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Abstract. We study the concept of (m,n)-C2 modules with m,n positive

integers, which unifies strongly C2, n-C2 and GC2 modules. Several charac-

terizations are obtained. It is shown that R(N) is (m,n)-C2 as a right R-module

if and only if R is right perfect and right strongly C2. Connections between an

(m,n)-C2 module and its endomorphism ring are also studied. We prove that

if the endomorphism ring of an R-module M is a right (m,n)-C2 ring, then M

is an (m,n)-C2 module. Also we obtain some dual statements of (m,n)-D2

modules. Some characterizations of (semi)perfect and (semi)regular rings are

studied. We show that S = End(MR) is a regular ring if and only if M is a

dual Rickart module and (m,n)-D2 with m > n.
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1. Introduction

Throughout this paper, R is a ring with unity andM is a unital right R-module.

For a submodule N of M , we use N ≤ M and N ≪ M to mean that N is a

submodule of M and N is a small submodule of M , respectively. For a subset X

of R, let r(X) (respectively, l(X)) denote the right (respectively, left) annihilator

of X in R. Homomorphisms of modules are written on the left of their arguments.

For a right R-module M , S = End(MR) will be denoted the endomorphism ring of

M . Let k, n, m be positive integers. We denote the set of all 1× n (resp. n× 1)

matrices over MR (resp. RM) by Mn (resp. Mn) and the set of all n × k (resp.

n × n) matrices over S by Mn×k(S) (resp. Mn(S)). Let s = (x1, x2, . . . , xn) ∈
Sn and m = (m1, . . . ,mk)

T ∈ Mn. We write sm =
∑n

i=1 xi(mi). Assume that

s1, s2, . . . , sm ∈ Sn and A ∈ Mn×k(S), we write

rMn(s1, s2, . . . , sm) = {x = (m1, . . . ,mk)
T ∈Mn | s1x = s2x = · · · = smx = 0}

and rMk
(A) = {x = (m1, . . . ,mk)

T ∈Mk | Ax = 0} (see [1], [13] and [20]).
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Recall that a module MR is called a C2 module if every submodule of MR that

is isomorphic to a direct summand of MR is itself a direct summand of MR, and

MR is called a D2-module if every submodule A of MR is a direct summand of

MR whenever M/A is isomorphic to a direct summand of MR (see [11]). Recently,

many authors have shown interest in and studied extensions of C2 and D2 modules

along with related modules. They have presented numerous results regarding the

structure of rings and modules through these modules ([2,3,4,6]). Modules invariant

under automorphisms of their injective hull are an important class of modules

satisfying the C2 condition, which have been extensively studied in recent years

([5,14,15,16,17]).

In [7], Kourki introduced the notion of strongly C2 modules motivated by a need

to put the notion of strongly C2 rings in the general module theoretic setting by

utilizing this representation. A module MR is called a strongly C2 module if Mn
R is

a C2 module for every positive integer n. A ring R is called right C2 (respectively,

strongly right C2) if RR is a C2 (respectively, strongly C2) module (see [12]). As a

continuation of the strongly C2 property, Li-Chen-Kourki introduced the notions of

n-C2 modules. MR is called an n-C2 module if the annihilator rM (s1, s2, . . . , sn) ̸=
0 for any s1, s2, . . . , sn in S satisfying Ss1 + Ss2 + · · · + Ssn ̸= S ([10]). Clearly,

GC2 modules (every submodule of M that is isomorphic to M is itself a direct

summand of M) are 1-C2, and 2-C2 modules are C2 by [10, Proposition 23.8].

In Section 2 of the present paper, we introduce the notion of (m,n)-C2 modules

and provide some characterizations and investigate its properties. Clearly, n-C2

modules are just (n, 1)-C2. It is shown that every direct summand of an (m,n)-

C2 module inherits the property. We also obtained some connections between an

(m,n)-C2 module and its endomorphism ring. We prove that if S = End(MR) is

a right (m,n)-C2 ring, then MR is an (m,n)-C2 module. A ring R is called (von

Neumann) regular if for every a ∈ R, there exists some b ∈ R such that a = aba.

We show that the endomorphism ring S is regular if and only ifMR is an (m,n)-C2

module with m > n and Ker(s) is a direct summand of M for all s ∈ S.

In Section 3, we introduced the notion of (m,n)-D2 modules and obtained some

dual statements of n-D2 modules and strongly D2 modules. We prove that if M

is (m,n)-D2 (respectively, GD2), then every direct summand of M is an (m,n)-

D2 (respectively, GD2) module. Similar to (m,n)-C2 modules, we show that S =

End(MR) is a regular ring if and only if M is a dual Rickart module and (m,n)-D2

with m > n.
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2. (m,n)-C2 modules

Let R be a ring and MR be a right R-module, S = End(MR) be the endomor-

phism ring of MR and m,n be positive integers. MR is called an (m,n)-C2 module

if the annihilator rMn
(s1, s2, . . . , sm) ̸= 0 for any s1, s2, . . . , sm ∈ Sn satisfying

Ss1 + Ss2 + · · ·+ Ssm ̸= Sn.

A ring R is called a right (m,n)-C2 ring if RR is an (m,n)-C2 module.

Example 2.1. (1) M is n-C2 if and only if M is (n, 1)-C2.

(2) A module MR is called GC2 if every submodule of M that is isomorphic

to M is itself a direct summand of M [13]. One can check that M is GC2

if and only if M is (1, 1)-C2.

The following theorem extends Li-Chen-Kourki [10, Theorem 2.2].

Theorem 2.2. Let R be a ring, M be a right R-module, S = End(MR) and m,n

be positive integers. The following conditions are equivalent:

(1) M is (m,n)-C2.

(2) For every A ∈ Mm×n(S), if rMn
(A) = 0, then there exists a matrix B in

Mn×m(S) such that BA = In, where In is the identity matrix in Mn(S).

(3) Any monomorphism α :Mn →Mm splits.

Proof. (1) ⇒ (2) Suppose A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn

 ∈ Mm×n(S) and

rMn
(A) = 0. For every i = 1, 2, . . . ,m, we denote si = (ai1, ai2, . . . , ain). Then

rMn(s1, s2, . . . , sm) = 0. By (1), we have Ss1 + Ss2 + · · ·+ Ssm = Sn. There exist

bij ∈ S for all i = 1, 2, . . . , n, j = 1, 2, . . . ,m such that

(1, 0, . . . , 0) = b11s1 + b12s2 + · · ·+ b1msm

(0, 1, . . . , 0) = b21s1 + b22s2 + · · ·+ b2msm
...

...

(0, 0, . . . , 1) = bn1s1 + bn2s2 + · · ·+ bnmsm

If we take B = (bij)n×m ∈ Mn×m(S), we get BA = In as desired.

(2) ⇒ (3) We recall that any homomorphism α : Mn → Mm can be seen as an

m × n matrix, say A, over S. Since α is a monomorphism, rMn
(A) = 0. There

exists a matrix B ∈ Mn×m(S) such that BA = In by (2) and a homomorphism

β :Mm →Mn such that βα = 1Mn . Hence α :Mn →Mm splits.

(3) ⇒ (1) Suppose rMn
(s1, s2, . . . , sm) = 0, where s1, s2, . . . , sm ∈ Sn. It is
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sufficient to prove Ss1 + Ss2 + · · · + Ssm = Sn. For every i = 1, 2, . . . ,m, let

si = (si1, si2, . . . , sin). Define the map α :Mn →Mm via

(m1,m2, . . . ,mn)
T 7→ (

n∑
j=1

s1j(mj),

n∑
j=1

s2j(mj), . . . ,

n∑
j=1

smj(mj))
T .

Then α is a right R-module monomorphism and it can be seen as an m×n matrix

over S, denoted by A. Therefore A =


s11 s12 · · · s1n

s21 s22 · · · s2n

· · · · · · · · · · · ·
sm1 sm2 · · · smn

. So α splits by

(3). Then there exists a homomorphism β :Mm →Mn such that βα = 1Mn
. Now,

there exists B =


b11 b12 · · · b1m

b21 b22 · · · b2m

· · · · · · · · · · · ·
bn1 bn2 · · · bnm

 ∈ Mn×m(S) such that BA = In. So

Ss1 + Ss2 + · · ·+ Ssn = Sn as required. □

We have the following corollaries.

Corollary 2.3. Let R be a ring, M be a right R-module and n be a positive integer.

The following conditions are equivalent:

(1) M is an n-C2 module.

(2) M is an (n, k)-C2 module for every positive integer k.

Corollary 2.4. Let MR be a right R-module with S = End(MR). The following

conditions are equivalent:

(1) M is a strongly C2 module.

(2) For every positive integers m and n, M is an (m,n)-C2 module.

The properties n-C2 and GC2 are inherited by direct summands (see [10, Propo-

sition 2.3] and [21, Theorem 7], respectively).

Proposition 2.5. Let M be a right R-module and m,n be positive integers with

m ≥ n. If M is (m,n)-C2, then every direct summand of M is an (m,n)-C2

module.

Proof. Assume that M is an (m,n)-C2 module and N = e(M), where e2 = e ∈
End(M). Let S = End(M) and S′ = End(N). Let A′ = (a′ij)m×n ∈ Mm×n(S

′)

with rNn
(A′) = 0. For every i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, denote

aij =

ιa′ije if i ̸= j

ιa′ije+ (1− e) if i = j
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where ι : N → M is the inclusion map. Then aij ∈ S. Let A = (aij)m×n ∈
Mm×n(S). It is easy to see that rMn

(A) = 0. SinceM is an (m,n)-C2 module, there

exists B = (bij)n×m ∈ Mn×m(S) such that BA = In. For each i ∈ {1, 2, . . . , n},
j ∈ {1, 2, . . . ,m}, let b′ij = ebijι. Then b′ij ∈ S′. Let B′ = (b′ij)n×m ∈ Mn×m(S′).

It follows that B′A′ = In. Thus N is an (m,n)-C2 right R-module. □

Let MR be a right R-module with S = End(MR), and n be a positive integer.

In [10, Proposition 2.5], it is shown that if S is a right n-C2 ring, then M is an

n-C2 module.

Proposition 2.6. Let MR be a right R-module with S = End(MR) and m,n be

positive integers. If S is a right (m,n)-C2 ring, then M is an (m,n)-C2 module.

Proof. Suppose S is a right (m,n)-C2 ring and rMn
(s1, . . . , sm) = 0 for some

s1, . . . , sm ∈ Sn. Assume that s ∈ rSn
(s1, . . . , sm). It is easy to see that s = 0. So

Ss1 + · · ·+ Ssm = Sn and M is an (m,n)-C2 module. □

The following fact shows that the concept of (m,n)-C2 modules unifies also the

concept of C2 modules.

Proposition 2.7. Let M be a right R-module and m,n be positive integers with

m > n. If M is (m,n)-C2, then M is a C2 module.

Proof. Let M = A ⊕ B and f : A → M be a monomorphism. Then the map

φ : Mn → Mm via φ(ai + bi)
T
n = (f(a1), b1, a2 + b2, · · · , an + bn, 0, · · · , 0)T (ai ∈

A, bi ∈ B) is a monomorphism, hence it splits by Theorem 2.2. Thus, f(A)⊕B is

a direct summand of Mm, hence f(A) is a direct summand of M . Therefore M is

a C2 module. □

Corollary 2.8. [10, Proposition 2.8] Every 2-C2 module is a C2 module.

The next example shows that there exist (m, 2)-C2 modules but not (m, 1)-C2.

Example 2.9. Let R be a triangle matrix ring over a field K. Then R is right

Artinian. It follows that RR is (2, 2)-C2, but RR is not (2, 1)-C2. In fact, if

RR is (2, 1)-C2, then RR is 2-C2 by Example 2.1. Thus, RR is a C2-module by

Proposition 2.7, a contradiction.

It is well-known that for every right R-module M , S = End(MR) is regular if

and only if Ker(s) and Im(s) are direct summands of M for all s ∈ S.

Corollary 2.10. Let MR be a right R-module with S = End(MR) and m,n be

positive integers.
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(1) S is regular if and only if M is (m,n)-C2 with m > n and Ker(s) is a direct

summand of M for all s ∈ S.

(2) S is regular if and only if M is strongly C2 and Ker(s) is a direct summand

of M for all s ∈ S.

We conclude this section by giving some characterizations of right strongly C2

rings.

Theorem 2.11. Let MR be a right R-module with S = End(MR). Then the

following conditions are equivalent:

(1) R is a right strongly C2 ring.

(2) For every k ≥ 1, Mk×k(R) is a right (m,n)-C2 ring for some positive

integers m,n with m > n.

Proof. By Propositions 2.5, 2.6 and 2.7. □

In the following theorem, we follow some notations which are used in the proof

of [19, Theorem 2.13].

Theorem 2.12. Let m,n be positive integers. The following conditions are equiv-

alent:

(1) R(N) is (m,n)-C2 as a right R-module.

(2) R(N) is C2 as a right R-module.

(3) R(N) is GC2 as a right R-module.

(4) R is a right perfect and right strongly C2 ring.

Proof. (1) ⇔ (2) ⇔ (3) is obvious as (R(N))k ∼= R(N) for all positive integers k and

Proposition 2.7.

(3) ⇒ (4) For every k ∈ N, we note that Rk = A ⊕ B and f : A → Rk is a

monomorphism. Hence we can assume Rk is a direct summand of R(N). Write

R(N) = A⊕ C for some C ≤ R(N). Define φ : R(N) → R(N) via φ(a+ c) = (f(a), c)

for all a ∈ A, c ∈ C. Clearly, φ is a monomorphism. Since R(N) is GC2, φ splits.

That means Im(φ) is a direct summand of R(N) or f(A) is a direct summand of

R(N). Therefore f(A) is a direct summand of Rk. Thus Rk is a C2 module. It

follows that R is right strongly C2.

Now we show that R is a right perfect ring. By [1, Theorem 28.4], we only need

to show that R satisfies DCC on principal left ideals of R. Let Ra1 ≥ Ra2a1 ≥ · · ·
be any descending chain of principal left ideals of R. Let F = R(N) be a free

module with a basis {x1, x2, . . . } and G be the submodule of F generated by {yi =
xi − xi+1ai, i ∈ N}. By [1, Lemma 28.1], G is free with a basis {y1, y2, . . . }. Thus
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G ∼= F . Since F is a GC2 module, G is a direct summand of F . Then the chain

Ra1 ≥ Ra2a1 ≥ · · · terminates by [1, Lemma 28.2].

(4) ⇒ (3) LetK be a submodule of F = R(N) and φ : K → R(N) be an isomorphism.

In order to show that K is also a direct summand of F , we only need to prove that

F/K is a projective R-module. Since R is right perfect, by [1, Theorem 28.4], every

flat right R-module is projective. Thus, we just need to show that F/K is flat. Let

U = {L(k) = Rn1 ⊕Rn2 ⊕ · · · ⊕Rnk | k ∈ N, nj ∈ N}.

Then F = ∪k∈NL(k) and FI = ∪k∈NL(k)I for any left ideal I of R. Let

B = {K(k) = φ−1(L(k)) | k ∈ N}.

It follows that K = ∪k∈NK(k) and KI = ∪k∈NK(k)I for any left ideal I of R.

Since R is right strongly C2 and K(k) ∼= L(k) for each L(k) ∈ U, it is easy to see

that K(k) is a direct summand of F for each K(k) ∈ B. It shows that F/K(k) is

a flat module for each K(k) ∈ B. Let I be any left ideal of R, K(k)∩FI = K(k)I

and K(k) ∈ B. Then

K ∩ FI = (∪k∈NK(k)) ∩ FI = ∪k∈N(K(k) ∩ FI) = ∪k∈NK(k)I = KI.

Thus, F/K is flat. □

Corollary 2.13. The following conditions are equivalent for a ring R with J(R) =

Z(RR):

(1) R(N) is a GC2 right R-module.

(2) R is right perfect.

3. (m,n)-D2 modules

Let R be a ring and MR be a right R-module, S = End(MR) be the endo-

morphism ring of MR and m,n be positive integers. MR is called an (m,n)-D2

module if s1M + s2M + · · · + smM ̸= Mn for any s1, s2, . . . , sm ∈ Sn satisfying

s1S + s2S + · · ·+ smS ̸= Sn.

Example 3.1. Let R be a ring.

(1) M is an n-D2 module if and only if M is an (n, 1)-D2 module.

(2) A module M is called GD2 if for any submodule A of M for which M/A is

isomorphic to M , then A is a direct summand of M . It is easy to see that

a module M is GD2 if and only if M is (1, 1)-D2.

The following theorem extends Li-Chen-Kourki [10, Theorem 4.2].
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Theorem 3.2. Let MR be a right R-module with S = End(MR) and m,n be

positive integers. Then the following conditions are equivalent:

(1) M is an (m,n)-D2 module.

(2) For every A ∈ Mn×m(S), if AMm = Mn, there exists a matrix B ∈
Mm×n(S) such that AB = In.

(3) Any epimorphism α :Mm →Mn splits.

Proof. (1) ⇒ (2) SupposeA =


a11 a12 · · · a1m

a21 a22 · · · a2m

· · · · · · · · · · · ·
an1 an2 · · · anm

 ∈ Mn×m(S) andAMm =

Mn. For every i = 1, 2, . . . ,m, we denote si = (a1i, a2i, . . . , ani). We can get

s1M + s2M + · · ·+ smM =Mn. By (1), s1S + s2S + · · ·+ smS = Sn. There exist

bij ∈ S for all i = 1, 2, . . . ,m, j = 1, 2, . . . , n such that

(1, 0, . . . , 0) = s1b11 + s2b21 + · · ·+ smbm1

(0, 1, . . . , 0) = s1b12 + s2b22 + · · ·+ smbm2

· · · · · · · · ·
(0, 0, . . . , 1) = s1b1n + s2b2n + · · ·+ smbmn.

If we take B = (bij)m×n ∈ Mm×n(S), then AB = In as desired.

(2) ⇒ (3) Remark that any homomorphism α : Mm → Mn can be seen as an

n×m matrix, say A, over S. Now, since α is an epimorphism, we get AMm =Mn.

There exists a matrix B ∈ Mm×n(S) such that AB = In by (2) and there exists a

homomorphism β :Mn →Mm such that αβ = 1Mn
. Hence α :Mm →Mn splits.

(3) ⇒ (1) Suppose s1M + s2M + · · · + smM = Mn, where s1, s2, . . . , sm ∈ Sn.

It is sufficient to prove s1S + s2S + · · · + smS = Sn. For every i = 1, 2, . . . ,m,

let si = (s1i, s2i, . . . , sni) and A = (sij)n×m. Define a map α : Mm → Mn via

(x1, x2, . . . , xm)T 7→ A(x1, x2, . . . , xm)T . It is easy to see that α is an epimorphism.

By (3), we have that α splits and there is a homomorphism β : Mn → Mm such

that αβ = 1Mn
. Now there exists B =


b11 b12 · · · b1n

b21 b22 · · · b2n

· · · · · ·
bm1 bm2 · · · bmn

 ∈ Mm×n(S)

such that AB = In. Hence s1S + s2S + · · ·+ snS = Sn as required. □

We have the following corollaries.

Corollary 3.3. Let R be a ring, M be a right R-module and n be a positive integer.

The following conditions are equivalent:
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(1) M is an n-D2 module.

(2) M is an (n, k)-D2 module for every positive integer k.

Corollary 3.4. Let MR be a right R-module with S = End(MR). The following

conditions are equivalent:

(1) M is a strongly D2 module.

(2) For every positive integers m and n, then M is an (m,n)-D2 module.

The property n-D2 is inherited by direct summands by [10, Proposition 4.3].

Proposition 3.5. Let M be a right R-module and m,n be positive integers with

m ≥ n. If M is an (m,n)-D2 module, then every direct summand of M is an

(m,n)-D2 module.

Proof. AssumeM is an (m,n)-D2 module andN = eM , where e2 = e ∈ End(MR).

Let S = End(MR) and S′ = End(NR). Assume that A′ = (a′ij)n×m ∈ Mn×m(S′)

with A′Nm = Nn. For every i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m}, we denote

aij =

ιa′ije if i ̸= j

ιa′ije+ (1− e) if i = j

where ι : N → M is the inclusion map. Then aij ∈ End(MR). Let A =

(aij)n×m ∈ Mn×m(S). It is easy to see that AMm = Mn. Since M is an (m,n)-

D2 module, there exists B = (bij)m×n ∈ Mm×n(S) such that AB = In. For

each i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m}, let b′ij = ebijι. Then b′ij ∈ S′. If we

take B′ = (b′ij)m×n ∈ Mm×n(S
′), we get A′B′ = In. Thus N is an (m,n)-D2

module. □

Corollary 3.6. If M is a GD2 module, then every direct summand of M is also

a GD2 module.

An R-module M satisfies (D3) if for any two direct summands A,B of M with

A+B =M , the sum A ∩B is a direct summand of M .

Recall that

• a right R-module MR is D2 if and only if for every direct summand N of

M , every epimorphism M → N splits (see [20]),

• D2 implies D3 (see [11, Proposition 4.6]).

Theorem 3.7. If M2 is a D3 module, then M is a D2 module.

Proof. Let K ≤ M and φ : L→ M/K be an isomorphism with M = L⊕ L′. Let

K ′ = {(l, x)| φ(l) = x+K}, M ′ =M ⊕ 0 and H = L′ ⊕M . Then K ′ ⊕M ′ =M2



(m,n)-C2 MODULES AND (m,n)-D2 MODULES 179

and H is a direct summand of M2. On the other hand, M2 = K ′ + H and

K ′ ∩H = 0⊕K. Since M2 is D3, K ′ ∩H = 0⊕K is a direct summand of M2. It

follows that K is a direct summand of M . □

The following fact shows that the concept of (m,n)-D2 modules unifies also the

concept of D2 modules.

Proposition 3.8. Let M be a right R-module and m,n be positive integers with

m > n. If M is an (m,n)-D2 module, then M is a D2 module.

Proof. Let M = A ⊕ B and f : M → A be an epimorphism. Then the map

φ : Mm → Mn via φ(ai + bi)
T
m = (f(a1 + b1) + b2, a3 + b3, · · · , an+1 + bn+1)

T

(ai ∈ A, bi ∈ B) is an epimorphism, hence φ splits. It follows that Ker(f) ⊕ A is

a direct summand of Mm, and so Ker(f) is a direct summand of M . Thus M is a

D2 module. □

Corollary 3.9. [10, Proposition 4.5] If M is a 2-D2 right R-module, then M is a

D2 module.

According to Rizvi and Roman ([18] and [8]), a module M is said to be Rickart

if for any f ∈ End(MR), Ker(f) = rM (f) = eM for some e2 = e ∈ End(MR). A

moduleM is said to be dual Rickart if for any f ∈ End(MR), Im(f) = eM for some

e2 = e ∈ End(MR) ([9]).

Corollary 3.10. Let MR be a right R-module with S = End(MR) and m,n be

positive integers.

(1) S is a regular ring if and only if M is a dual Rickart module and (m,n)-D2

with m > n.

(2) S is a regular ring if and only if M is a dual Rickart and strongly D2

module.

It is well known that the direct sum of two D2 modules need not be D2. For

instance, let p be prime and M1 = Zp and M2 an infinite direct sum of copies of

Zp2 . Then M1 and M2 are D2. But M =M1 ⊕M2 is not D2 as a Z-module.

Theorem 3.11. The following conditions are equivalent for a ring R.

(1) R is semisimple.

(2) Every GD2 module is projective.

(3) Every direct sum of any family of GD2 modules is projective.

(4) The direct sum of two GD2 modules is projective.
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Proof. (1) ⇒ (2) This follows from [1, Exercise 16.9].

(2) ⇒ (3) ⇒ (4) This is clear.

(4) ⇒ (1) Assume that the direct sum of any two GD2 modules is GD2. Let M be

a simple right R-module. Hence M is a GD2 module. By our assumption, M ⊕RR

is a projective module since RR is also GD2. HenceM is projective. By [1, Exercise

16.9], R is semisimple. □

It is well-known that a ring R is right perfect if and only if every right R-module

has a projective cover. We also have a similar result for D2 modules.

Theorem 3.12. The following conditions are equivalent for a ring R:

(1) R is right perfect.

(2) For any right R-module M , there exists an epimorphism f : N → M such

that N is D2 and Ker(f) ≪ N .

Proof. (1) ⇒ (2) This is clear.

(2) ⇒ (1) Let M be a right R-module. There exists a free module F and an

epimorphism ψ : F →M . By (2), there exists an epimorphism ϕ : X → F⊕M such

that X is D2 and Ker(ϕ) ≪ X. Consider the natural projections p1 : F ⊕M → F

and p2 : F ⊕M → M . Then p1ϕ : X → F is an epimorphism. By the projectivity

of F , X = Ker(p1ϕ) ⊕ T with T ≤ X. Let M ′ = Ker(p1ϕ). We get X/M ′ ∼= F

and X/M ′ ∼= T and so F ∼= T . Hence, we can regard X = M ′ ⊕ F . Clearly,

f = ϕ|M ′ :M ′ →M is an epimorphism. Now we will show that M ′ is a projective

cover of M . Assume that A + Ker(f) = M ′. Since Ker(f) ≤ Ker(ϕ), we have

F + A + Ker(ϕ) = M ′ + F = X whence F + A = F +M ′. Hence A = M ′ or

Ker(f) ≪M ′.

On the other hand, since F is projective, there exists ψ : F → M ′ such that

fψ = ψ. But Ker(f) ≪ M ′ and so ψ is an epimorphism. Consider the natural

projections π1 : X → F, π2 : X → M ′. Then ψπ1 : X → M ′ is an epimorphism.

Since M ′ is a direct summand of X and X is D2, we have Ker(ψπ1) is a direct

summand of X. Then there exists k :M ′ → X such that (ψπ1)k = idM ′ . It follows

that (ψπ1)kπ2 = π2. Let h = kπ2 : X → X. Then ψπ1h = π2. Let g = π1hι where

ι : M ′ → X is the natural inclusion. Then ψg = id, and M ′ is isomorphic to a

direct summand of F and hence M ′ is projective. Thus M ′ is the projective cover

of M . □

Corollary 3.13. The following conditions are equivalent for a ring R:

(1) R is semiperfect.
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(2) For any finitely generated right R-module M , there exists an epimorphism

f : N →M such that N is D2 and Ker(f) ≪ N .

We conclude this paper by giving a characterization of semiregular rings.

Corollary 3.14. The following conditions are equivalent for a ring R:

(1) R is semiregular.

(2) For any finitely presented right R-module M , there exists an epimorphism

f : N →M such that N is D2 and Ker(f) ≪ N .

Proof. By the proof of Theorem 3.12, if M is finitely presented and M ∼= F/K,

where F is free and both F and K are finitely generated, then F ⊕M is also finitely

presented. Thus M has a projective cover. It follows that R is semiregular by [13,

Theorem B.56]. □
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