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ABSTRACT. We study the concept of (m,n)-C2 modules with m,n positive
integers, which unifies strongly C2, n-C2 and GC2 modules. Several charac-
terizations are obtained. It is shown that R is (m,n)-C2 as a right R-module
if and only if R is right perfect and right strongly C'2. Connections between an
(m,n)-C2 module and its endomorphism ring are also studied. We prove that
if the endomorphism ring of an R-module M is a right (m, n)-C2 ring, then M
is an (m,n)-C2 module. Also we obtain some dual statements of (m,n)-D2
modules. Some characterizations of (semi)perfect and (semi)regular rings are
studied. We show that S = End(MRg) is a regular ring if and only if M is a
dual Rickart module and (m,n)-D2 with m > n.
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1. Introduction

Throughout this paper, R is a ring with unity and M is a unital right R-module.
For a submodule N of M, we use N < M and N <« M to mean that N is a
submodule of M and N is a small submodule of M, respectively. For a subset X
of R, let (X)) (respectively, (X)) denote the right (respectively, left) annihilator
of X in R. Homomorphisms of modules are written on the left of their arguments.
For a right R-module M, S = End(Mpg) will be denoted the endomorphism ring of
M. Let k, n, m be positive integers. We denote the set of all 1 X n (resp. n x 1)
matrices over Mg (resp. gM) by M™ (resp. M,) and the set of all n x k (resp.
n x n) matrices over S by M, xx(S) (resp. M,(S)). Let s = (z1,22,...,2,) €

Smand m = (mq,...,mi)T € M,. We write sm = Y. x;(m;). Assume that
$1,82,...,8m € S™ and A € M, »«(S), we write
I'Mn(517827...,5m):{x:(ml,...,mk)TeMn | s12 =80 =" =8z =0}

and ryy, (A) = {z = (mq,...,mp)T € My | Ax =0} (see [1], [13] and [20]).
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Recall that a module Mp is called a C2 module if every submodule of Mg that
is isomorphic to a direct summand of My is itself a direct summand of Mg, and
Mp, is called a D2-module if every submodule A of Mg is a direct summand of
Mg whenever M /A is isomorphic to a direct summand of Mg (see [11]). Recently,
many authors have shown interest in and studied extensions of C'2 and D2 modules
along with related modules. They have presented numerous results regarding the
structure of rings and modules through these modules ([2,3,4,6]). Modules invariant
under automorphisms of their injective hull are an important class of modules
satisfying the C'2 condition, which have been extensively studied in recent years
([5,14,15,16,17)).

In [7], Kourki introduced the notion of strongly C2 modules motivated by a need
to put the notion of strongly C2 rings in the general module theoretic setting by
utilizing this representation. A module MFp, is called a strongly C2 module if M} is
a C2 module for every positive integer n. A ring R is called right C2 (respectively,
strongly right C2) if Rp is a C2 (respectively, strongly C'2) module (see [12]). As a
continuation of the strongly C2 property, Li-Chen-Kourki introduced the notions of
n-C2 modules. Mp, is called an n-C2 module if the annihilator ras(s1, s2, ..., 8,) #
0 for any s1, s9,...,8, in S satisfying Ss; + Ssg + -+ + Ss, # S ([10]). Clearly,
GC2 modules (every submodule of M that is isomorphic to M is itself a direct
summand of M) are 1-C2, and 2-C2 modules are C2 by [10, Proposition 23.8].

In Section 2 of the present paper, we introduce the notion of (m,n)-C2 modules
and provide some characterizations and investigate its properties. Clearly, n-C2
modules are just (n,1)-C2. It is shown that every direct summand of an (m,n)-
C?2 module inherits the property. We also obtained some connections between an
(m,n)-C2 module and its endomorphism ring. We prove that if S = End(Mp) is
a right (m,n)-C2 ring, then My is an (m,n)-C2 module. A ring R is called (von
Neumann) regular if for every a € R, there exists some b € R such that a = aba.
We show that the endomorphism ring S is regular if and only if Mg is an (m, n)-C2
module with m > n and Ker(s) is a direct summand of M for all s € S.

In Section 3, we introduced the notion of (m,n)-D2 modules and obtained some
dual statements of n-D2 modules and strongly D2 modules. We prove that if M
is (m,n)-D2 (respectively, GD2), then every direct summand of M is an (m,n)-
D2 (respectively, GD2) module. Similar to (m,n)-C2 modules, we show that S =
End(Mg) is a regular ring if and only if M is a dual Rickart module and (m,n)-D2

with m > n.



172 PHAN HONG TIN AND NGUYEN QUOC TIEN

2. (m,n)-C2 modules

Let R be a ring and Mg be a right R-module, S = End(Mg) be the endomor-
phism ring of M and m,n be positive integers. Mp is called an (m,n)-C2 module
if the annihilator rps, (s1,82,...,8m) # 0 for any $1,82,...,8, € S™ satisfying
Ssy 4+ Ssg+ -+ Ssp £ S™.

A ring R is called a right (m,n)-C2 ring if Rg is an (m,n)-C2 module.

Example 2.1. (1) M is n-C2 if and only if M is (n,1)-C2.
(2) A module Mg is called GC?2 if every submodule of M that is isomorphic
to M is itself a direct summand of M [13]. One can check that M is GC2
if and only if M is (1,1)-C2.

The following theorem extends Li-Chen-Kourki [10, Theorem 2.2].

Theorem 2.2. Let R be a ring, M be a right R-module, S = End(Mg) and m,n
be positive integers. The following conditions are equivalent:
(1) M is (m,n)-C2.
(2) For every A € My, xn(S), if ras, (A) = 0, then there exists a matriz B in
M, 5 (S) such that BA = I,,, where I, is the identity matriz in M, (S).
(3) Any monomorphism o : M,, — M, splits.

a1 ai2 A1n
a a a

Proof. (1) = (2) Suppose A = AT n € M,,xn(S) and
am1 am?2 e Amn,

ra, (A) = 0. For every i = 1,2,...,m, we denote s; = (a;1,a2,...,0a;). Then

ru, (51,82, ..,8m) =0. By (1), we have Ss; + Ssa + - - + Ss,, = S™. There exist
b € Sforalli=1,2,...,n,j=1,2,...,m such that

(1,0,...,0) = b1181 +b12sa+ -+ bimSm
(0,1,...,0) = bo1s1 +boasas+ -+ bams,
(0,0,...,1) = bn181 +bn282 + +bnm5m

If we take B = (bij)nxm € Mypxm(S), we get BA = I,, as desired.
(2) = (3) We recall that any homomorphism « : M,, — M, can be seen as an
m X n matrix, say A, over S. Since « is a monomorphism, ry; (A) = 0. There
exists a matrix B € M« (S) such that BA = I, by (2) and a homomorphism
B My, — M, such that Sa. = 1)s,. Hence o : M,, = M,, splits.
(3) = (1) Suppose rps, (s1,82,...,8m) = 0, where s1,82,...,8, € S™. It is
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sufficient to prove Ss; + Ssa + -+ + Ss,, = S". For every i = 1,2,...,m, let

s; = (8i1, 8425 - - - Sin). Define the map « : M,, — M, via
n n n
(m1,ma, .. omn)” = (O s1(my), > sai(my)se > smy(my))T.
j=1 j=1 j=1

Then « is a right R-module monomorphism and it can be seen as an m x n matrix

S11 S12 - Sinm
S21 S22 -ttt S2p .

over S, denoted by A. Therefore A = . So « splits by
Sml Sm2 °° Smn

(3). Then there exists a homomorphism £ : M,,, — M, such that Sa = 1, . Now,

bir bz - bim
. bor ba2 - bom

there exists B = € M, % (S) such that BA = I,,. So
bnl bn2 e bnm

Ss1+ Ssg + -+ Ss, = S™ as required. O

We have the following corollaries.

Corollary 2.3. Let R be a ring, M be a right R-module and n be a positive integer.

The following conditions are equivalent:

(1) M is an n-C2 module.
(2) M is an (n,k)-C2 module for every positive integer k.

Corollary 2.4. Let Mg be a right R-module with S = End(Mpg). The following

conditions are equivalent:

(1) M is a strongly C2 module.

(2) For every positive integers m and n, M is an (m,n)-C2 module.

The properties n-C2 and GC?2 are inherited by direct summands (see [10, Propo-
sition 2.3] and [21, Theorem 7], respectively).

Proposition 2.5. Let M be a right R-module and m,n be positive integers with
m > n. If M is (m,n)-C2, then every direct summand of M is an (m,n)-C2

module.

Proof. Assume that M is an (m,n)-C2 module and N = e(M), where ¢? = ¢ €
End(M). Let S = End(M) and S" = End(N). Let A" = (aj;)mxn € Mpmxn(S’)
with ry, (A") = 0. For every i € {1,2,...,m} and j € {1,2,...,n}, denote

wajze if i # g
Qi =

wie+ (1—e) ifi=j
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where ¢ : N — M is the inclusion map. Then a;; € S. Let A = (Gij)mxn €
My, xn (S). It is easy to see that rps, (A) = 0. Since M is an (m,n)-C2 module, there
exists B = (bij)nxm € Mpxm(S) such that BA = I,,. For each i € {1,2,...,n},
je{1,2,...,m}, let b;j = eb;jt. Then b;;j €S8 Let B' = (béj)nxm € M, 5 (S").
It follows that B’A’ = I,,. Thus N is an (m,n)-C2 right R-module. O

Let Mg be a right R-module with S = End(Mg), and n be a positive integer.
In [10, Proposition 2.5], it is shown that if S is a right n-C2 ring, then M is an
n-C2 module.

Proposition 2.6. Let My be a right R-module with S = End(Mpg) and m,n be
positive integers. If S is a right (m,n)-C2 ring, then M is an (m,n)-C2 module.

Proof. Suppose S is a right (m,n)-C2 ring and rp, (s1,...,8m) = 0 for some
S1y-+.,8m € S™. Assume that s € rg (s1,...,8,). It is easy to see that s = 0. So
Ss1+ -+ 858, =S5 and M is an (m,n)-C2 module. O

The following fact shows that the concept of (m,n)-C2 modules unifies also the

concept of C'2 modules.

Proposition 2.7. Let M be a right R-module and m,n be positive integers with
m >n. If M is (m,n)-C2, then M is a C2 module.

Proof. Let M = A® B and f : A — M be a monomorphism. Then the map
¢ M, — M, via ¢(a; + b))L = (f(a1),b1,as +ba, -+ ,an + by, 0,--- 0T (a; €
A,b; € B) is a monomorphism, hence it splits by Theorem 2.2. Thus, f(A) ® B is
a direct summand of M,,, hence f(A) is a direct summand of M. Therefore M is
a C'2 module. (]

Corollary 2.8. [10, Proposition 2.8] Every 2-C2 module is a C2 module.
The next example shows that there exist (m,2)-C2 modules but not (m, 1)-C2.

Example 2.9. Let R be a triangle matrix ring over a field K. Then R is right
Artinian. It follows that Rp is (2,2)-C2, but Rg is not (2,1)-C2. In fact, if
Rp is (2,1)-C2, then Rp is 2-C2 by Example 2.1. Thus, Rg is a C2-module by

Proposition 2.7, a contradiction.

It is well-known that for every right R-module M, S = End(Mpg) is regular if

and only if Ker(s) and Im(s) are direct summands of M for all s € S.

Corollary 2.10. Let Mg be a right R-module with S = End(Mg) and m,n be

positive integers.
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(1) S is regular if and only if M is (m,n)-C2 with m > n and Ker(s) is a direct
summand of M for all s € S.

(2) S is regular if and only if M is strongly C2 and Ker(s) is a direct summand
of M for all s € S.

We conclude this section by giving some characterizations of right strongly C2

rings.

Theorem 2.11. Let Mg be a right R-module with S = End(Mg). Then the
following conditions are equivalent:

(1) R is a right strongly C2 ring.

(2) For every k > 1, Myxi(R) is a right (m,n)-C2 ring for some positive

integers m,n with m > n.
Proof. By Propositions 2.5, 2.6 and 2.7. O

In the following theorem, we follow some notations which are used in the proof
of [19, Theorem 2.13].

Theorem 2.12. Let m,n be positive integers. The following conditions are equiv-
alent:

(1) R™ is (m,n)-C2 as a right R-module.

(2) RM s C2 as a right R-module.

(3) R is GC?2 as a right R-module.

(4)

4) R s a right perfect and right strongly C2 ring.

Proof. (1) & (2) & (3) is obvious as (R™M)* = RM) for all positive integers k and
Proposition 2.7.

(3) = (4) For every k € N, we note that R¥ = A@ Band f: A - RFisa
monomorphism. Hence we can assume R* is a direct summand of R™. Write
RM = A @ C for some C < RM. Define ¢ : RN — RM via o(a + ¢) = (f(a),c)
for all a € A, ¢ € C. Clearly, ¢ is a monomorphism. Since RN is GC?2, ¢ splits.
That means Im(y) is a direct summand of RN or f(A) is a direct summand of
RM . Therefore f(A) is a direct summand of R¥. Thus R* is a C2 module. It
follows that R is right strongly C2.

Now we show that R is a right perfect ring. By [1, Theorem 28.4], we only need
to show that R satisfies DCC on principal left ideals of R. Let Ra; > Rasay > - -
be any descending chain of principal left ideals of R. Let F = R®™ be a free
module with a basis {1, z2,...} and G be the submodule of F' generated by {y; =
x; — Tiy1ai, © € N}, By [1, Lemma 28.1], G is free with a basis {y1,y2,...}. Thus
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G =2 F. Since F is a GC2 module, G is a direct summand of F. Then the chain
Ray > Ragay > - -+ terminates by [1, Lemma 28.2].

(4) = (3) Let K be a submodule of F = R™ and ¢ : K — R™ be an isomorphism.
In order to show that K is also a direct summand of F', we only need to prove that
F/K is a projective R-module. Since R is right perfect, by [1, Theorem 28.4], every
flat right R-module is projective. Thus, we just need to show that F//K is flat. Let

U={L(k)=R"®R"™&---®R™ | ke N,n; € N}
Then F = UgenL(k) and FI = UgenL(k)T for any left ideal I of R. Let
B = (K (k) = o~ (L(K)) | k€ N).

It follows that K = UkenK (k) and KI = UkenK (k)T for any left ideal I of R.
Since R is right strongly C2 and K (k) = L(k) for each L(k) € 4, it is easy to see
that K (k) is a direct summand of F for each K (k) € B. It shows that F/K (k) is
a flat module for each K (k) € B. Let I be any left ideal of R, K (k)N FI = K(k)I
and K (k) € 8. Then

K N FI = (UpenK (k) N FI = Upen(K (k) 0 FI) = UpenK (k)] = K1.
Thus, F/K is flat. O

Corollary 2.13. The following conditions are equivalent for a ring R with J(R) =
Z(RRg):

(1) R™ is a GC2 right R-module.

(2) R is right perfect.

3. (m,n)-D2 modules

Let R be a ring and Mg be a right R-module, S = End(Mg) be the endo-
morphism ring of Mz and m,n be positive integers. Mg is called an (m,n)-D2
module if sM + soM + --+ 4+ s,, M # M™ for any s1,82,...,8y, € S™ satisfying
815 4+ 895 + - + 88 #£ S™.

Example 3.1. Let R be a ring.

(1) M is an n-D2 module if and only if M is an (n,1)-D2 module.

(2) A module M is called GD2 if for any submodule A of M for which M/A is
isomorphic to M, then A is a direct summand of M. It is easy to see that
a module M is GD2 if and only if M is (1,1)-D2.

The following theorem extends Li-Chen-Kourki [10, Theorem 4.2].
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Theorem 3.2. Let Mp be a right R-module with S = End(Mg) and m,n be
positive integers. Then the following conditions are equivalent:
(1) M is an (m,n)-D2 module.
(2) For every A € M, xm(S), if AM,, = M,, there exists a matric B €
M, xn(S) such that AB = I,,.
(3) Any epimorphism « : M, — M, splits.

aix a2 - Aim
a1 Q22 -+ A2m

Proof. (1) = (2) Suppose A = € My xm (5) and AM,, =
n1 Ap2  **° Gnpm

M,. For every i = 1,2,...,m, we denote s; = (a14,a2i,...,0n;). We can get

siM 4 soM+ -+ 8, M = M™. By (1), 515 + 825 + -+ - + 8,5 = S™. There exist
bijj € Sforalli=1,2,...,m, j=1,2,...,n such that

(1,0,...,0) = s1b11 + Sabo1 + -+ + Smbma
(0,1,...,0) = s1bio + s2bo2 + -+ 4 5pbm2
(0,0,...,1) = $1bip + S2boy, + - + Smbmn-

If we take B = (bij)mxn € Mymxn(S), then AB = I, as desired.

(2) = (3) Remark that any homomorphism « : M,, — M, can be seen as an
n X m matrix, say A, over S. Now, since « is an epimorphism, we get AM,,, = M,,.
There exists a matrix B € M, x,(S5) such that AB = I,, by (2) and there exists a
homomorphism S : M,, = M,, such that a8 = 1,,. Hence o : M,, — M,, splits.
(3) = (1) Suppose s1M + soM + --- + s, M = M™, where s1,82,...,8n € S™.
It is sufficient to prove $15 + s25 + -+ 4+ $,,9 = S™. For every i = 1,2,...,m,
let s; = (s1i,52i,.-.,5n:) and A = (8ij)nxm. Define a map a : M,,, — M, via
(r1, 22, xm) T = A(z1,29,...,2,)T. Tt is easy to see that « is an epimorphism.

By (3), we have that « splits and there is a homomorphism 8 : M,, — M, such

bir bz - bin
. by baa - bop

that af = 1p,. Now there exists B = € M, 5n(S)
bml bm2 o bmn

such that AB = I,,. Hence 1S + $25 + - - - + 5,5 = S™ as required. O

We have the following corollaries.

Corollary 3.3. Let R be a ring, M be a right R-module and n be a positive integer.

The following conditions are equivalent:
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(1) M is an n-D2 module.
(2) M is an (n, k)-D2 module for every positive integer k.

Corollary 3.4. Let My be a right R-module with S = End(Mpg). The following

conditions are equivalent:

(1) M is a strongly D2 module.

(2) For every positive integers m and n, then M is an (m,n)-D2 module.
The property n-D2 is inherited by direct summands by [10, Proposition 4.3].

Proposition 3.5. Let M be a right R-module and m,n be positive integers with
m > n. If M is an (m,n)-D2 module, then every direct summand of M is an
(m,n)-D2 module.

Proof. Assume M is an (m,n)-D2 module and N = eM, where e? = ¢ € End(Mg).
Let S = End(Mg) and S" = End(Ng). Assume that A" = (a;;)nxm € Myuxm(S')
with A’N,, = N,,. For every i € {1,2,...,n}, j € {1,2,...,m}, we denote
wajze if i # j
Qi =
1/'7 / . . .
jze+ (1—e) ifi=j
where ¢+ : N — M is the inclusion map. Then a;; € End(Mpg). Let A =
(@ij)nxm € Mpxm(S). It is easy to see that AM,, = M,. Since M is an (m,n)-
D2 module, there exists B = (bij)mxn € Mpmxn(S) such that AB = I,,. For
each i € {1,2,...,n}, j € {1,2,...,m}, let b}; = eb;je. Then b;; € S'. If we
take B’ = (bgj)mxn € Myxn(S’), we get A’'B’ = I,. Thus N is an (m,n)-D2
module. ([

Corollary 3.6. If M is a GD2 module, then every direct summand of M is also
a GD2 module.

An R-module M satisfies (D3) if for any two direct summands A, B of M with
A+ B = M, the sum AN B is a direct summand of M.
Recall that
e a right R-module Mp is D2 if and only if for every direct summand N of
M, every epimorphism M — N splits (see [20]),
e D2 implies D3 (see [11, Proposition 4.6]).

Theorem 3.7. If M? is a D3 module, then M is a D2 module.

Proof. Let K < M and ¢ : L - M/K be an isomorphism with M = L @ L'. Let
K ={l,2)| p() =2+ K}, M'=M®0and H=L'® M. Then K' ® M' = M?
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and H is a direct summand of M?2. On the other hand, M? = K’ + H and
K'NH =0® K. Since M?is D3, K'NH = 0® K is a direct summand of M?2. It
follows that K is a direct summand of M. O

The following fact shows that the concept of (m,n)-D2 modules unifies also the

concept of D2 modules.

Proposition 3.8. Let M be a right R-module and m,n be positive integers with
m > n. If M is an (m,n)-D2 module, then M is a D2 module.

Proof. Let M = A@ B and f: M — A be an epimorphism. Then the map
0 My — M, via o(a; + b)E, = (f(a1 + b1) + ba,a3 + b3, ,any1 + bpgr)?
(a; € A,b; € B) is an epimorphism, hence ¢ splits. It follows that Ker(f) & A is
a direct summand of M,,, and so Ker(f) is a direct summand of M. Thus M is a
D2 module. O

Corollary 3.9. [10, Proposition 4.5] If M is a 2-D2 right R-module, then M is a
D2 module.

According to Rizvi and Roman ([18] and [8]), a module M is said to be Rickart
if for any f € End(Mg), Ker(f) = ry(f) = eM for some e? = e € End(Mpg). A
module M is said to be dual Rickart if for any f € End(Mg), Im(f) = eM for some
e? = e € End(Mg) ([9)).

Corollary 3.10. Let Mg be a right R-module with S = End(Mpg) and m,n be

positive integers.

(1) S is a regular ring if and only if M is a dual Rickart module and (m,n)-D2
with m > n.
(2) S is a regular ring if and only if M is a dual Rickart and strongly D2

module.

It is well known that the direct sum of two D2 modules need not be D2. For
instance, let p be prime and M; = Z, and M, an infinite direct sum of copies of
Zy>. Then My and Mj are D2. But M = M; @ My is not D2 as a Z-module.

Theorem 3.11. The following conditions are equivalent for a Ting R.
(1) R is semisimple.
2

(2)
(3) Ewvery direct sum of any family of GD2 modules is projective.
(4)

Every GD2 module is projective.

The direct sum of two GD2 modules is projective.
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Proof. (1) = (2) This follows from [1, Exercise 16.9].

(2) = (3) = (4) This is clear.

(4) = (1) Assume that the direct sum of any two GD2 modules is GD2. Let M be
a simple right R-module. Hence M is a G D2 module. By our assumption, M & R
is a projective module since Ry is also GD2. Hence M is projective. By [1, Exercise

16.9], R is semisimple. a

It is well-known that a ring R is right perfect if and only if every right R-module

has a projective cover. We also have a similar result for D2 modules.

Theorem 3.12. The following conditions are equivalent for a ring R:
(1) R is right perfect.
(2) For any right R-module M, there exists an epimorphism f : N — M such
that N is D2 and Ker(f) < N.

Proof. (1) = (2) This is clear.

(2) = (1) Let M be a right R-module. There exists a free module F' and an
epimorphism ¢ : F — M. By (2), there exists an epimorphism ¢ : X — F@® M such
that X is D2 and Ker(¢) < X. Consider the natural projections p; : F& M — F
and po : F@& M — M. Then p1¢ : X — F' is an epimorphism. By the projectivity
of F, X = Ker(p1¢) @ T with T < X. Let M’ = Ker(p1¢9). We get X/M' = F
and X/M' =2 T and so F =2 T. Hence, we can regard X = M’ @& F. Clearly,
f=0¢|lm : M — M is an epimorphism. Now we will show that M’ is a projective
cover of M. Assume that A + Ker(f) = M’. Since Ker(f) < Ker(¢), we have
F+ A+ Ker(¢p) = M'+ F = X whence F+ A = F+ M'. Hence A = M' or
Ker(f) < M'.

On the other hand, since F is projective, there exists ¢ : F — M’ such that
fi = 1. But Ker(f) < M’ and so v is an epimorphism. Consider the natural
projections m : X — F, my : X — M’'. Then ¢m : X — M’ is an epimorphism.
Since M’ is a direct summand of X and X is D2, we have Ker(y);) is a direct
summand of X. Then there exists k : M’ — X such that (17 )k = idy. It follows
that (Y )kmy = mo. Let h = kmy : X — X. Then ¢m h = mo. Let g = 7 ht where
¢ : M’ — X is the natural inclusion. Then g = id, and M’ is isomorphic to a
direct summand of F' and hence M’ is projective. Thus M’ is the projective cover
of M. O

Corollary 3.13. The following conditions are equivalent for a ring R:

(1) R is semiperfect.
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(2) For any finitely generated right R-module M, there exists an epimorphism
f: N — M such that N is D2 and Ker(f) < N.

We conclude this paper by giving a characterization of semiregular rings.

Corollary 3.14. The following conditions are equivalent for a ring R:

(1) R is semiregular.
(2) For any finitely presented right R-module M, there exists an epimorphism
f:N — M such that N is D2 and Ker(f) < N.

Proof. By the proof of Theorem 3.12; if M is finitely presented and M = F/K,
where F'is free and both F' and K are finitely generated, then F'é M is also finitely
presented. Thus M has a projective cover. It follows that R is semiregular by [13,
Theorem B.56]. O
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