

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA Volume 38 (2025) 74-81 DOI: 10.24330/ieja.1587178

IDEALS IN HOM-ASSOCIATIVE WEYL ALGEBRAS

Per Bäck and Johan Richter

Received: 15 March 2024; Revised: 31 October 2024; Accepted: 31 October 2024 Communicated by A. Çiğdem Özcan

ABSTRACT. We introduce hom-associative versions of the higher order Weyl algebras, generalizing the construction of the first hom-associative Weyl algebras. We then show that the higher order hom-associative Weyl algebras are simple, and that all their one-sided ideals are principal.

Mathematics Subject Classification (2020): 17B61, 17D30 Keywords: Hom-associative Weyl algebra, hom-associative Ore extension, Stafford's theorem

1. Introduction

Dixmier [5] has shown that every left (right) ideal of the first Weyl algebra A_1 over a field K of characteristic zero can be generated by two elements. Later, and more generally, Stafford [9] has shown that every left (right) ideal of a simple left (right) Noetherian ring with Krull dimension n can be generated by n+1 elements; in particular, this result applies to the nth Weyl algebra A_n over K. Stafford [10] has further improved this result for A_n and shown that every left (right) ideal of A_n over K can be generated by two elements, a classical result today more commonly known as *Stafford's theorem*.

In this article, we introduce higher order hom-associative Weyl algebras as homassociative deformations of the higher order Weyl algebras over K and consider what a hom-associative version of Stafford's theorem would look like. We prove that, subject to a non-triviality condition on the deformation, the higher order hom-associative Weyl algebras are simple (Corollary 3.7) and that all their onesided ideals are principal (Theorem 3.11).

2. Preliminaries

Throughout this article, we denote by \mathbb{N} the set of non-negative integers. By a *non-associative algebra* over an associative, commutative, and unital ring R, we mean an R-algebra A which is not necessarily associative and not necessarily unital. **2.1.** Hom-associative algebras. *Hom-associative algebras* were introduced in [8] as non-associative algebras with a "twisted" associativity condition. In particular, by using the commutator as a bracket, any hom-associative algebra gives rise to a *hom-Lie algebra*; the latter introduced in [7] as a generalization of a Lie algebra, now with a twisted Jacobi identity.

Definition 2.1. (Hom-associative algebra) A hom-associative algebra over an associative, commutative, and unital ring R, is a non-associative R-algebra A with an R-linear map α , where for all $a, b, c \in A$, the hom-associative condition holds,

$$\alpha(a)(bc) = (ab)\alpha(c).$$

Since α in the above definition "twists" the associativity condition, it is referred to as a *twisting map*.

For hom-associative algebras it is usually too restrictive to expect them to be unital. Instead, a related condition, called *weak unitality*, is of interest.

Definition 2.2. (Weak unitality) Let A be a hom-associative algebra. If for all $a \in A$, $ea = ae = \alpha(a)$ for some $e \in A$, we say that A is weakly unital with weak identity element e.

The so-called *Yau twist* gives a way of constructing (weakly unital) hom-associative algebras from (unital) associative algebras.

Proposition 2.3. ([6,11]) Let A be an associative algebra and let α be an algebra endomorphism on A. Define a new product * on A by $a*b := \alpha(ab)$ for any $a, b \in A$. Then A with product *, called the Yau twist of A, is a hom-associative algebra with twisting map α . If A is unital with identity element 1_A , then the Yau twist of A is weakly unital with weak identity element 1_A .

By a left (right) *hom-ideal* in a hom-associative algebra, we mean a left (right) ideal that is also invariant under the twisting map. If the algebra is weakly unital, then all ideals, one-sided and two-sided, are automatically invariant under the twisting map.

2.2. The *n*th Weyl algebra. The *n*th Weyl algebra, A_n , over a field K of characteristic zero is the free, associative, and unital algebra with generators x_1, x_2, \ldots, x_n

and y_1, y_2, \ldots, y_n , $K\langle x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \rangle$, modulo the commutation relations

$$\begin{aligned} x_i x_j &= x_j x_i \text{ for all } i, j \in \{1, 2, \dots, n\}, \\ y_i y_j &= y_j y_i \text{ for all } i, j \in \{1, 2, \dots, n\}, \\ x_i y_j &= y_j x_i \text{ for all } i, j \in \{1, 2, \dots, n\} \text{ such that } i \neq j, \\ x_i y_i &= y_i x_i + 1 \text{ for all } i \in \{1, 2, \dots, n\}. \end{aligned}$$

2.3. The first hom-associative Weyl algebras. In [3], a family of hom-associative Weyl algebras $\{A_1^k\}_{k\in K}$ was constructed as a generalization of A_1 to the hom-associative setting (see also [2] for the case when K has prime characteristic), including A_1 as the member corresponding to k = 0. The definition of A_1^k is as follows:

Definition 2.4. (The first hom-associative Weyl algebra) Let α_k be the K-automorphism on A_1 defined by $\alpha_k(x) := x$, $\alpha_k(y) := y + k$, and $\alpha_k(1_{A_1}) := 1_{A_1}$ for any $k \in K$. The first hom-associative Weyl algebra A_1^k is the Yau twist of A_1 by α_k .

For each $k \in K$, we thus get a hom-associative Weyl algebra A_1^k which is weakly unital with weak identity element 1_{A_1} . In [3], it was proven that A_1^k is simple for all $k \in K$. In [1], the study of A_1^k was continued. The morphisms and derivations on A_1^k were characterized, and an analogue of the famous *Dixmier conjecture*, first introduced by Dixmier [4], was proven. It was also shown that A_1^k is a formal deformation of A_1 with k as deformation parameter, this in contrast to the associative setting where A_1 is formally rigid and thus cannot be formally deformed.

2.4. Monomial orderings. We introduce an ordering, the so-called graded lexicographic ordering on \mathbb{N}^n , where a vector is larger than another vector if it has larger sum of all its elements. In case of a tie, we apply lexicographic ordering, that is, $(1,0,0,\ldots,0) > (0,1,0,\ldots,0) > \cdots > (0,0,0,\ldots,1)$. For example, (0,0,3) > (1,1,0) > (0,2,0) > (0,1,0) > (0,0,0). Note that this is a total ordering on \mathbb{N}^n and that any subset has a smallest element. Furthermore, it is impossible to find an infinite decreasing sequence in \mathbb{N}^n . Note that this gives an ordering of the monomials in $K[y_1, y_2, \ldots, y_n]$.

Any $p \in A_n$ can be written as $\sum_{l \in \mathbb{N}^n} p_l x_1^{l_1} x_2^{l_2} \cdots x_n^{l_n}$ where $p_l \in K[y_1, y_2, \ldots, y_n]$, $l = (l_1, l_2, \ldots, l_n) \in \mathbb{N}^n$, and only finitely many of the p_l are non-zero. We define $\deg_x(p)$ as the largest l in graded lexicographic order such that p_l is non-zero, and $L(p) = p_{\deg_x(p)}$. We also define \deg_y in a similar way. We will often write $\deg_y(p) = 0$, where 0 should be understood as the zero vector of appropriate dimension.

3. Ideals in higher order hom-associative Weyl algebras

We define the *nth hom-associative Weyl algebra* in analogy with how the first hom-associative Weyl algebra is defined.

Definition 3.1. (The *n*th hom-associative Weyl algebra) Let K be a field of characteristic zero and let $k = (k_1, k_2, \ldots, k_n) \in K^n$. Define the K-automorphism α_k on A_n by $\alpha_k(x_i) := x_i$, $\alpha_k(y_i) := y_i + k_i$, and $\alpha_k(1_{A_n}) := 1_{A_n}$ for $1 \le i \le n$. The *n*th hom-associative Weyl algebra A_n^k is the Yau twist of A_n by α_k .

We will suppose $k_1 k_2 \dots k_n \neq 0$.

Proposition 3.2. If I is a left (right) ideal of A_n , then I is a left (right) ideal of A_n^k if and only if $\alpha_k(I) \subseteq I$ if and only if $\alpha_k(I) = I$.

Proof. We show the left case; the right case is similar. To this end, let I be a left ideal of A_n . If $\alpha_k(I) \subseteq I$, $p \in A_n$, and $q \in I$, then $p * q = \alpha_k(pq) \in \alpha_k(I) \subseteq I$.

If I is a left ideal of A_n^k and $q \in I$, then $\alpha_k(q) = 1_{A_n} * q \in I$, so $\alpha_k(I) \subseteq I$. \Box

Example 3.3. Let I be the left ideal of A_1 generated by x^n for some $n \in \mathbb{N}_{>0}$. Then I is a non-trivial left ideal (for example, $y \notin I$). Any element in I may be written as px^n for some $p \in A_1$. We have $\alpha_k(px^n) = \alpha_k(p)\alpha_k(x^n) = \alpha_k(p)x^n \in I$, so $\alpha_k(I) \subseteq I$. Similarly, if I is the right ideal of A_1 generated by x^n , then I is a non-trivial right ideal such that $\alpha_k(I) \subseteq I$. By Proposition 3.2, I is a non-trivial left (right) ideal of A_1^k .

By the next example, not all left (right) ideals of A_1 are left (right) ideals of A_1^k when $k \neq 0$.

Example 3.4. Let I be the left (right) ideal of A_1 generated by y. Then $x \notin I$, so $I \neq A_1$. Assume that $k \neq 0$ and $\alpha_k(I) \subseteq I$. Then $y + k = \alpha_k(y) \in I$, so $k = (y+k) - y \in I$. Hence $1_{A_1} \in I$, which implies $I = A_1$; a contradiction. By Proposition 3.2, I is not a left (right) ideal of A_1^k .

Lemma 3.5. If I is a left (right) ideal of A_n^k where $k_1k_2 \cdots k_n \neq 0$, then $\alpha_k(I) = I$.

Proof. Since any left (right) ideal I of A_n^k is also a left (right) hom-ideal, $\alpha_k(I) \subseteq I$.

Now, let *I* be a left ideal of A_n^k . If $0 \neq p \in I$, we claim that we can find an element $p' \in I$ such that $\deg_x(p') = \deg_x(p)$ and L(p') = 1. If $L(p) = c \in K$, we can take $p' = c^{-1} * p$. Otherwise, we note that $\deg_x(\alpha_k(p) - p) = \deg_x(p)$, and that $L(\alpha_k(p))$ and L(p) have the same leading term using our monomial ordering on $K[y_1, y_2, \ldots, y_n]$. Thus, $L(\alpha_k(p) - p)$ has lower degree than L(p) using our

monomial ordering. We can repeat this process until we get an element in I with a constant as leading coefficient w.r.t. x_1, x_2, \ldots, x_n , and with the same degree in x_1, x_2, \ldots, x_n as p.

Now suppose $I \not\subseteq \alpha_k(I)$. Then there is at least one element in I that does not belong to $\alpha_k(I)$. Pick such an element, q, of lowest possible degree w.r.t. x_1, x_2, \ldots, x_n . Find an element $q' \in I$ such that $\deg_x(q') = \deg_x(q)$ and L(q') = 1. Set $r := \alpha_k^2(\alpha_k^{-2}(L(q))q') = \alpha_k(\alpha_k^{-2}(L(q)) * q')$. Note that $\deg_x(r) = \deg_x(q)$ and that L(r) = L(q). Since $\alpha_k^{-2}(L(q)) * q' \in I$, we have $r \in \alpha_k(I) \subseteq I$. Hence $q - r \in I$, and by the minimality of q, we must have $q - r \in \alpha_k(I)$. However, this would imply that also $q \in \alpha_k(I)$, which is a contradiction.

Now let I be a right ideal of A_n^k . If $0 \neq p \in I$, we can find an element $p' \in I$ such that $\deg_x(p') = \deg_x(p)$ and L(p') = 1. If $L(p) = c \in K$, we can take $p' = p * c^{-1}$. Otherwise we proceed like in the left case.

Now suppose $I \not\subseteq \alpha_k(I)$. Then there is at least one element in I that does not belong to $\alpha_k(I)$. Pick such an element, q, of lowest possible degree w.r.t. x_1, x_2, \ldots, x_n . Find an element $q' \in I$ such that $\deg_x(q') = \deg_x(q)$ and L(q') = 1. Set $r := \alpha_k^2(q'\alpha_k^{-2}(L(q))) = \alpha_k(q'*\alpha_k^{-2}(L(q)))$. As in the left case, we get $r \in \alpha_k(I)$ and $q - r \in I$. By the minimality of q, we get $q - r \in \alpha_k(I)$, which gives the contradiction $q \in \alpha_k(I)$.

Proposition 3.6. Any left (right) ideal of A_n^k for $k_1k_2 \cdots k_n \neq 0$ is a left (right) ideal of A_n .

Proof. Let us prove the left case; the right case is similar. To this end, suppose I is a left ideal of A_n^k . To show that I is also a left ideal of A_n , it is enough to show that $A_nI \subseteq I$. Since I is a left ideal of A_n^k , we know that $A_n * I \subseteq I$. Moreover, $A_n * I = \alpha_k(A_nI)$, so $A_nI \subseteq \alpha_k^{-1}(I)$. By Lemma 3.5, $\alpha_k(I) = I$, so $\alpha_k^{-1}(I) = I$. \Box

Corollary 3.7. A_n^k is simple for $k_1k_2 \cdots k_n \neq 0$.

Proof. Let *I* be an ideal of A_n^k for $k_1k_2 \cdots k_n \neq 0$. By Proposition 3.6, *I* is also an ideal of A_n . Since it is well known that A_n is simple, *I* must be trivial.

Corollary 3.8. Any left (right) ideal of A_n^k for $k_1k_2 \cdots k_n \neq 0$ is generated by two elements.

Proof. Let *I* be a left ideal of A_n^k . Since *I* is also a left ideal of A_n , we know that it is generated as an ideal of A_n by two elements, say *p* and *q*. We want to show that $\alpha^{-1}(p)$ and $\alpha^{-1}(q)$ generate *I* as a left ideal of A_n^k . If $r \in I$, then there are $a, b \in A_n$ such that $r = ap + bq = \alpha(\alpha^{-1}(a)\alpha^{-1}(p) + \alpha^{-1}(b)\alpha^{-1}(q)) = \alpha^{-1}(a) *$ $\alpha^{-1}(p) + \alpha^{-1}(b) * \alpha^{-1}(q)$. Clearly this shows that $\alpha^{-1}(p)$ and $\alpha^{-1}(q)$ generate I as a left ideal of A_n^k . (That they are elements of I follows from Lemma 3.5.)

The right case is similar.

Lemma 3.9. Any left (right) ideal, I, of A_n generated by elements p_1, p_2, \ldots, p_m with $\deg_y(p_1) = \deg_y(p_2) = \cdots = \deg_y(p_m) = 0$ is a principal left (right) ideal of A_n^k if $k \neq 0$.

Proof. Assume, without loss of generality, that $k_1 \neq 0$. We first show that I is a left ideal of A_n^k . If $q \in I$, then we can write $q = \sum_{i=1}^m r_i p_i$ for some $r_i \in A_n$ and $\alpha_k(q) = \sum_{i=1}^m \alpha_k(r_i) p_i \in I$. Hence, by Proposition 3.2, I is a left ideal of A_n^k . It remains to show it is a principal left ideal of A_n^k .

We will proceed by induction, and in fact we will show that I of A_n is generated as a left ideal of A_n^k by $t = p_1 + y_1 p_2 + \dots + y_1^{m-1} p_m$. To handle the case m = 2set $t := p_1 + y_1 p_2$. Let J be the left ideal of A_n^k generated by t. Then $\alpha_k(t) =$ $p_1 + y_1 p_2 + k_1 p_2 \in J$, so $p_2 = k_1^{-1} * (\alpha_k(t) - t) \in J$, and hence $p_1 = t - (y_1 - k_1) * p_2 \in J$. Hence I = J.

Now assume we have proven the result for m and wish to prove it for m + 1. Set $t := p_1 + y_1 p_2 + \cdots + y_1^m p_{m+1}$. Let J be the left ideal of A_n^k generated by t. Obviously, $J \subseteq I$. Note that $t_1 := \alpha_k(t) - t = r_{1,2}p_2 + r_{1,3}p_3 + \cdots + r_{1,m+1}p_{m+1}$, where $r_{1,i} \in K[y_1]$ and $\deg_{y_1}(r_{1,i}) = i-2$ for all $i \in \{2, 3, \ldots, m+1\}$. Also note that $t_1 \in J$. We can then set $t_2 := \alpha_k(t_1) - t_1$ and note that $t_2 = r_{2,3}p_3 + \cdots + r_{2,m+1}p_{m+1}$ where $r_{2,i} \in K[y_1]$ and $\deg_{y_1}(r_{2,i}) = i-3$ for all $i \in \{3, 4, \ldots, m+1\}$. Also $t_2 \in J$. Proceeding in a similar way, we get an element $t_m \in J$ such that $t_m = r_{m,m+1}p_{m+1}$, where $r_{m,m+1} \in K$ and $r_{m,m+1} \neq 0$. Thus $p_{m+1} \in J$ and $p_1 + y_1 p_2 + \cdots + y_1^{m-1}p_m \in J$, so by the induction assumption, J = I.

The right case is similar; one sets $t := p_1 + p_2 y_1 + \cdots + p_m y_1^{m-1}$ instead. \Box

Lemma 3.10. For any $p \in A_n$, there are $q_1, q_2, \ldots, q_m \in A_n$ with $\deg_y(q_1) = \deg_y(q_2) = \cdots = \deg_y(q_m) = 0$, such that the left (right) ideal of A_n^k for $k_1 k_2 \cdots k_n \neq 0$ generated by p equals the left (right) ideal of A_n^k generated by q_1, q_2, \ldots, q_m .

Proof. Let *I* be the left ideal of A_n^k generated by *p*. Set $p = \sum_{a \in \mathbb{N}^n} p_a x_1^{a_1} x_2^{a_2} \dots x_n^{a_n}$, where each $p_a \in K[y_1, y_2, \dots, y_n]$, and let $E(p) = \{a \in \mathbb{N}^n \mid p_a \neq 0\}$. We prove the lemma by induction over |E(p)|.

We begin with the case when |E(p)| = 1. If $\deg_y(p) = 0$, we are done. Otherwise, set $p' = p - \alpha_k(p)$. Then E(p') = E(p) and $\deg_y(p') < \deg_y(p)$. Repeat as necessary until we find $q_1 \in I$ such that $E(q_1) = E(p)$ and $\deg_y(q_1) = 0$. Then there is $r \in K[y_1, y_2, \ldots, y_n]$ such that $p = rq_1$, so p is in the left ideal of A_n generated by

p, and thus also in the left ideal of A_n^k generated by q_1 . Hence the left ideal of A_n^k generated by q_1 is I.

Now suppose we have proven the lemma when $|E(p)| \leq \ell$. Assume $|E(p)| = \ell + 1$. If $\deg_{y}(p) = 0$, we are done, so let $\deg_{y}(p) > 0$. Set $p' = p - \alpha_{k}(p)$. Note that $E(p') \subseteq E(p), p' \neq 0$, and that if E(p') = E(p), then $\deg_y(p') < \deg_y(p)$. Repeat as necessary until we find $q_1 \in I$ such that $E(q_1) \subseteq E(p), q_1 \neq 0$, and $\deg_q(q_1) = 0$. We can then find $r \in K[y_1, y_2, \ldots, y_n]$ such that $E(p - rq_1) \subsetneq E(p)$. By the induction assumption, there are q_2, q_3, \ldots, q_m with $\deg_y(q_2) = \deg_y(q_3) = \cdots = \deg_y(q_m) = 0$ that generate the same left ideal of A_n^k as $p - rq_1$. Then q_1, q_2, \ldots, q_m are elements that generate I as a left ideal of A_n^k and $\deg_u(q_1) = \deg_u(q_2) = \cdots = \deg_u(q_m) = 0$.

The right case is similar.

Theorem 3.11. Any left (right) ideal of A_n^k for $k_1k_2 \cdots k_n \neq 0$ is principal.

Proof. Let I be a left ideal of A_n^k . We know it is generated by elements p, q as a left ideal of A_n . By Lemma 3.10, we can find p_1, p_2, \ldots, p_ℓ and q_1, q_2, \ldots, q_m such that the p_i generate the same left ideal of A_n^k as p, the q_i generate the same left ideal of A_n^k as q, and $\deg_u(p_1) = \deg_u(p_2) = \cdots = \deg_u(p_\ell) = \deg_u(q_1) = \deg_u(q_2) = \cdots =$ $\deg_{y}(q_{m}) = 0$. Clearly, $p_{1}, p_{2}, \ldots, p_{\ell}, q_{1}, q_{2}, \ldots, q_{m}$ generate I as a left ideal of A_{n}^{k} . By Lemma 3.9 we are done.

The right case is similar.

Acknowledgement. The authors would like to thank the referee for valuable comments on the manuscript.

Disclosure statement. The authors have no competing interests to declare.

References

- [1] P. Bäck and J. Richter, On the hom-associative Weyl algebras, J. Pure Appl. Algebra, 224(9) (2020), 106368 (12 pp).
- [2] P. Bäck and J. Richter, The hom-associative Weyl algebras in prime characteristic, Int. Electron. J. Algebra, 31 (2022), 203-229.
- [3] P. Bäck, J. Richter and S. Silvestrov, Hom-associative Ore extensions and weak unitalizations, Int. Electron. J. Algebra, 24 (2018), 174-194.
- [4] J. Dixmier, Sur les algèbres de Weyl, Bull. Soc. Math. France, 96 (1968), 209-242.
- [5] J. Dixmier, Sur les algèbres de Weyl II, Bull. Sci. Math., 94 (1970), 289-301.
- [6] Y. Fregier and A. Gohr, On unitality conditions for Hom-associative algebras, arXiv:0904.4874 [math.RA] (2009).

- [7] J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using σ -derivations, J. Algebra, 295(2) (2006), 314-361.
- [8] A. Makhlouf and S. D. Silvestrov, *Hom-algebra structures*, J. Gen. Lie Theory Appl., 2(2) (2008), 51-64.
- [9] J. T. Stafford, Completely faithful modules and ideals of simple Noetherian rings, Bull. London Math. Soc., 8(2) (1976), 168-173.
- [10] J. T. Stafford, Module structure of Weyl algebras, J. London Math. Soc., 18(3) (1978), 429-442.
- [11] D. Yau, Hom-algebras and homology, J. Lie Theory, 19(2) (2009), 409-421.

Per Bäck (Corresponding Author) Division of Mathematics and Physics Mälardalen University SE-721 23 Västerås, Sweden e-mail: per.back@mdu.se

Johan Richter

Department of Mathematics and Natural Sciences Blekinge Institute of Technology SE-371 79 Karlskrona, Sweden e-mail: johan.richter@bth.se