

(m, n)-C2 MODULES AND (m, n)-D2 MODULES

Phan Hong Tin and Nguyen Quoc Tien

Received: 4 February 2025; Revised: 10 April 2025; Accepted: 30 May 2025
Communicated by Abdullah Harmancı

ABSTRACT. We study the concept of (m, n) -C2 modules with m, n positive integers, which unifies strongly $C2$, n -C2 and $GC2$ modules. Several characterizations are obtained. It is shown that $R^{(\mathbb{N})}$ is (m, n) -C2 as a right R -module if and only if R is right perfect and right strongly $C2$. Connections between an (m, n) -C2 module and its endomorphism ring are also studied. We prove that if the endomorphism ring of an R -module M is a right (m, n) -C2 ring, then M is an (m, n) -C2 module. Also we obtain some dual statements of (m, n) -D2 modules. Some characterizations of (semi)perfect and (semi)regular rings are studied. We show that $S = \text{End}(M_R)$ is a regular ring if and only if M is a dual Rickart module and (m, n) -D2 with $m > n$.

Mathematics Subject Classification (2020): 16D50, 16D60, 16D70

Keywords: (m, n) -C2 module, (m, n) -D2 module, n -C2 module, n -D2 module

1. Introduction

Throughout this paper, R is a ring with unity and M is a unital right R -module. For a submodule N of M , we use $N \leq M$ and $N \ll M$ to mean that N is a submodule of M and N is a small submodule of M , respectively. For a subset X of R , let $r(X)$ (respectively, $l(X)$) denote the right (respectively, left) annihilator of X in R . Homomorphisms of modules are written on the left of their arguments. For a right R -module M , $S = \text{End}(M_R)$ will be denoted the endomorphism ring of M . Let k, n, m be positive integers. We denote the set of all $1 \times n$ (resp. $n \times 1$) matrices over M_R (resp. $R M$) by M^n (resp. M_n) and the set of all $n \times k$ (resp. $n \times n$) matrices over S by $\mathbb{M}_{n \times k}(S)$ (resp. $\mathbb{M}_n(S)$). Let $s = (x_1, x_2, \dots, x_n) \in S^n$ and $m = (m_1, \dots, m_k)^T \in M_n$. We write $sm = \sum_{i=1}^n x_i(m_i)$. Assume that $s_1, s_2, \dots, s_m \in S^n$ and $A \in \mathbb{M}_{n \times k}(S)$, we write

$$\mathbf{r}_{M_n}(s_1, s_2, \dots, s_m) = \{x = (m_1, \dots, m_k)^T \in M_n \mid s_1x = s_2x = \dots = s_mx = 0\}$$

and $\mathbf{r}_{M_k}(A) = \{x = (m_1, \dots, m_k)^T \in M_k \mid Ax = 0\}$ (see [1], [13] and [20]).

Recall that a module M_R is called a $C2$ module if every submodule of M_R that is isomorphic to a direct summand of M_R is itself a direct summand of M_R , and M_R is called a $D2$ -module if every submodule A of M_R is a direct summand of M_R whenever M/A is isomorphic to a direct summand of M_R (see [11]). Recently, many authors have shown interest in and studied extensions of $C2$ and $D2$ modules along with related modules. They have presented numerous results regarding the structure of rings and modules through these modules ([2,3,4,6]). Modules invariant under automorphisms of their injective hull are an important class of modules satisfying the $C2$ condition, which have been extensively studied in recent years ([5,14,15,16,17]).

In [7], Kourki introduced the notion of strongly $C2$ modules motivated by a need to put the notion of strongly $C2$ rings in the general module theoretic setting by utilizing this representation. A module M_R is called a strongly $C2$ module if M_R^n is a $C2$ module for every positive integer n . A ring R is called right $C2$ (respectively, strongly right $C2$) if R_R is a $C2$ (respectively, strongly $C2$) module (see [12]). As a continuation of the strongly $C2$ property, Li-Chen-Kourki introduced the notions of n - $C2$ modules. M_R is called an n - $C2$ module if the annihilator $\mathbf{r}_M(s_1, s_2, \dots, s_n) \neq 0$ for any s_1, s_2, \dots, s_n in S satisfying $Ss_1 + Ss_2 + \dots + Ss_n \neq S$ ([10]). Clearly, $GC2$ modules (every submodule of M that is isomorphic to M is itself a direct summand of M) are 1 - $C2$, and 2 - $C2$ modules are $C2$ by [10, Proposition 23.8].

In Section 2 of the present paper, we introduce the notion of (m, n) - $C2$ modules and provide some characterizations and investigate its properties. Clearly, n - $C2$ modules are just $(n, 1)$ - $C2$. It is shown that every direct summand of an (m, n) - $C2$ module inherits the property. We also obtained some connections between an (m, n) - $C2$ module and its endomorphism ring. We prove that if $S = \text{End}(M_R)$ is a right (m, n) - $C2$ ring, then M_R is an (m, n) - $C2$ module. A ring R is called (von Neumann) regular if for every $a \in R$, there exists some $b \in R$ such that $a = aba$. We show that the endomorphism ring S is regular if and only if M_R is an (m, n) - $C2$ module with $m > n$ and $\text{Ker}(s)$ is a direct summand of M for all $s \in S$.

In Section 3, we introduced the notion of (m, n) - $D2$ modules and obtained some dual statements of n - $D2$ modules and strongly $D2$ modules. We prove that if M is (m, n) - $D2$ (respectively, $GD2$), then every direct summand of M is an (m, n) - $D2$ (respectively, $GD2$) module. Similar to (m, n) - $C2$ modules, we show that $S = \text{End}(M_R)$ is a regular ring if and only if M is a dual Rickart module and (m, n) - $D2$ with $m > n$.

2. (m, n) -C2 modules

Let R be a ring and M_R be a right R -module, $S = \text{End}(M_R)$ be the endomorphism ring of M_R and m, n be positive integers. M_R is called an (m, n) -C2 module if the annihilator $\mathbf{r}_{M_n}(s_1, s_2, \dots, s_m) \neq 0$ for any $s_1, s_2, \dots, s_m \in S^n$ satisfying $Ss_1 + Ss_2 + \dots + Ss_m \neq S^n$.

A ring R is called a right (m, n) -C2 ring if R_R is an (m, n) -C2 module.

Example 2.1. (1) M is n -C2 if and only if M is $(n, 1)$ -C2.

(2) A module M_R is called GC2 if every submodule of M that is isomorphic to M is itself a direct summand of M [13]. One can check that M is GC2 if and only if M is $(1, 1)$ -C2.

The following theorem extends Li-Chen-Kourki [10, Theorem 2.2].

Theorem 2.2. Let R be a ring, M be a right R -module, $S = \text{End}(M_R)$ and m, n be positive integers. The following conditions are equivalent:

- (1) M is (m, n) -C2.
- (2) For every $A \in \mathbb{M}_{m \times n}(S)$, if $\mathbf{r}_{M_n}(A) = 0$, then there exists a matrix B in $\mathbb{M}_{n \times m}(S)$ such that $BA = I_n$, where I_n is the identity matrix in $\mathbb{M}_n(S)$.
- (3) Any monomorphism $\alpha : M_n \rightarrow M_m$ splits.

Proof. (1) \Rightarrow (2) Suppose $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \in \mathbb{M}_{m \times n}(S)$ and $\mathbf{r}_{M_n}(A) = 0$. For every $i = 1, 2, \dots, m$, we denote $s_i = (a_{i1}, a_{i2}, \dots, a_{in})$. Then $\mathbf{r}_{M_n}(s_1, s_2, \dots, s_m) = 0$. By (1), we have $Ss_1 + Ss_2 + \dots + Ss_m = S^n$. There exist $b_{ij} \in S$ for all $i = 1, 2, \dots, n$, $j = 1, 2, \dots, m$ such that

$$\begin{aligned} (1, 0, \dots, 0) &= b_{11}s_1 + b_{12}s_2 + \dots + b_{1m}s_m \\ (0, 1, \dots, 0) &= b_{21}s_1 + b_{22}s_2 + \dots + b_{2m}s_m \\ &\vdots && \vdots \\ (0, 0, \dots, 1) &= b_{n1}s_1 + b_{n2}s_2 + \dots + b_{nm}s_m \end{aligned}$$

If we take $B = (b_{ij})_{n \times m} \in \mathbb{M}_{n \times m}(S)$, we get $BA = I_n$ as desired.

(2) \Rightarrow (3) We recall that any homomorphism $\alpha : M_n \rightarrow M_m$ can be seen as an $m \times n$ matrix, say A , over S . Since α is a monomorphism, $\mathbf{r}_{M_n}(A) = 0$. There exists a matrix $B \in \mathbb{M}_{n \times m}(S)$ such that $BA = I_n$ by (2) and a homomorphism $\beta : M_m \rightarrow M_n$ such that $\beta\alpha = 1_{M_n}$. Hence $\alpha : M_n \rightarrow M_m$ splits.

(3) \Rightarrow (1) Suppose $\mathbf{r}_{M_n}(s_1, s_2, \dots, s_m) = 0$, where $s_1, s_2, \dots, s_m \in S^n$. It is

sufficient to prove $Ss_1 + Ss_2 + \dots + Ss_m = S^n$. For every $i = 1, 2, \dots, m$, let $s_i = (s_{i1}, s_{i2}, \dots, s_{in})$. Define the map $\alpha : M_n \rightarrow M_m$ via

$$(m_1, m_2, \dots, m_n)^T \mapsto \left(\sum_{j=1}^n s_{1j}(m_j), \sum_{j=1}^n s_{2j}(m_j), \dots, \sum_{j=1}^n s_{mj}(m_j) \right)^T.$$

Then α is a right R -module monomorphism and it can be seen as an $m \times n$ matrix

over S , denoted by A . Therefore $A = \begin{pmatrix} s_{11} & s_{12} & \cdots & s_{1n} \\ s_{21} & s_{22} & \cdots & s_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ s_{m1} & s_{m2} & \cdots & s_{mn} \end{pmatrix}$. So α splits by

(3). Then there exists a homomorphism $\beta : M_m \rightarrow M_n$ such that $\beta\alpha = 1_{M_n}$. Now,

there exists $B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ b_{n1} & b_{n2} & \cdots & b_{nm} \end{pmatrix} \in \mathbb{M}_{n \times m}(S)$ such that $BA = I_n$. So $Ss_1 + Ss_2 + \dots + Ss_n = S^n$ as required. \square

We have the following corollaries.

Corollary 2.3. *Let R be a ring, M be a right R -module and n be a positive integer. The following conditions are equivalent:*

- (1) M is an n -C2 module.
- (2) M is an (n, k) -C2 module for every positive integer k .

Corollary 2.4. *Let M_R be a right R -module with $S = \text{End}(M_R)$. The following conditions are equivalent:*

- (1) M is a strongly C2 module.
- (2) For every positive integers m and n , M is an (m, n) -C2 module.

The properties n -C2 and $GC2$ are inherited by direct summands (see [10, Proposition 2.3] and [21, Theorem 7], respectively).

Proposition 2.5. *Let M be a right R -module and m, n be positive integers with $m \geq n$. If M is (m, n) -C2, then every direct summand of M is an (m, n) -C2 module.*

Proof. Assume that M is an (m, n) -C2 module and $N = e(M)$, where $e^2 = e \in \text{End}(M)$. Let $S = \text{End}(M)$ and $S' = \text{End}(N)$. Let $A' = (a'_{ij})_{m \times n} \in \mathbb{M}_{m \times n}(S')$ with $\mathbf{r}_{N_n}(A') = 0$. For every $i \in \{1, 2, \dots, m\}$ and $j \in \{1, 2, \dots, n\}$, denote

$$a_{ij} = \begin{cases} \iota a'_{ij}e & \text{if } i \neq j \\ \iota a'_{ij}e + (1 - e) & \text{if } i = j \end{cases}$$

where $\iota : N \rightarrow M$ is the inclusion map. Then $a_{ij} \in S$. Let $A = (a_{ij})_{m \times n} \in \mathbb{M}_{m \times n}(S)$. It is easy to see that $\mathbf{r}_{M_n}(A) = 0$. Since M is an (m, n) -C2 module, there exists $B = (b_{ij})_{n \times m} \in \mathbb{M}_{n \times m}(S)$ such that $BA = I_n$. For each $i \in \{1, 2, \dots, n\}$, $j \in \{1, 2, \dots, m\}$, let $b'_{ij} = eb_{ij}\iota$. Then $b'_{ij} \in S'$. Let $B' = (b'_{ij})_{n \times m} \in \mathbb{M}_{n \times m}(S')$. It follows that $B'A' = I_n$. Thus N is an (m, n) -C2 right R -module. \square

Let M_R be a right R -module with $S = \text{End}(M_R)$, and n be a positive integer. In [10, Proposition 2.5], it is shown that if S is a right n -C2 ring, then M is an n -C2 module.

Proposition 2.6. *Let M_R be a right R -module with $S = \text{End}(M_R)$ and m, n be positive integers. If S is a right (m, n) -C2 ring, then M is an (m, n) -C2 module.*

Proof. Suppose S is a right (m, n) -C2 ring and $\mathbf{r}_{M_n}(s_1, \dots, s_m) = 0$ for some $s_1, \dots, s_m \in S^n$. Assume that $s \in \mathbf{r}_{S_n}(s_1, \dots, s_m)$. It is easy to see that $s = 0$. So $Ss_1 + \dots + Ss_m = S^n$ and M is an (m, n) -C2 module. \square

The following fact shows that the concept of (m, n) -C2 modules unifies also the concept of C2 modules.

Proposition 2.7. *Let M be a right R -module and m, n be positive integers with $m > n$. If M is (m, n) -C2, then M is a C2 module.*

Proof. Let $M = A \oplus B$ and $f : A \rightarrow M$ be a monomorphism. Then the map $\varphi : M_n \rightarrow M_m$ via $\varphi(a_i + b_i)_n^T = (f(a_1), b_1, a_2 + b_2, \dots, a_n + b_n, 0, \dots, 0)^T$ ($a_i \in A, b_i \in B$) is a monomorphism, hence it splits by Theorem 2.2. Thus, $f(A) \oplus B$ is a direct summand of M_m , hence $f(A)$ is a direct summand of M . Therefore M is a C2 module. \square

Corollary 2.8. [10, Proposition 2.8] *Every 2-C2 module is a C2 module.*

The next example shows that there exist $(m, 2)$ -C2 modules but not $(m, 1)$ -C2.

Example 2.9. Let R be a triangle matrix ring over a field K . Then R is right Artinian. It follows that R_R is $(2, 2)$ -C2, but R_R is not $(2, 1)$ -C2. In fact, if R_R is $(2, 1)$ -C2, then R_R is 2-C2 by Example 2.1. Thus, R_R is a C2-module by Proposition 2.7, a contradiction.

It is well-known that for every right R -module M , $S = \text{End}(M_R)$ is regular if and only if $\text{Ker}(s)$ and $\text{Im}(s)$ are direct summands of M for all $s \in S$.

Corollary 2.10. *Let M_R be a right R -module with $S = \text{End}(M_R)$ and m, n be positive integers.*

- (1) S is regular if and only if M is (m, n) -C2 with $m > n$ and $\text{Ker}(s)$ is a direct summand of M for all $s \in S$.
- (2) S is regular if and only if M is strongly C2 and $\text{Ker}(s)$ is a direct summand of M for all $s \in S$.

We conclude this section by giving some characterizations of right strongly C2 rings.

Theorem 2.11. *Let M_R be a right R -module with $S = \text{End}(M_R)$. Then the following conditions are equivalent:*

- (1) R is a right strongly C2 ring.
- (2) For every $k \geq 1$, $\mathbb{M}_{k \times k}(R)$ is a right (m, n) -C2 ring for some positive integers m, n with $m > n$.

Proof. By Propositions 2.5, 2.6 and 2.7. □

In the following theorem, we follow some notations which are used in the proof of [19, Theorem 2.13].

Theorem 2.12. *Let m, n be positive integers. The following conditions are equivalent:*

- (1) $R^{(\mathbb{N})}$ is (m, n) -C2 as a right R -module.
- (2) $R^{(\mathbb{N})}$ is C2 as a right R -module.
- (3) $R^{(\mathbb{N})}$ is GC2 as a right R -module.
- (4) R is a right perfect and right strongly C2 ring.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) is obvious as $(R^{(\mathbb{N})})^k \cong R^{(\mathbb{N})}$ for all positive integers k and Proposition 2.7.

(3) \Rightarrow (4) For every $k \in \mathbb{N}$, we note that $R^k = A \oplus B$ and $f : A \rightarrow R^k$ is a monomorphism. Hence we can assume R^k is a direct summand of $R^{(\mathbb{N})}$. Write $R^{(\mathbb{N})} = A \oplus C$ for some $C \leq R^{(\mathbb{N})}$. Define $\varphi : R^{(\mathbb{N})} \rightarrow R^{(\mathbb{N})}$ via $\varphi(a + c) = (f(a), c)$ for all $a \in A$, $c \in C$. Clearly, φ is a monomorphism. Since $R^{(\mathbb{N})}$ is GC2, φ splits. That means $\text{Im}(\varphi)$ is a direct summand of $R^{(\mathbb{N})}$ or $f(A)$ is a direct summand of $R^{(\mathbb{N})}$. Therefore $f(A)$ is a direct summand of R^k . Thus R^k is a C2 module. It follows that R is right strongly C2.

Now we show that R is a right perfect ring. By [1, Theorem 28.4], we only need to show that R satisfies DCC on principal left ideals of R . Let $Ra_1 \geq Ra_2a_1 \geq \dots$ be any descending chain of principal left ideals of R . Let $F = R^{(\mathbb{N})}$ be a free module with a basis $\{x_1, x_2, \dots\}$ and G be the submodule of F generated by $\{y_i = x_i - x_{i+1}a_i, i \in \mathbb{N}\}$. By [1, Lemma 28.1], G is free with a basis $\{y_1, y_2, \dots\}$. Thus

$G \cong F$. Since F is a GC2 module, G is a direct summand of F . Then the chain $Ra_1 \geq Ra_2a_1 \geq \dots$ terminates by [1, Lemma 28.2].

(4) \Rightarrow (3) Let K be a submodule of $F = R^{(\mathbb{N})}$ and $\varphi : K \rightarrow R^{(\mathbb{N})}$ be an isomorphism. In order to show that K is also a direct summand of F , we only need to prove that F/K is a projective R -module. Since R is right perfect, by [1, Theorem 28.4], every flat right R -module is projective. Thus, we just need to show that F/K is flat. Let

$$\mathfrak{U} = \{L(k) = R^{n_1} \oplus R^{n_2} \oplus \dots \oplus R^{n_k} \mid k \in \mathbb{N}, n_j \in \mathbb{N}\}.$$

Then $F = \bigcup_{k \in \mathbb{N}} L(k)$ and $FI = \bigcup_{k \in \mathbb{N}} L(k)I$ for any left ideal I of R . Let

$$\mathfrak{B} = \{K(k) = \varphi^{-1}(L(k)) \mid k \in \mathbb{N}\}.$$

It follows that $K = \bigcup_{k \in \mathbb{N}} K(k)$ and $KI = \bigcup_{k \in \mathbb{N}} K(k)I$ for any left ideal I of R . Since R is right strongly C2 and $K(k) \cong L(k)$ for each $L(k) \in \mathfrak{U}$, it is easy to see that $K(k)$ is a direct summand of F for each $K(k) \in \mathfrak{B}$. It shows that $F/K(k)$ is a flat module for each $K(k) \in \mathfrak{B}$. Let I be any left ideal of R , $K(k) \cap FI = K(k)I$ and $K(k) \in \mathfrak{B}$. Then

$$K \cap FI = (\bigcup_{k \in \mathbb{N}} K(k)) \cap FI = \bigcup_{k \in \mathbb{N}} (K(k) \cap FI) = \bigcup_{k \in \mathbb{N}} K(k)I = KI.$$

Thus, F/K is flat. \square

Corollary 2.13. *The following conditions are equivalent for a ring R with $J(R) = Z(R_R)$:*

- (1) $R^{(\mathbb{N})}$ is a GC2 right R -module.
- (2) R is right perfect.

3. (m, n) -D2 modules

Let R be a ring and M_R be a right R -module, $S = \text{End}(M_R)$ be the endomorphism ring of M_R and m, n be positive integers. M_R is called an (m, n) -D2 module if $s_1M + s_2M + \dots + s_mM \neq M^n$ for any $s_1, s_2, \dots, s_m \in S^n$ satisfying $s_1S + s_2S + \dots + s_mS \neq S^n$.

Example 3.1. Let R be a ring.

- (1) M is an n -D2 module if and only if M is an $(n, 1)$ -D2 module.
- (2) A module M is called GD2 if for any submodule A of M for which M/A is isomorphic to M , then A is a direct summand of M . It is easy to see that a module M is GD2 if and only if M is $(1, 1)$ -D2.

The following theorem extends Li-Chen-Kourki [10, Theorem 4.2].

Theorem 3.2. *Let M_R be a right R -module with $S = \text{End}(M_R)$ and m, n be positive integers. Then the following conditions are equivalent:*

- (1) *M is an (m, n) -D2 module.*
- (2) *For every $A \in \mathbb{M}_{n \times m}(S)$, if $AM_m = M_n$, there exists a matrix $B \in \mathbb{M}_{m \times n}(S)$ such that $AB = I_n$.*
- (3) *Any epimorphism $\alpha : M_m \rightarrow M_n$ splits.*

Proof. (1) \Rightarrow (2) Suppose $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix} \in \mathbb{M}_{n \times m}(S)$ and $AM_m = M_n$.

For every $i = 1, 2, \dots, m$, we denote $s_i = (a_{1i}, a_{2i}, \dots, a_{ni})$. We can get $s_1M + s_2M + \cdots + s_mM = M^n$. By (1), $s_1S + s_2S + \cdots + s_mS = S^n$. There exist $b_{ij} \in S$ for all $i = 1, 2, \dots, m$, $j = 1, 2, \dots, n$ such that

$$\begin{aligned} (1, 0, \dots, 0) &= s_1b_{11} + s_2b_{21} + \cdots + s_mb_{m1} \\ (0, 1, \dots, 0) &= s_1b_{12} + s_2b_{22} + \cdots + s_mb_{m2} \\ &\cdots && \cdots \\ (0, 0, \dots, 1) &= s_1b_{1n} + s_2b_{2n} + \cdots + s_mb_{mn}. \end{aligned}$$

If we take $B = (b_{ij})_{m \times n} \in \mathbb{M}_{m \times n}(S)$, then $AB = I_n$ as desired.

(2) \Rightarrow (3) Remark that any homomorphism $\alpha : M_m \rightarrow M_n$ can be seen as an $n \times m$ matrix, say A , over S . Now, since α is an epimorphism, we get $AM_m = M_n$. There exists a matrix $B \in \mathbb{M}_{m \times n}(S)$ such that $AB = I_n$ by (2) and there exists a homomorphism $\beta : M_n \rightarrow M_m$ such that $\alpha\beta = 1_{M_n}$. Hence $\alpha : M_m \rightarrow M_n$ splits.

(3) \Rightarrow (1) Suppose $s_1M + s_2M + \cdots + s_mM = M^n$, where $s_1, s_2, \dots, s_m \in S^n$. It is sufficient to prove $s_1S + s_2S + \cdots + s_mS = S^n$. For every $i = 1, 2, \dots, m$, let $s_i = (s_{1i}, s_{2i}, \dots, s_{ni})$ and $A = (s_{ij})_{n \times m}$. Define a map $\alpha : M_m \rightarrow M_n$ via $(x_1, x_2, \dots, x_m)^T \mapsto A(x_1, x_2, \dots, x_m)^T$. It is easy to see that α is an epimorphism. By (3), we have that α splits and there is a homomorphism $\beta : M_n \rightarrow M_m$ such

that $\alpha\beta = 1_{M_n}$. Now there exists $B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \cdots & \cdots & & \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{pmatrix} \in \mathbb{M}_{m \times n}(S)$ such that $AB = I_n$. Hence $s_1S + s_2S + \cdots + s_mS = S^n$ as required. \square

We have the following corollaries.

Corollary 3.3. *Let R be a ring, M be a right R -module and n be a positive integer. The following conditions are equivalent:*

- (1) M is an n -D2 module.
- (2) M is an (n, k) -D2 module for every positive integer k .

Corollary 3.4. *Let M_R be a right R -module with $S = \text{End}(M_R)$. The following conditions are equivalent:*

- (1) M is a strongly D2 module.
- (2) For every positive integers m and n , then M is an (m, n) -D2 module.

The property n -D2 is inherited by direct summands by [10, Proposition 4.3].

Proposition 3.5. *Let M be a right R -module and m, n be positive integers with $m \geq n$. If M is an (m, n) -D2 module, then every direct summand of M is an (m, n) -D2 module.*

Proof. Assume M is an (m, n) -D2 module and $N = eM$, where $e^2 = e \in \text{End}(M_R)$. Let $S = \text{End}(M_R)$ and $S' = \text{End}(N_R)$. Assume that $A' = (a'_{ij})_{n \times m} \in \mathbb{M}_{n \times m}(S')$ with $A'N_m = N_n$. For every $i \in \{1, 2, \dots, n\}$, $j \in \{1, 2, \dots, m\}$, we denote

$$a_{ij} = \begin{cases} \iota a'_{ij}e & \text{if } i \neq j \\ \iota a'_{ij}e + (1 - e) & \text{if } i = j \end{cases}$$

where $\iota : N \rightarrow M$ is the inclusion map. Then $a_{ij} \in \text{End}(M_R)$. Let $A = (a_{ij})_{n \times m} \in \mathbb{M}_{n \times m}(S)$. It is easy to see that $AM_m = M_n$. Since M is an (m, n) -D2 module, there exists $B = (b_{ij})_{m \times n} \in \mathbb{M}_{m \times n}(S)$ such that $AB = I_n$. For each $i \in \{1, 2, \dots, n\}$, $j \in \{1, 2, \dots, m\}$, let $b'_{ij} = eb_{ij}\iota$. Then $b'_{ij} \in S'$. If we take $B' = (b'_{ij})_{m \times n} \in \mathbb{M}_{m \times n}(S')$, we get $A'B' = I_n$. Thus N is an (m, n) -D2 module. \square

Corollary 3.6. *If M is a GD2 module, then every direct summand of M is also a GD2 module.*

An R -module M satisfies (D3) if for any two direct summands A, B of M with $A + B = M$, the sum $A \cap B$ is a direct summand of M .

Recall that

- a right R -module M_R is D2 if and only if for every direct summand N of M , every epimorphism $M \rightarrow N$ splits (see [20]),
- D2 implies D3 (see [11, Proposition 4.6]).

Theorem 3.7. *If M^2 is a D3 module, then M is a D2 module.*

Proof. Let $K \leq M$ and $\varphi : L \rightarrow M/K$ be an isomorphism with $M = L \oplus L'$. Let $K' = \{(l, x) \mid \varphi(l) = x + K\}$, $M' = M \oplus 0$ and $H = L' \oplus M$. Then $K' \oplus M' = M^2$

and H is a direct summand of M^2 . On the other hand, $M^2 = K' + H$ and $K' \cap H = 0 \oplus K$. Since M^2 is D3, $K' \cap H = 0 \oplus K$ is a direct summand of M^2 . It follows that K is a direct summand of M . \square

The following fact shows that the concept of (m, n) -D2 modules unifies also the concept of D2 modules.

Proposition 3.8. *Let M be a right R -module and m, n be positive integers with $m > n$. If M is an (m, n) -D2 module, then M is a D2 module.*

Proof. Let $M = A \oplus B$ and $f : M \rightarrow A$ be an epimorphism. Then the map $\varphi : M_m \rightarrow M_n$ via $\varphi(a_i + b_i)_m^T = (f(a_1 + b_1) + b_2, a_3 + b_3, \dots, a_{n+1} + b_{n+1})^T$ ($a_i \in A, b_i \in B$) is an epimorphism, hence φ splits. It follows that $\text{Ker}(f) \oplus A$ is a direct summand of M_m , and so $\text{Ker}(f)$ is a direct summand of M . Thus M is a D2 module. \square

Corollary 3.9. [10, Proposition 4.5] *If M is a 2-D2 right R -module, then M is a D2 module.*

According to Rizvi and Roman ([18] and [8]), a module M is said to be Rickart if for any $f \in \text{End}(M_R)$, $\text{Ker}(f) = \mathbf{r}_M(f) = eM$ for some $e^2 = e \in \text{End}(M_R)$. A module M is said to be dual Rickart if for any $f \in \text{End}(M_R)$, $\text{Im}(f) = eM$ for some $e^2 = e \in \text{End}(M_R)$ ([9]).

Corollary 3.10. *Let M_R be a right R -module with $S = \text{End}(M_R)$ and m, n be positive integers.*

- (1) *S is a regular ring if and only if M is a dual Rickart module and (m, n) -D2 with $m > n$.*
- (2) *S is a regular ring if and only if M is a dual Rickart and strongly D2 module.*

It is well known that the direct sum of two D2 modules need not be D2. For instance, let p be prime and $M_1 = \mathbb{Z}_p$ and M_2 an infinite direct sum of copies of \mathbb{Z}_{p^2} . Then M_1 and M_2 are D2. But $M = M_1 \oplus M_2$ is not D2 as a \mathbb{Z} -module.

Theorem 3.11. *The following conditions are equivalent for a ring R .*

- (1) *R is semisimple.*
- (2) *Every GD2 module is projective.*
- (3) *Every direct sum of any family of GD2 modules is projective.*
- (4) *The direct sum of two GD2 modules is projective.*

Proof. (1) \Rightarrow (2) This follows from [1, Exercise 16.9].

(2) \Rightarrow (3) \Rightarrow (4) This is clear.

(4) \Rightarrow (1) Assume that the direct sum of any two $GD2$ modules is $GD2$. Let M be a simple right R -module. Hence M is a $GD2$ module. By our assumption, $M \oplus R_R$ is a projective module since R_R is also $GD2$. Hence M is projective. By [1, Exercise 16.9], R is semisimple. \square

It is well-known that a ring R is right perfect if and only if every right R -module has a projective cover. We also have a similar result for $D2$ modules.

Theorem 3.12. *The following conditions are equivalent for a ring R :*

- (1) R is right perfect.
- (2) For any right R -module M , there exists an epimorphism $f : N \rightarrow M$ such that N is $D2$ and $\text{Ker}(f) \ll N$.

Proof. (1) \Rightarrow (2) This is clear.

(2) \Rightarrow (1) Let M be a right R -module. There exists a free module F and an epimorphism $\psi : F \rightarrow M$. By (2), there exists an epimorphism $\phi : X \rightarrow F \oplus M$ such that X is $D2$ and $\text{Ker}(\phi) \ll X$. Consider the natural projections $p_1 : F \oplus M \rightarrow F$ and $p_2 : F \oplus M \rightarrow M$. Then $p_1\phi : X \rightarrow F$ is an epimorphism. By the projectivity of F , $X = \text{Ker}(p_1\phi) \oplus T$ with $T \leq X$. Let $M' = \text{Ker}(p_1\phi)$. We get $X/M' \cong F$ and $X/M' \cong T$ and so $F \cong T$. Hence, we can regard $X = M' \oplus F$. Clearly, $f = \phi|_{M'} : M' \rightarrow M$ is an epimorphism. Now we will show that M' is a projective cover of M . Assume that $A + \text{Ker}(f) = M'$. Since $\text{Ker}(f) \leq \text{Ker}(\phi)$, we have $F + A + \text{Ker}(\phi) = M' + F = X$ whence $F + A = F + M'$. Hence $A = M'$ or $\text{Ker}(f) \ll M'$.

On the other hand, since F is projective, there exists $\bar{\psi} : F \rightarrow M'$ such that $f\bar{\psi} = \psi$. But $\text{Ker}(f) \ll M'$ and so $\bar{\psi}$ is an epimorphism. Consider the natural projections $\pi_1 : X \rightarrow F$, $\pi_2 : X \rightarrow M'$. Then $\bar{\psi}\pi_1 : X \rightarrow M'$ is an epimorphism. Since M' is a direct summand of X and X is $D2$, we have $\text{Ker}(\bar{\psi}\pi_1)$ is a direct summand of X . Then there exists $k : M' \rightarrow X$ such that $(\bar{\psi}\pi_1)k = \text{id}_{M'}$. It follows that $(\bar{\psi}\pi_1)k\pi_2 = \pi_2$. Let $h = k\pi_2 : X \rightarrow X$. Then $\bar{\psi}\pi_1 h = \pi_2$. Let $g = \pi_1 h \iota$ where $\iota : M' \rightarrow X$ is the natural inclusion. Then $\bar{\psi}g = \text{id}$, and M' is isomorphic to a direct summand of F and hence M' is projective. Thus M' is the projective cover of M . \square

Corollary 3.13. *The following conditions are equivalent for a ring R :*

- (1) R is semiperfect.

(2) For any finitely generated right R -module M , there exists an epimorphism $f : N \rightarrow M$ such that N is D2 and $\text{Ker}(f) \ll N$.

We conclude this paper by giving a characterization of semiregular rings.

Corollary 3.14. *The following conditions are equivalent for a ring R :*

(1) R is semiregular.
(2) For any finitely presented right R -module M , there exists an epimorphism $f : N \rightarrow M$ such that N is D2 and $\text{Ker}(f) \ll N$.

Proof. By the proof of Theorem 3.12, if M is finitely presented and $M \cong F/K$, where F is free and both F and K are finitely generated, then $F \oplus M$ is also finitely presented. Thus M has a projective cover. It follows that R is semiregular by [13, Theorem B.56]. \square

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments.

Data Availability Statements. Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Conflicts of interest. The authors declare that there is no conflict of interest.

References

- [1] F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Graduate Texts in Mathematics, 13, Springer-Verlag, New York-Heidelberg, 1974.
- [2] F. Karabacak, M. T. Koşan, T. C. Quynh, D. D. Tai and Ö. Taşdemir, *On NCS modules and rings*, Comm. Algebra, 48(12) (2020), 5236-5246.
- [3] F. Karabacak, M. T. Koşan, T. C. Quynh and Ö. Taşdemir, *On modules and rings in which complements are isomorphic to direct summands*, Comm. Algebra, 50(3) (2022), 1154-1168.
- [4] M. T. Koşan and T. C. Quynh, *Rings whose (proper) cyclic modules have cyclic automorphism-invariant hulls*, Appl. Algebra Engrg. Comm. Comput., 32(3) (2021), 385-397.
- [5] M. T. Koşan, T. C. Quynh and A. K. Srivastava, *Rings with each right ideal automorphism-invariant*, J. Pure Appl. Algebra, 220(4) (2016), 1525-1537.
- [6] M. T. Koşan, T. C. Quynh and J. Zemlicka, *Kernels of homomorphisms between uniform quasi-injective modules*, J. Algebra Appl., 21(8) (2022), 2250158 (15 pp).

- [7] F. Kourki, *When maximal linearly independent subsets of a free module have the same cardinality?*, Modules and Comodules, Trends Math., Birkhäuser Verlag, Basel, (2008), 281-293.
- [8] G. Lee, S. T. Rizvi and C. S. Roman, *Rickart modules*, Comm. Algebra, 38(11) (2010), 4005-4027.
- [9] G. Lee, S. T. Rizvi and C. S. Roman, *Dual Rickart modules*, Comm. Algebra, 39(11) (2011), 4036-4058.
- [10] W. Li, J. Chen and F. Kourki, *On strongly C2 modules and D2 modules*, J. Algebra Appl., 12(7) (2013), 1350029 (14 pp).
- [11] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990.
- [12] W. K. Nicholson and M. F. Yousif, *Weakly continuous and C2-rings*, Comm. Algebra, 29(6) (2001), 2429-2446.
- [13] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mathematics, 158, Cambridge University Press, Cambridge, 2003.
- [14] T. C. Quynh, A. Abyzov, P. Dan and L. V. Thuyet, *Rings characterized via some classes of almost-injective modules*, Bull. Iranian Math. Soc., 47(5) (2021), 1571-1584.
- [15] T. C. Quynh, A. N. Abyzov, N. T. T. Ha and T. Yildirim, *Modules close to the automorphism invariant and coinvariant*, J. Algebra Appl., 18(12) (2019), 1950235 (24 pp).
- [16] T. C. Quynh, A. N. Abyzov and D. T. Trang, *Rings all of whose finitely generated ideals are automorphism-invariant*, J. Algebra Appl., 21(8) (2022), 2250159 (19 pp).
- [17] T. C. Quynh and M. T. Koşan, *On automorphism-invariant modules*, J. Algebra Appl., 14(5) (2015), 1550074 (11 pp).
- [18] S. T. Rizvi and C. S. Roman, *On direct sums of Baer modules*, J. Algebra, 321(2) (2009), 682-696.
- [19] L. Shen and J. Chen, *On countably Σ -C2 modules*, (2010), arXiv:1005.4167 [math.RA].
- [20] R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
- [21] Z. Zhu and J. X. Yu, *On GC_2 modules and their endomorphism rings*, Linear Multilinear Algebra, 56(5) (2008), 511-515.

Phan Hong Tin (Corresponding Author)

Faculty of Information Technology
Industrial University of Ho Chi Minh City
Ho Chi Minh City, Vietnam
e-mail: phanhongtin@iuh.edu.vn

Nguyen Quoc Tien

Faculty of Applied Sciences
Ho Chi Minh City University of Industry and Trade
Ho Chi Minh City, Vietnam
e-mail: tiennq@huit.edu.vn