are done.

The right case is similar. (I
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