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Abstract. In this work the algebraic structures of twistulant matrices de-

fined over a ring are studied, with particular attention on their multiplicative

structure. It is determined these matrices over a ring are an abelian group

and when they are defined over a field the diagonalization of such matrices is

considered.
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1. Introduction

Circulant matrices ([4]) have received considerable attention of several research

groups for their own right and for their potential applications including image

processing, communications, network systems, signal processing, coding theory and

cryptography ([8],[9]).

Twistulant matrices were introduced as a generalization of circulant matrices,

and algebraic structures of these matrices over the complex numbers have been

determined ([6]).

In this note, following [6] right (left) β-twistulant matrices over a ring are intro-

duced and focus on given group structures of these matrices. The manuscript is

organized as follows: in Section 2 the definition of right (left) β-twistulant matrices

and basic results are given. Section 3 is devoted to the group structure of subsets of

the introduced matrices. In [6] the mentioned matrices are defined over the complex

numbers, C, but in our case the results are presented over any commutative ring R.

Later, in Section 4, the ring R will be taken to be a field with particular properties,
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GROUP STRUCTURES OF TWISTULANT MATRICES 91

placing special emphasis on the case of a finite field. In Section 5 several examples

are presented illustrating the main results. Final comments are given in Section 6.

2. Twistulant matrices

Let R be a commutative ring and Rn be the cartesian product for n > 1. Let

σ : Rn −→ Rn be the permutation σ(a0, a1, . . . , an−1) = (an−1, a0, . . . , an−2).

Observe that σn = I, where σ is applied n times and I is the identity permutation,

from which it follows that τ := σ−1 = σn−1 is the permutation on Rn given by

τ(a0, a1, . . . , an−1) = (a1, a2, . . . , a0). For an element a = (a0, a1, . . . , an−1) ∈ Rn

consider the matrix

circσ(a) = (a, σ(a), . . . , σn−1(a))t,

where (X)t denotes the transpose matrix of X. This matrix is called the right-

circulant matrix. Similarly the matrix

circτ (a) = (a, τ(a), . . . , τn−1(a))t,

is called the left-circulant matrix.

Now we introduce the β-twistulant matrices. Let β ∈ R \ {0} and consider

the following map on Rn, σβ : Rn −→ Rn defined by σβ(a0, a1, . . . , an−1) =

(βan−1, a0, . . . , an−2). It is readily seen that this map is a permutation on Rn.

Observe that the map σβ : Rn −→ Rn can also be defined, by

σβ(a) =
(
a0 a1 . . . an−1

)


0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . .

...

0 0 0 . . . 1

β 0 0 . . . 0


= aJβ .

Let Mn(R) be the set of square matrices over R. We define the map rcircβ :

Rn −→ Mn(R) by

rcircβ(a) =
(
a aJβ . . . aJn−1

β

)t

,

where (∗)t indicates the matrix operation transpose and aJj
β = (aJj−1

β )Jβ for

j = 1, . . . , n − 1 with the convention aJ0
β = a. By definition rcircβ is R-linear.

Notice ker(rcircβ) = {0} for all β ∈ R\ {0}. The set of right β-twistulant matrices

of order n is defined as RCn,β(R) = {rcircβ(a) | a ∈ Rn}.
The set of left β-twistulant matrices is defined in a similar way.
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Example 2.1. Let R be a commutative ring, a = (a0, a1, a2, a3) ∈ R4 and β ∈
R \ {0}. Then

rcircβ(a) =


a

aJβ

aJ2
β

aJ3
β

 =


a0 a1 a2 a3

βa3 a0 a1 a2

βa2 βa3 a0 a1

βa1 βa2 βa3 a0

 .

An example of a left β-twistulant matrix can be given likewise.

Notice that a circulant (and negacirculant) matrix is a special case of a β-

twistulant matrix when β ∈ {1,−1}. Furthermore, the β-twistulant matrices are a

subclass of the so-called vector-circulant matrices ([7]).

Let

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

... . . .
...

an,1 an,2 . . . an,n

 ∈ Mn(R).

Recall that the anti-diagonal ofA is given by the elements a1,n, a2,n−1, . . . , an−1,2, an,1.

The transpose of A with respect to its anti-diagonal, denoted by Aτ , is defined as,

Aτ =


an,n an−1,n . . . a1,n

an,n−1 an−1,n−1 . . . a1,n−1

...
... . . .

...

an,1 an−1,1 . . . a1,1

 .

Example 2.2. Let R = Z9 and A ∈ M3(R) given by

A =


1 0 8

2 3 5

0 6 4

 then Aτ =


4 5 8

6 3 0

0 2 1

 .

We have the usual properties (Aτ )τ = A and (A + B)τ = Aτ + Bτ for A,B ∈
Mn(R). The definition can be extended to

(
r0 r1 . . . rn−1

)
∈ M1×n(R) by

(
r0 r1 . . . rn−1

)τ

=


rn−1

...

r1

r0

 ∈ Mn×1(R).

Remark 2.3. We observe, by construction that, Jτ
β = Jβ , in other words Jβ is

symmetric with respect to this transpose operation.
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Let R be any commutative ring, consider the ring Rn,β = R[x]/⟨xn − β⟩ and

define the polynomial representation map of Rn as follows,

Pβ : Rn −→ Rn,β , Pβ(a) = a0 + a1x+ · · ·+ an−1x
n−1.

It is easily seen that the map Pβ is an isomorphism ofR-modules. Further, applying

the permutation σβ introduced above to an element of Rn, it has the same effect as

multiplying by x the corresponding polynomial. In the study of constacyclic codes

this mapping is vital when β is a unit of the ring.

We recall the following ([1],[3]). Let R be a commutative ring. A linear code

of length n over R is just an R-submodule of Rn. For β a unit of the ring R,

a linear code C over R is β-constacyclic if for any c = (c0, c1, . . . , cn−1) ∈ C,
σβ(c) = (βcn−1, c0, . . . , cn−2) ∈ C. Thus the concepts of a β-twistulant matrix and

β-constacyclic code are related objects.

It is worth mentioning that the concept of β-constacyclic codes is related to the

ring Rn,β , as shown by the following result ([1]).

Proposition 2.4. Let β be a unit of the ring R. Then a linear code over R is

β-constacyclic if and only if its image under the map Pβ is an ideal of the ring

Rn,β.

Let a = (a0, a1, . . . , an−1) ∈ Rn, then a =
∑n

i=1 ai−1ei. It is clear that

rcircβ(a) =
∑n

i=1 ai−1 rcircβ(ei), where {ei | i = 1, 2, . . . , n} is the set of canonical

generators of Rn.

Proposition 2.5. Let R be any commutative ring and β ∈ R.

• Let A ∈ Mn(R) with rows A1, A2, . . . , An. Then

AJβ =
(
A1Jβ A2Jβ . . . AnJβ

)t

.

• rcircβ(e1) = In, where In is the identity matrix of order n in Mn(R).

• rcircβ(ej+1) = Jj
β, j = 1, . . . , n− 1.

• ej = e1J
j−1
β .

Proof. The first claim follows from the definitions. For the second and third claims,

it is enough to notice ejJβ = ej+1 for i = 1, . . . , n − 1 while enJβ = βe1. As a

consequence, ei+1 = e1J
i
β , i = 1, . . . , n−1 and hence ejJβ = e1J

j
β , j = 1, . . . , n−1.
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With these facts,

Jβ =



e2

e3
...

en

βe1


= rcircβ(e2) =



e1Jβ

e2Jβ
...

en−1Jβ

enJβ


.

From the first claim,

Jj
β =



e1J
j
β

e2J
j
β

...

en−1J
j
β

enJ
j
β


= rcircβ(e1J

j
β) = rcircβ(ej+1),

for j = 1, 2, . . . , n− 1. □

Corollary 2.6. With the same hypothesis as in Proposition 2.5,

rcircβ(enJβ) = Jn
β = βIn.

As consequence, if β ∈ U(R) is a unit of finite multiplicative order, o(β), J
o(β)n
β =

In. A similar consequence arises if the ring R is such that β is a non-unit with

finite nilpotency index.

Proof. Since Jn
β = Jn−1

β Jβ = rcircβ(en)Jβ = rcircβ(enJβ) = rcircβ(βe1) = βIn, it

is clear by Proposition 2.5. □

Now we define the following subsets of the R-algebra Mn(R) of n× n matrices

over the commutative ring R.

RCn,β(R) = {rcircβ(a) : a ∈ Rn}, RCn,β(R) = {A ∈ RCn,β(R) : det(A) is a unit}.

3. Structure of β-twistulant matrices

By the R-linearity of the homomorphism rcircβ , RCn,β(R) is generated as an R
module by the set

{rcircβ(e1), rcircβ(e2), . . . , rcircβ(en)}. Indeed, given a = (a0, a1, . . . , an−1) =

a0e1 + a1e2 + . . .+ an−1en, then

rcircβ(a) = a0 rcircβ(e1) + a1 rcircβ(e2) + . . .+ an−1 rcircβ(en).

From Proposition 2.5 we have,
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Proposition 3.1. Given β ∈ R, the R-module RCn,β is generated by

A = {In, Jβ , . . . , Jn−1
β : Jn

β = βIn},

i.e., given a = (a0, a1, . . . , an−1) ∈ Rn,

rcircβ(a) = a0In + a1Jβ + · · ·+ an−1J
n−1
β .

We know from Remark 2.3 that the matrix Jβ is symmetric under the transpose

with respect to its antidiagonal. The following is a direct consequence from this

fact.

Corollary 3.2. Let R be a commutative ring with identity. Given

a = (a0, a1, . . . , an−1) ∈ Rn, then rcircβ(a)
τ = rcircβ(a).

Proposition 3.3. Let β ∈ R. Then (RCn,β(R),+,×, ·) is a finitely generated

commutative R-algebra.

Proof. It is clear that (RCn,β(R),+) is an R-module. From Proposition 3.1,

(RCn,β(R),+,×, ·) is closed under the operation multiplication of matrices, ×, as

from Corollary 2.6, given r, s ∈ R,

rJ i
βsJ

j
β = rsJ i+j

β = rsJ tn+k
β = βaJk

β for some integer a and 0 ≤ k ≤ n− 1.

Next we prove that given a,b ∈ Rn, rcircβ(a) rcircβ(b) = rcircβ(b) rcircβ(a), that

is clear by Proposition 2.5: rcircβ(ei+1) rcircβ(ej+1) = J i
βJ

j
β = J i+j

β . □

Now we establish the following,

Theorem 3.4. If rcircβ(a) ∈ RCn,β(R) is invertible, then rcircβ(a)
−1 ∈ RCn,β(R).

In other words, the set of invertible elements RCn,β(R) is an abelian group.

Proof. Let a = (a0, a1, . . . , an−1) ∈ Rn be such that rcircβ(a) ∈ RCn,β(R) is

invertible. Let A = rcircβ(a)
−1 with rows A1, A2, . . . , An. From Proposition 3.1,

rcircβ(a) = a0In + a1Jβ + . . .+ an−1J
n−1
β and

A rcircβ(a) = a0A+ a1AJβ + . . .+ an−1AJn−1
β = In = rcircβ(e1).

From Proposition 2.5,

a0A1 + a1A1Jβ + . . .+ an−1A1J
n−1
β =

(
1 0 . . . 0

)
= e1,

hence,

a0A1J
j−1
β + a1(A1Jβ)J

j−1
β + · · ·+ an−1(A1J

n−1
β )Jj−1

β = ej = e1J
j−1
β .
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Then in matrix notation,

a0


A1

A1Jβ
...

A1J
n−1
β

+ a1


A1

A1Jβ
...

A1J
n−1
β

 Jβ + · · ·+ an−1


A1

A1Jβ
...

A1J
n−1
β

 Jn−1
β = In,

hence, 
A1

A1Jβ
...

A1J
n−1
β

 rcircβ(a) = In,

i.e., A−1 = rcircβ(A1) which implies that rcircβ(a)
−1 ∈ RCn,β(R). □

It is worth mentioning that β could be a non-unit in the ring R and rcircβ(r)

still be invertible as shown in the following example:

Example 3.5. Let R = Z4, β = 2 ∈ R and let a = (1, 1, 0) ∈ R3. Then

Jβ =


0 1 0

0 0 1

2 0 0

 and rcircβ(a) =


1 1 0

0 1 1

2 0 1

 ,

obtaining det(rcircβ(a)) = 3 ∈ U(R) and therefore rcircβ(a) is invertible. In fact

rcircβ(a)
−1 =


3 1 3

2 3 1

2 2 3

 .

Observe that if the first row of the matrix rcircβ(a)
−1 is known, the matrix can

be obtained with the method described in the proof of Theorem 3.4.

4. Twistulant matrices over fields

Now assume the ring R is a field. In the following lines by using a method based

on the discrete Fourier transform (DFT) it will be seen that Proposition 3.3 and

Theorem 3.4 also hold.

In the case where the field is C, the field of complex numbers, following section

3.2 of [4] we recall the special case in which β = 1. In this case the circulant

matrices are diagonalizable over C via the discrete Fourier transform matrix F .
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Recall (see [5], [2]) that over C, the Discrete Fourier Transform matrix is,

F =
1√
n



1 1 1 . . . 1

1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

... . . .
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)


where ω is a primitive nth-root of unity and 1√

n
is a normalization factor. Notice F

is a Vandermonde type of matrix, and therefore, invertible. These considerations

can be extended to circulant matrices over a finite field Fq (see [10] for instance)

provided there is an nth-root of unity ω ∈ Fq. For our discussion, the constant 1√
n

is not relevant and it is omitted.

Theorem 4.1. Let F be a field containing an nth-root of unity, ω ∈ F, and let

J =


e2

e3
...

e1

 ∈ Mn(F).

Then J is diagonalizable by the Discrete Fourier Transform matrix F , indeed

F−1JF = diag(1, ω, ω2, . . . , ωn−1) = Dω.

Proof. The claim follows from

JF =



1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

... . . .
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)

1 1 1 . . . 1


= FDω.

□

Corollary 4.2. Circulant matrices in Mn(F) are diagonalizable over any field F
that contains an nth-root of unity.

Proof. Given F−1JF = diag(1, ω, ω2, . . . , ωn−1) = Dω, from Proposition 3.1 with

β = 1, for a = (a0, a1, . . . , an−1) ∈ Fn,

F−1 rcirc(a)F = a0In + a1Dω + . . .+ an−1D
n−1
ω

which is a diagonal matrix. □
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Example 4.3. Over the field F19, in M6(F19) the matrix

J =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0


is diagonalizable by means of the discrete Fourier transform matrix

F =



1 1 1 1 1 1

1 8 7 18 11 12

1 7 11 1 7 11

1 18 1 18 1 18

1 11 7 1 11 7

1 12 11 18 7 8


whose inverse is F−1 =



16 16 16 16 16 16

16 2 5 3 17 14

16 5 17 16 5 17

16 3 16 3 16 3

16 17 5 16 17 5

16 14 17 3 5 2


,

such that, F−1JF = diag(1, 8, 7, 18, 11, 12).

Let n be a positive integer, Fq a finite field with q = pm elements and β ∈ Fq

be such that an nth-root of this element is in the field Fq. In case this does not

happen, the splitting field of the polynomial xn − β is considered. The splitting

field is of finite order n over the base field Fq and it has |Fq|n elements. So we can

assume the field we are working on contains an nth-root of the element β.

Suppose β ∈ F is such that there exist λ1 = β
1
n ∈ F. Define λk = β

k
n , k =

2, . . . , n− 1 and let ω ∈ F be an nth-root of unity. Let F ∈ Mn(F) be defined by

F =



1 1 1 . . . 1

λ1 λ1ω λ1ω
2 . . . λ1ω

n−1

λ2 λ2ω
2 λ2ω

4 . . . λ2ω
2(n−1)

...
...

... . . .
...

λn−1 λn−1ω
n−1 λn−1ω

2(n−1) . . . λn−1ω
(n−1)(n−1)


. (∗)

Lemma 4.4. The matrix F ∈ Mn(F) is non-singular and hence invertible. Fur-

thermore,

F−1 = F−1Dλ−1
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where Dλ = diag(1, λ1, λ2, . . . , λn−1) and, for ω an nth-root of unity in F,

F =



1 1 1 . . . 1

1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

... . . .
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)


.

Proof. Let Dλ = diag(1, λ1, λ2, . . . , λn−1). The claim follows from the fact that

F = DλF , and then det(F) = det(DλF ). As F is a Vandermonde type of ma-

trix, it is non-singular over any field containing an n-th root of unity, and there-

fore invertible. Now F−1 = (DλF )−1 = F−1D−1
λ = F−1Dλ−1 , where Dλ−1 =

diag(1, λ−1
1 , λ−1

2 , . . . , λ−1
n−1). □

Theorem 4.5. Let β ∈ F and F be as above and assume there is λ1 = β
1
n ∈ F.

Let

Jβ =


e2

e3
...

βe1

 ∈ Mn(F),

and suppose ω ∈ F is an nth-root of unity. Then, Jβ is diagonalizable by F and

F−1JβF = λ1Dω.

Proof. It is enough to notice

JβF =



λ1 λ1ω λ1ω
2 . . . λ1ω

n−1

λ2 λ2ω
2 λ2ω

4 . . . λ2ω
2(n−1)

...
...

... . . .
...

λn−1 λn−1ω
n−1 λn−1ω

2(n−1) . . . λn−1ω
(n−1)(n−1)

β β β . . . β


= Fλ1Dω,

computation that follows easily from the fact that multiplying the square matrix

F (see (∗)) on the right by the diagonal matrix λ1Dω = (λ1, λ1ω, . . . , λ1ω
n−1) is

equivalent to multiplying each column of F by the i-th element of the diagonal and

observing that λn−1λ1 = β
n−1
n β

1
n = β. □

Corollary 4.6. Let F be a field with an nth-root of unity and let 0 ̸= β ∈ F. Assume

there is λ1 = β
1
n ∈ F. Then,

(1) The matrix rcircβ(a) ∈ Mn(F) is diagonalizable over the field F.
(2) For any A,B ∈ RCn,β(F), AB ∈ RCn,β(F) and AB = BA.
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(3) If rcircβ(a) ∈ RCn,β(F), rcircβ(a)−1 ∈ RCn,β(F). Further,

rcircβ(a)
−1 = F(a0In + a1λ1Dω + . . . an−1λ

n−1
1 Dn−1

ω )−1F−1.

Note that a0In+a1λ1Dω + . . .+an−1λ
n−1
1 Dωn−1 is a diagonal matrix and hence

easily invertible in a field. It can be seen that each element of the diagonal is

the evaluation of f(X) = a0 + a1λ1X + a2λ
2
1X

2 + . . . + an−1λ
n−1
1 Xn−1 at ωi for

i = 0, 1, . . . , n − 1. In other words, the diagonal elements are the values of the

discrete Fourier transform of the vector (a0, a1λ1, . . . , an−1λ
n−1
1 ).

Corollary 4.7. With the same hypothesis as in the previous corollary, assume

Jβ ∈ Mn(F) is diagonalizable. Then given a = (a0, a1, . . . , an−1),

det[rcircβ(a)] = det(a0In + a1λ1Dω + . . .+ an−1λ
n−1
1 Dωn−1).

5. Examples

In this section several examples are provided illustrating the main results. The

software SageMath ([11]) has been used for computations.

Example 5.1. Let β = 12 and consider the 3th-root of the unity ω = 7 ∈ F19. If

λ1 = β
1
3 = 10, then

F−1JβF =


10 0 0

0 13 0

0 0 15

 ,

where

F =


1 1 1

10 13 15

5 17 16

 and F−1 =


13 7 14

13 1 3

13 11 2

 .

Example 5.2. Consider the finite field F11, let β = 10 and ω = 9 a 5th-root of

unity. Then J10 ∈ M5(F11) is diagonalizable. Let λ1 = 7, then

F =



1 1 1 1 1

7 8 6 10 2

5 9 3 1 4

2 6 7 10 8

3 4 9 1 5


and F−1 =



9 6 4 10 3

9 8 1 7 5

9 7 3 6 1

9 2 9 2 9

9 10 5 8 4


.

Thus F−1J10F = 7D9 = diag(7, 8, 6, 10, 2). On the contrary, if β = 6, then J6 ∈
M5(F11) is not diagonalizable since λ5 − 6 = 0 has no solution in F11.
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Example 5.3. Consider the field F11 and let a = (3, 2, 1, 0, 2) ∈ F5
11. With the

parameters given in the previous example, i.e., β = 10, ω = 9 and λ1 = 7,

rcirc10((a)) =



3 2 1 0 2

9 3 2 1 0

0 9 3 2 1

10 0 9 3 2

9 10 0 9 3


,

and from the Corollary 4.6

rcirc10(3, 2, 1, 0, 2)
−1 = F [3I5+2(λ1D9)+1(λ1D9)

2+0(λ1D9)
3+2(λ1D9)

4]−1F−1,

where F and F−1 are given in the mentioned example. Thus,

rcirc10(3, 2, 1, 0, 2)
−1 =



9 2 2 4 9

2 9 2 2 4

7 2 9 2 2

9 7 2 9 2

9 9 7 2 9


.

It can be seen that, for instance the third element in the diagonal matrix
∑4

i=0 ai(λ1Dω)
i

is, f(ω2) = a0+a1λ1ω
2+a2λ

2
1ω

2·2+a3λ
3
1ω

2·3+a4λ
4
1ω

2·4, i.e., f(ω2) = 3+1+3+7 =

3. In the same fashion it can be seen that f(ω3) = 4 and f(ω4) = 10, and also,

from Corollary 4.7, det(rcirc10(a)) = 4 = det(diag(6, 3, 3, 4, 10)).

Example 5.4. Consider the finite field F9 = F3[X]/⟨X2 + 2X + 2⟩ with 32 = 9

elements. Then F9 = {a0 + a1x | a0, a1 ∈ F3, x
2 + 2x+ 2 = 0. Let ω = 1 + x ∈ F9

which is a 4th-root of unity and let β = 2. Note that λ1 = 2
1
4 = x ∈ F9. Then,

J2 =


0 1 0 0

0 0 1 0

0 0 0 1

2 0 0 0

 ,

while

F =


1 1 1 1

x 1 + 2x 2x 2 + x

1 + x 2 + 2x 1 + x 2 + 2x

1 + 2x x 2 + x 2x

 and F−1 =


1 2 + x 2 + 2x 2x

1 2x 1 + x 2 + x

1 1 + 2x 2 + 2x x

1 x 1 + x 1 + 2x

 .



102 H. TAPIA-RECILLAS AND J. A. VELAZCO-VELAZCO

Then, F−1JβF =


x 0 0 0

0 1 + 2x 0 0

0 0 2x 0

0 0 0 2 + x

 .

6. Final comments

It is shown that twistulant matrices over a ring can be thought as elements of a

finitely generated algebra, fact that is used to prove that the set of these matrices

is closed under the usual multiplication, and that if a twistulant matrix is invertible

its inverse is also twistulant. In the case where the ring is a field, particularly a

finite field, it is shown that the twistulant matrices can be diagonalized by means of

a Discrete Fourier Transform-type matrix. This fact is used to show that the group

of twistulant matrices over a finite field is commutative with the usual matrix mul-

tiplication though this is a direct consequence from Proposition 3.3 and Theorem

3.4.
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