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ABSTRACT. In a previous paper, we explored, in the context of the category
L a of complete modular lattices and linear morphisms introduced by T. Albu
and M. Iosif, the lattice-theoretic counterparts of semi-projective retractable
modules and their ring of endomorphisms. In this work, we investigate the dual
situation. That is, we introduce the concept of semi-injective coretractable lat-

tices, and we study their relation to their monoid of endomorphisms.
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1. Introduction

In [1], T. Albu and M. Iosif introduced the category L4 of bounded modular
lattices and linear morphisms.

The class of bounded modular lattices becomes a category when equipped with
the usual lattice homomorphisms. However, these homomorphisms fail to express
important module-theoretic properties. In contrast, linear lattice morphisms, or
linear morphisms for short, which will be defined in the next section, summon the
notions of kernel and image of module homomorphisms, so the First Isomorphism
Theorem for modules holds for bounded modular lattices. This property motivated
us to explore lattice-theoretic counterparts of module-theoretic results, restricting
ourselves to complete modular lattices (see [7], [8], [12], [13], and [14]).

To be precise, in [8], we defined a semi-projective lattice as a lattice L € Ly
such that for any initial interval a/0;, of L and any diagram

L
Js

L1 a0, 0

with exact row!, there exists a linear morphism h : L — L that makes

IExactness of a sequence of linear morphisms is defined in [8]. This notion parallels the corre-
sponding one for modules.
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L
/ ly
L5 a0,
a commutative diagram; that is, f o h = g. (The concept of semi-projectivity for
lattices is inspired by the works of Haghany and Vedadi [10] and of M. K. Patel [15].)
Building on this definition, we found some properties of retractable? semi-projective
lattices and their relation to their monoid of endomorphisms.

In Section 3 of this paper, we introduce the dual notion of semi-injective lat-
tices. Shortly thereafter, we prove that the concepts of semi-projectivity and semi-
injectivity are indeed dual to each other, in the formal sense that a lattice L € £
is semi-projective if and only if its opposite lattice is semi-injective. This result
establishes a bridge that allows us to prove the dual propositions of several results
in [8].

2. Preliminaries

This section presents fundamental concepts and definitions related to bounded
lattices and to the category L4 of linear modular lattices and linear morphisms.

For a bounded lattice L, we write O (resp., 1) for the least (resp., greatest)
element of L. Also, given elements a,b € L with a < b, we define the interval

b/a={x € Lla <z < b}.
Special cases are the initial interval a/0r, where a € L, and the quotient interval
11, /b, where b € L.

We write L°P to denote the opposite lattice of L. Let us write A, and V,,, for the
meet and join operations in L°P| respectively. Of course, Opor = 17, and 1pop = 0.
When there is no room for ambiguity, we use (b/a),, to denote the interval a/b of
L°P. Note that the opposite of an initial interval of L is a quotient interval of L°P,
and vice versa.

Denote as £ the collection of all bounded modular lattices.

Definition 2.1. [1, Definition 1.1] Let L,L" € £. The mapping f : L — L' is
called a linear morphism if there exists ky € L, referred to as the kernel of f, and
a’ € L' such that the following two conditions hold:

1) f(z) = f(z Vky)forall z € L.

2) The function f induces a lattice isomorphism f : 11/ky — a’/0p such
that f(z) = f(x) for all x € 1/ky.

2Also defined in [8].
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For basic properties of linear morphisms, we refer the reader to [1, Section 1].

In [1, Proposition 2.2(1)], the authors introduce the category Laq of linear mod-
ular lattices, whose objects are bounded modular lattices and whose morphisms are
linear morphisms.

As proved in [1, Proposition 2.2(2)-(4)], in this category monomorphisms are pre-
cisely injective linear morphisms (which are precisely linear morphisms with kernel
zero), epimorphisms are precisely surjective linear morphisms, and isomorphisms
are precisely lattice isomorphisms.

Throughout this work, the class of objects of L4 will be the subclass of £
consisting of all complete modular lattices. Thus, also [3, Lemma 0.6] is relevant.

We observe that the category L4 is not abelian, as it fails to be preadditive,
among other conditions (see [9, Theorem 6.5.5(c)] for a proof). However, as il-
lustrated in [8], it possesses a rich structure that brings it closer to this property.
For instance, it has a zero object, which is the zero lattice (that is, the lattice
with a single element, denoted as 0), and a unique zero morphism in each hom-
set (namely, the morphism that factors through the zero object). Further, every

morphism L 4 I’ has a kernel® given by the inclusion mapping ky¢/0r, < L,a
_Vf(QL)
cokernel®, given by the canonical linear morphism L/ ——————— 12//f(1,), and an

image®, given by the inclusion mapping f(12)/o,, N % (for more details on these
categorical constructions, see [8, Section 2]). Moreover, £, is an exact category in

the following sense:

Definition 2.2. [11, Chapter I, Section 15] A category is ezact if it satisfies the

following three conditions:

(1) Each morphism has a kernel and a cokernel.

(2) Every monomorphism is the kernel of some morphism, and every epimor-
phism is a cokernel.

(3) Any morphism f can be expressed as f = moe, where m is a monomorphism

and e is an epimorphism.

Categories as the above have also been called p-exact categories after Puppe (see

[5])-
Theorem 2.3. L, is an exact category.

Proof. Let L —5 L’ be a linear morphism. Then, by [8, Theorem 2.3] and [8,
Theorem 2.5], f has a kernel and a cokernel, respectively. Further, by [8, Remark

3In the categorical sense.



200 F. GONZALEZ, S. PARDO, M. ZORRILLA AND H. RINCON

2.9], f can be decomposed as f = myoey, where my is an injective linear morphism
and ey is a surjective linear morphism.

Lastly, let us assume that f : L — M is a monomorphism. Then, f is the

112)v(-)

kernel of the linear morphism M La/r1r). Likewise, if M 25 Lis an

epimorphism, then g is the cokernel of the inclusion mapping kg /0 < M. (]

Given a lattice L € L4, the set
S={L L | f is a linear morphism} = End,, (L)

becomes a monoid whose binary operation is composition. The identity element

for this operation is Idy,. Note that this is a monoid with zero: the zero morphism

Or,r-

Definition 2.4. Let L € L and let S = Endg,,(L). We say that H C S is a
right ideal of S if H is non-empty and closed under right composition with elements
of S; that is, for h € H and f € S, we have that ho f € H. Accordingly, we say that
H C S is a left ideal of S if H is non-empty and is closed under left composition,
that is, foh € H forany h € H and f € S.

Clearly, H is a right ideal of S if and only if 0r ; € H and H is closed under
right composition with elements of S. Further, the set R(S) of right ideals in S is
partially ordered by inclusion. Hence, (R(S), Q) is a lattice whose meet and join
operations are intersection and union of sets, respectively. Moreover, R(S) € L
as every distributive lattice is modular. Symmetrical statements hold for the set
L(S) of left ideals of S.

Recall that an element a of a lattice L with zero is said to be essential (in L) if
for every Oy # b € L, it happens that a A b # Op.

Definition 2.5. Let I and J be two right (left) ideals of S = Endg,, (L), with
I C J. We say that I is essential in J if I is an essential element of the initial
interval J/{o} of R(S) (L(S5)).

Definition 2.6. Let L be a bounded lattice. We say that a € L is uniform (in L)
if every nonzero b € L such that b < a is essential in a/0;. Furthermore, we say

that the lattice L is uniform if the element 1; is uniform in L.

Thus, for L € L, a right (left) ideal J of S = End,,(L) is uniform if every
right (left) ideal I contained in J is essential in J.

We close this section with two lemmas required for subsequent proofs.
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Lemma 2.7. [8, Lemma 2.4] If L,L' € L and f,g : L — L’ are linear mor-
phisms with respective kernels kg, kg, such that ky = kg and that the induced lattice

isomorphisms f and § coincide, then f = g.

Lemma 2.8. Given the linear morphisms L > M and M N N, ifx € (foh)(L),
then

(Foh) '(x) =R ' (h(1) AT ().
Proof. By the proof of [1, Lemma 2.1],
kron =h (R(1p) Akg) <R (R(1L) AT (),
for all 2 € F(1a0) foy.
Now, as x € (f o h)(L) = (1) /o),
< T ((foh) (1)) = h(1p) V ky.

Thus, by modularity,
(Foh) (A (h(L) AT (@) = F(hA) AT (@) = F((h(1L) AT (@) V &)
= F(MA) VE) AT (@) = f(F (@) ==

Since the restriction of the linear morphism f o h to 11 /kyop is injective,

(Foh) ‘(@)= " (h(1) AT (). 0
3. Semi-injective lattices

We start this section by translating the definition of some well-known module

properties into lattice-theoretic language.

Definition 3.1. Let L € L. An initial interval a/0r of L is L-cyclic if it is
isomorphic to a quotient interval of L. Symmetrically, a quotient interval 17,/b of

L € L is L-cocyclic if it is isomorphic to an initial interval of L.

Remark 3.2. For a lattice L € L4, the set of isomorphism classes of L-cyclic
initial intervals is in a one-to-one correspondence with the set of isomorphism classes

of L-cocyclic quotient intervals.
Definition 3.3. A lattice L € L is coretractable if for any non-trivial quotient
interval 17,/b of L, one has that
Homg,,(11/b,L) # 0.
In other words, L is coretractable if every non-trivial quotient interval of L has

a non-trivial L-cocyclic quotient interval. The following two examples display a

coretractable and a non-coretractable lattice, respectively.
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Example 3.4. Every complemented lattice L € L is coretractable. Indeed, let
11, /b be a non-trivial quotient interval of the complemented lattice L. If a € L is a

complement of b, then the mapping
_Na
].L/b = aVb/b _— a/a/\b = a/OL

is a lattice isomorphism, by modularity. Hence, the composite ¢ o (A @) is a non-

trivial linear morphism in Homg,,(11/b, L).

Example 3.5. Let us consider the lattice L = {1 },en {0y U{0}, with order induced
by the rational numbers. We claim that L is not coretractable. Indeed, L does
not have finite non-trivial initial intervals. Thus, the simple quotient interval 1/ %

cannot be isomorphic to any initial interval.

Definition 3.6. A lattice L € L is semi-injective if for any quotient interval
1./b of L, and any diagram
0 1,/b —2— L
ls
L
with exact row, there exists a linear morphism h : L — L that makes

1./b — L

oA

a commutative diagram; that is, ho k = g.
The following two examples are of both semi-injective and coretractable lattices.

Example 3.7. The simple lattice {0, 1} is semi-injective and coretractable, because

it is a complemented lattice whose only non-trivial initial interval is the lattice

{0,1}.

Recall that the length of a chain C is |C| — 1, and that the length of a lattice L

is the greatest length of a chain in L.

Example 3.8. Every lattice L € £ of length 2 is semi-injective and coretractable.

Indeed, any such lattice has the form

\
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Clearly, if L has only three elements, then it is coretractable, and if L has
more than three elements, then it is complemented. Thus, these lattices are all
coretractable.

Let now 17, /a be a quotient interval of a lattice L € L4 of length 2, and consider
the diagram

!

0 1./a L

%

with exact row. Note that if g = 0, then 0 ; makes the diagram

1L/a 4444% L

b A

We now assume that g # 0. In particular, a < 1. If a = 0, exactness of the

commutative.

top row implies that f is a lattice isomorphism, so that go f ! is a linear morphism

that makes the diagram

0 lL/a

lﬁl

commutative. Suppose now that a € L is a coatom, so the quotient interval 11, /a is a
simple lattice. In this case, any non-trivial linear morphism 17 /a = L is uniquely
determined by the image «(1z). With this in mind, set the mapping h: L — L
such that h(f(1r)) = g(11), h(g(11)) = f(11), and h(z) = z for all z € L with
x ¢ {f(1r),9(1r)}. Note that h is a lattice isomorphism and consequently a linear
morphism. Furthermore, the composite h o f is a non-trivial linear morphism and

(ho f)(1r) = g(1L), so that
0 11 /a —2

l/

is a commutative diagram. Therefore, L is a semi-injective lattice.

Remark 3.9. Given f € Endg, (L), the induced lattice isomorphism 1y, /ky N
fAr)jo, gives rise to a lattice isomorphism ¢ : (f(1£)/o,)? — (11/ky)°P such
that ¢(z) = f_l(x). Note that k, = f(11). Further, since ¢ is an isomorphism
from a quotient interval to an initial interval, it induces the linear endomorphism
f°P € Endg,,(L°P) such that
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FP@) = ¢(eVop F(10) = F (2 A F(12)),
so that ¢ = fop.
Henceforward, we will refer to f°P as the opposite linear morphism of f. Note
that koo = f(11), that f°P(11er) = ky, and that (f°P)? = f.
Clearly, for any linear morphism L Nl , the above construction yields the

opposite linear morphism H°P f—of Lep,
Lemma 3.10. Let f,h € Endg,,(L). Then, (ho f)°P = f°P o hP.

Proof. By the proof of [1, Lemma 2.1], for the linear morphism g = ho f, we have
that

Kpononon = TP (kgor Nop hP (1)) = B (F(1L) Aoy k) = R(F(12) V kn) =
ML) = g(11) = kyon.

g
Furthermore, by Lemma 2.8, for x € (9(1L)/0L)0p one has that
__ —1 ——1,—1
g% (@) =g H(x)=hof (z)=F (b (2)A[f(11))

— TP (R (@) Vop F(11)) = fP (B (2)) = [P (hP(x)) = (f° 0 h%P) ().
Therefore, by Lemma 2.7, g°? = f°P o h°P that is, (h o f)°P = f°P o h°P. O

Note that the above lemma holds for any L, L', L” € L4 and any linear mor-
phisms L 5 1/ ™ 1.

The next result shows that the duality between semi-injective and semi-projective
lattices comes from the dualities between lattices and opposite lattices, and mor-
phisms and opposite morphisms.

Observe that if a linear morphism f is injective, then f°P is surjective, and vice

versa.

Theorem 3.11. A lattice L € L is semi-projective if and only if L°P is semi-
injective.
Proof. (=) Let 1p.,/b = (b/0)°? be a quotient interval of L°?. Consider the
diagram

0 —— (b/0)r —L Lo

Is
Ler

with exact row. Then, for the opposite linear morphisms f°P and ¢°?, we get the

solid part of the diagram
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L
},L// lg"”
v’
L For b/0r, 0

again with exact row. Since L is semi-projective, there exists i such that fPoh =
g°?. By Lemma 3.10,

W o f = (7 o by = (g)7 =g.

Therefore, L°P is semi-injective.

(<) Consider the diagram

with exact row. Taking the opposite linear morphisms, we obtain the solid part of

the diagram

0 —— (a/0y)? —L 5 Lov

op //’/
J{g 7 h
L

Ler
with exact row. This time, h exists because L°P is semi-injective, and it satisfies
that (h o fop) = gop. Thus, by Lemma 3.10,

f o hoP = (h o fop)op — (gop)op =g.
Therefore, L is semi-projective. O

Furthermore, the duality between left ideals in Endg,,(L) and right ideals in
Endg,, (L°P) follows from the composition of linear morphisms in the monoid of

endomorphisms, as we show in the next result.

Lemma 3.12. A subset I C End,, (L) is a left ideal if and only if I°? = {f°P|f €
I} is a right ideal of End.,,(L°P).

Proof. (=) Let f°? € I°? and g € Endc,,(L°?). By Lemma 3.10, (f°? 0 g)°? =
g°? o f € I, and thus,
foPog=((fPog)P)P e I®.

Therefore, I°P is a right ideal of End,,, (L°P).
(<) Let f €I and g € Endg,,(L). By Lemma 3.10, (go f)°P = foP o g°P € I°P,
so that
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gof=gef)r)rel
Hence, I is a left ideal of Endg,,(L). O

Corollary 3.13. Let L € Laq. The lattice of left ideals of Endy ,, (L) is isomorphic
to the lattice of right ideals of End,,, (L°P).

Clearly, symmetrical versions of the last two results hold.

Definition 3.14. For a lattice L € L and an element a € L, we call the element
a strongly invariant (in L) if f(a) < a for any linear endomorphism f € End.,, (L).

Theorem 3.15. Let L € L. If a € L is strongly invariant, then a is strongly

invariant in L°P.

Proof. Let L i> L be a linear morphism, so that L°P f—0p> L°P. By hypothesis,
f(a) <ain L. Thus, in L°P,

—1

fOp(a) <op fOP(f(a)) = ? (f(a)) =aV kf <op G-
Therefore, a is strongly invariant in L°P. (I

Proposition 3.16. Let L € L. Then, L is semi-injective if and only if
Endg,,(L)og C Endg,,(L)o f

for any f,9 € End,, (L) such that kg > ky.

Proof. By Theorem 3.11, L is semi-injective if and only if L°P is semi-projective.

Also, according to [8, Proposition 3.6], a lattice L € L, is semi-projective if and

only if
goEnds, (L) C foEndg,, (L)

for any f,g € Endc,,(L) such that g(11) < f(11).

Thus, a lattice L € L is semi-injective if and only if

g% o Endy, (L°P) C f°P o End,,, (L°P)

for any f°P,¢°? € Endg,,(L°P) such that g°?(1per) <op fP(1per). However, by

Lemma 3.10, the latter can be formulated as
End.,, (L)og C End.,, (L) of,
for any f,g € Endc,,(L) such that k, > k;, which concludes the proof. O

Definition 3.17. For a lattice L € L and an element b € L, we write
SyZ ={f € S|ky > b}.
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We claim that the set S{fz is a left ideal of S = End.,,(L). Indeed, for f € S,
f € SF2 if and only if f(b) = 0y, (see [1, Proposition 1.3(2)]).

Lemma 3.18. Let L € L and letb € L. Then, a bijection exists between the sets
Homg,,(11,/b,L) and Sl}fz.

Proof. Note that, for f € Homg,,(11/b, L), the composite fo (_V k) € S =
Endg,,(L). Furthermore, fo (_V kf) € S{fz.
We claim that the mapping Homg,,(11/b, L) Z, S{fz such that

fr—>?o(,\/kf)

is a bijection. On the one hand, if f,g € Homg,,(11/b, L) are such that

fo(VEkp)=F(f)=Fg) =7g0(-Vky),

then

kf = k?o(,ka) = kﬁo(,\/kg) = kg’
so that f = g. Thus, by Lemma 2.7, f = g. Therefore, F is injective. On the other

hand, if f € Sl’f Z, then the linear morphism f|, ; lies in the preimage of f under
F, so that F is surjective. O

Theorem 3.19. Let L € Ly, and let S = Endg,(L). Then, L is semi-injective
if and only if

Sof=25y7
forany feS.

Proof. Note first that, by Theorem 3.11, L is semi-injective if and only if L°P is

semi-projective, and that this last claim is equivalent, by [8, Theorem 3.11], to
fPoEnds,, (L°P) = Homg,, (L, fP(L°P))

for any f°P € End.,,(L°P).

Now, for necessity, let f € S. For any g € S,’jfz, kg > ky, that is, g°P(1per) <op
fP(1per). This means that g°P(L°P) C f°P(L°P), and thus, one can write g :
Lop — foP(L°P). Consequently, there exists some h°? € End,,,(L°P) such that
fOPoh = g°P that is, ho f = g with h € S. Hence, g € So f, and so, S,’jfz C Sof.
The reverse inclusion is clear.

For sufficiency, let f°P € End,,(L°P). As, clearly,

£ 0 Endp, (L) C Homy,, (L, fP(L°P)),
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it suffices to prove the reverse inclusion. Since fP(L°P) = (15/ky)°P, each ¢g°P €
Homyg, (L°, f°P(L°P)) can be written as g°? : L’ — (1p/ks)°?. Then, g :
(1r/kf) — L, so that k; > kg, and thus, g € S,lffz = So f. It follows that
there exists h € S such that ¢ = h o f, that is, g°? = f° o h°?. Therefore,
g°? € f°? o Endg,,(L°P), which ends the proof. O

Theorem 3.20. Let L € Ly be a semi-injective lattice. Then, a bijection exists

between the set of L-cocyclic quotient intervals of L and the set of principal left
ideals of S = Endg,,(L).

Proof. Note first that, as L € L is semi-injective, L°P is semi-projective, by
Theorem 3.11. Thus, by [8, Theorem 3.14], there exists a bijection between the
set of L°P-cyclic initial intervals of L°P and the set of principal right ideals of
Endg,,(L°P).

Now, there is an obvious bijection between the set of L°P-cyclic initial intervals
of L°P and the set of L-cocyclic quotient intervals of L. Also, by Lemma 3.12,
there is a one-to-one correspondence between the set of principal right ideals of
End,,,(L°P) and the set of principal left ideals of S. The result follows. g

Recall that an element a of a lattice L with a greatest element 17 is said to be

superfluous (in L) if for every 1p # b € L, it happens that a Vb # 1.

Definition 3.21. Let L € L. We say that a € L is hollow (in L) if every element
of 11, /a is superfluous in 17 /a. Furthermore, we say that the lattice L is hollow if

the element Oy, is hollow in L.

Definition 3.22. Let L € L4, and let 17,/m be a quotient interval of L. We say
that L co-generates 11,/m if there exists a family of linear morphisms {f;}ter C
Homyg,,(15/m, L) such that

m = /\ kft'
teT

Theorem 3.23. Let L € L be a coretractable lattice and let S = Endg,,(L).
For I,J € L(S) such that I C J and n,m € L such that n < m, the following

statements hold:

(a) If Sk= is essential in Sk=, then m is superfluous in 1p/n. If L is semi-

n

injective, then the converse holds.

b) If I is essential in S*Z  then A ky is superfluous in 1L/ \ k,.
N* d
g fer

geJ
geJ

(c) Suppose that L is semi-injective. If I = Sk/%k and N ky is superfluous in
§

ferl
fer

1o/ N ko, then I is essential in J.
geJ
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(d) If Sk is uniform as a left ideal of S, then m is hollow in L. If L is
semi-injective, then the converse holds.

(e) Suppose that L is semi-injective. If N ky is hollow in L, then I is a uniform

ferl
left ideal of S.
(f) Consider the following statements:
(i) Sk= is simple (that is, an atom of L(S9)).
(ii) 1z/m is the simple lattice.
If L co-generates 1y, /m, then (i) implies (ii). If L is semi-injective, then
(i) implies (3).
(¢) If I = Sk/%kf is simple, then v/ \ ks is the simple lattice. If L is semi-
fer

fer
injective, then the converse holds.

Proof. (a) Let t € 1;/n such that m V¢ = 1;. Note that SF= C S*¥2 because
t > n. Now, if f € Sk= ﬂSth, then kf > mVt =1y, so f =0. Thus, as Sk= is
essential in S¥2 by hypothesis, S~ = {0}. Then, as L is coretractable, t = 11, so
that m is superfluous in 17 /n.

For the converse, let L be semi-injective, and assume that S¥Z N (So f) = {0} for
f € Sk¥2. Then, by Theorem 3.19, So f = S,I:fZ, and thus, S¥~ N S,’jfz = {0}. Since
Sk>n S:fz = Sfkaf and L is coretractable, it follows that m V ky = 1r. Hence,
k; =1y, that is, f = 0. Therefore, SkZ is essential in S¥=.

(b) Since I C Sk c §*2  and I is essential in Ski . clearly Sk/%kf is

N ks N ks

fer fedJ geJ fer
also essential in Ski . Hence, by part (a), it follows that A k; is superfluous in
g fer
geJ

1o/ N kq.

geJ

(c) By part (a), S*Z s essential in S*T . Now, let K € £(S) such that
N ks N ko
fer ged

K C Jand INK = {0}. Since K C J C Skzk and [ = Sk/%kf is essential in
g

geJ fel
Skik , K = {0}. Therefore, I is essential in J.
g
geJ
(d) Let =,y € 1p/m, with 2,y < 1. As L is coretractable, both S¥= and
552 are non-trivial. Since S¥Z, 552 C SFZ and S*Z is uniform by hypothesis, we

obtain that
S¥Z, = SE=nsk= £ {0}

Therefore, x V y # 11, so that m is hollow in L.
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For the converse, note first that, by Theorem 3.11, L°P is semi-projective. Also,
since m is hollow in L, m is uniform in L°?. Thus, [8, Theorem 3.17(e)] provides that
Homyg,, (L°P, (11,/m)°P) is a uniform right ideal of Endy,,(L°). The result follows
from noting that (Homg,, (L, (1/m)°?))” = Sk and that Endy,,((L°?)°P) =
S.

(e) By (d), S’k/% " is a uniform left ideal of S. The fact that I C Ski ks yields

fer fel
the result.

(f) Note first that (¢) implies that m # 1;. Let m < k < 1p. Then, since
L is coretractable, Sp= # {0}. As Sk is simple and S;= C Sk, it follows that

S,’jz = Sk Now, as L co-generates 17, /m, there exists a family of linear morphisms

{fitier € SE=Z such that m = A ky,. It follows that
teT

m<k< Ak =m.
teT

Hence, k = m, and thus, the lattice 1, /m is simple.
Suppose now that (ii) holds. Then, by coretractability, S # {0}. Let f € Sk=
such that f # 0. By (i), ky = m. Since L is semi-injective, by Theorem 3.19

Skz = §p= =Sof.

Therefore, S¥Z is a simple left ideal.
(g) Necessity follows directly from (f).
For sufficiency, note first that, by (f), Sk/%k is simple. Now, since A ky # 1,
f

fer fel
it happens that {0} # I C Ski 5y 5O that I = S"K b 0
fer fer

Definition 3.24. Let L € Ly, and let S = End,,,(L). For I € L(S), we call a

function ¥ : I — S a left morphism if for any g € [ and f € S
U(fog)=fov(g)

(Note that, in this situation, ¢ (I) is necessarily a left ideal of S.)

In case I = S, we shall call ¥ a left endomorphism.

Remark 3.25. A left endomorphism 1 : S — S satisfies that

P(f) =¢(feoldy) = foip(ldy)

for any f € S. Hence, the left endomorphism v is completely determined by its
effect on Idy.

Note that, for a given L, the set of left endomorphisms from S to S is closed
under composition. A left endomorphism will be called a left monomorphism if,

with respect to this operation, it is cancellable on the left.
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Lemma 3.26. Let L € L, and S = Endg, (L). For any left monomorphism
p:5—9,
{f € Sle(f) = 0} = {0}.

Proof. Let g € S such that ¢(g) = 0. Set ¢, : S — S, such that ¢4(h) = hog.
Note that 1, is a left endomorphism. Then, for h € S,

(o) (h) = @(vg(h)) = ¢(hog) =hop(g) =hol=0.
Thus, p oy =0 = ¢ o0, so that 1), = 0 because ¢ is a left monomorphism. But

then,
0=1y(Idy) =1Idrog=g. O

Lemma 3.27. Let L € L, and let S = Endg,,(L). For f € S, if f is an
eptmorphism, then S =, Sisa left monomorphism. The converse is true for

coretractable L.

Proof. (=) Since L 4 L is a linear epimorphism, S =4 8 s injective. And, of
course, every injective left endomorphism is a left monomorphism.
(<) If f(11) < 1p, since L is coretractable, there exists 0 # g € Homg . (12/r(11), L).
Set as h the composite
L *ﬂh) 1o /r(1r) 5 L.
Since g # 0 and _ V f(1;) is an epimorphism, 0 # h € S. However, ho f = 0, so,

by Lemma 3.26, _ o f cannot be a left monomorphism. O

Remark 3.28. A left endomorphism v : S — S is surjective if and only if there
exists f € S such that ¢(f) = Idy. Indeed, if f € S is such that ¢(f) = Idy, then

Y(gof)=gop(f) =goldr =g
forany g € S.

Definition 3.29. Let L € L. We say that L is Hopfian if every linear epimor-

phism f: L — L is a monomorphism.

Definition 3.30. Let L € L4, and let S = Endg,,(L). We call the monoid S
Hopfian if there does not exist a bijective left morphism between S and a proper
left ideal of S.

Definition 3.31. Let L € L4, and let S = Endg,,(L). We say that f € S is left
regular if go f =0 with g € S implies that g = 0.

Lemma 3.32. For a lattice L € L, the monoid S = End.,,(L) is Hopfian if

every left reqular element in S is a unit.
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Proof. Let I € £(S) and let ¢p : I — S be a bijective left morphism. Let g € T
such that ¢(g) = Idy. We claim that g is left regular. Indeed, if h € S is such that
hog =0, then

0=14(0) =4(hog) =hoy(g) =hold,=h.

Thus, by hypothesis, g is a unit, so that there exists f € S such that Id;, = fog € I.
It follows that I = S. Therefore, S is Hopfian. O

Definition 3.33. For L € Ly and f € S = Endg,, (L), the left annihilator of f
is

Anng(f) ={g € S| go f =0}.
Remark 3.34. Anng(f) is a left ideal of the monoid S for any L € L.

Definition 3.35. Let L € L and let S = Endg,,(L). The left singular ideal of
S is
Zo(S) ={f € S| Anny(f) is essential in L(S)}.

Remark 3.36. Z;(S5) is a two-sided ideal of the monoid S. The proof mirrors that
in [8, Remark 3.32].

Lemma 3.37. Let L € L and let S = Endg,,(L). For f € S, if f is an

epimorphism, then f is left reqular. The converse holds if L is coretractable.

Proof. Note first that

Anny(f) ={g € S| go f=0} = Slf(zm-

Also, a morphism f € S is an epimorphism if and only if f(1;) = 1. Now, if f € §

is an epimorphism, then

Anny(f) = 875, = 517 = {0}

However, Anny(f) = {0} if and only if f is left regular.

For coretractable L, observe that if S;%L) = {0}, then f(1p) =1p. O

Definition 3.38. Let L € L4, and let C;, be the set of all coatoms in L. Then,

the Jacobson radical of L is

Jac(L) = N\ =

zeCr
For a lattice L € L, a left ideal I of S = Endg,,(L), and an initial interval
K of L, we denote by (I)(K) (or just IK, when there is no room for ambiguity)
the initial interval of L determined by \/ f(1k) (which, by [3, Lemma 0.6(1)], is
fel

a strongly invariant element of L). That is,
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(DE)=(V f(1k))/0L.

fel

Definition 3.39. Let L € Ly and S = Endg, (L). We say that L is quasi-
projective if for any linear epimorphism L —*+ N and any linear morphism L SN ,

there exists f’ € S such that the following diagram is commutative.

L
I lf
v

LT>N

In module-theoretic language, the above notion can be rendered as L is L-
projective, as L belongs to its own projectivity class, or as L belongs to its own

projectivity domain.

Theorem 3.40. Let L € L be coretractable, and let S = Endg,,(L). Then, the
following statements hold:
(a) L is Hopfian if and only if S is Hopfian.
(b) If L is quasi-projective, then each left reqular element in S has a right
inverse in S.
(¢) Ze(S) C{f € S| f(1L) is superfluous in L}, and further, (Z,(S))(L) C
Jac(L) fo,, .

Proof. (a) (=) Let f € S be left regular. By Lemma 3.37, f is an epimorphism.
Since L is Hopfian, f is also a monomorphism and, consequently, a unit. Therefore,
S is Hopfian by Lemma 3.32.

(<) Assume that L is not Hopfian. Then, there exists a linear epimorphism
f : L — L that is not a linear monomorphism. Then, Id; ¢ S;jfz, because
k¢ # 0r. Therefore, S:fz is a proper left ideal of S. Consider now the induced
isomorphism f :1;/k; — L. Set as 9 the composite

Sys = Home,, (11 /ky, L) = 8,

where « is the bijection provided by Lemma 3.18.
We claim that 9 : S,fffz — S is a bijective left morphism. Indeed, given g € S’,jfz
and h € S,

W(hog) = a(hog)of ' = (hog)li, sk,of ' =holgh,w,)of = =hoa(g)of ' = ho(g),

-1 ——1
so that 1 is a left morphism. Also, since f ~ is surjective, _of  is injective, and
——1
then so is ¢. For surjectivity, it suffices to verify that __ o f = is surjective. Let
— - =-1
then g € S, and note that go f € Homg (11 /kys, L) is such that (go f)o f = =g.

Therefore, the monoid S is not Hopfian.
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(b) Let f € S be left regular. By Lemma 3.37, f is an epimorphism. Thus, f
induces the lattice isomorphism f : 1/ ky — L. Now, the following diagram has

an exact row, so by quasi-projectivity, there is g € S that makes it commutative:

Let z € L. As f is a linear morphism,

(fog)(x) = flg(x)) = flg(x)V k) = f(f

Therefore, g is a right inverse of f in S.
(c) As noted in the proof of Lemma 3.37, Ann(f) = S’;(ZlL) for each f € S. In

particular, when f € Z,(S), S’;(ZlL) is essential in S. Thus, by Theorem 3.23(a),

-1

(2)) = a.

f(1p) is superfluous in L.
Now, for the second statement, let € L be a coatom and let f € Z,(.S). Then,
since f(1r) is superfluous in L, f(11) V@ = x, that is, f(11) < x. It follows that
fr) < A x=Jace(L),
z€eCp
and hence,
V' f(lp) < Jac(L). O
T€Z(5)
Definition 3.41. Let L € L4 and let S = End,,(L). We call the set
Soce(S) = U {I | I is a simple left ideal of S}
the left socle of S.

Lemma 3.42. Let L € Ly and S = Endg,,(L). Then, L is semi-injective if and
only if I = Sk'/%k for any cyclic left ideal I of S.
s

ferl

Proof. Let I = Sog for some g € S. For any h € §, it is clear that ky < Kjoq,

and hence,
kg < N bnog = \ ks < ky.
heS fer
Therefore, A ky = kg, hence the result follows from Theorem 3.19. O
fel

Proposition 3.43. Let L € L, be coretractable and semi-injective, and let S =
Endg,, (L). Then,
(a) Ze(S)={f € S|f(1L) is superfluous in L}.

(b) N ky=Jac(L).
f€Soce(S)
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k>
(¢) Soce(S) C SJ;C(L).
Proof. (a) By Theorem 3.40(c),
Zi(S) C{f € S|f(1y) is superfluous in L}.

For the reverse inclusion, let f € S be such that f(1) is superfluous in L. Since L is
semi-injective, by Theorem 3.23(a), Anny(f) = S];(—>1L) is essential in S. Therefore,
f € Zy(S), and so,

{f € S|f(1y) is superfluous in L} C Z,(S).

(b) On the one hand, given a coatom a € L, S¥2 # {0} because L is core-
tractable. Further, since 1z /a is a simple lattice, for any nonzero f € S¥Z it must
happen that k; = a. Also, as L is semi-injective, by Theorem 3.23(f), S¥= is a
simple left ideal. Thus,

N kr< A kr=a,
f€Soce(S) fGSsz

so that

Nk < Jac(L).
feSoce(S)

On the other hand, since L is semi-injective, any simple left ideal I of S can be
written as I = S*Z | by Lemma 3.42. Hence, by Theorem 3.23(g), 1o/ N ks is a

/\kf’ fer

fer
simple lattice, that is, A ks is a coatom of L. Therefore,
ferl

Jac(L) < A\ ky.
f€Soc(S)
(c) Let I be a simple left ideal of S. Since L is semi-injective, by Lemma 3.42,
I =52 . Further, by Theorem 3.23(g), 1=/ A k; is a simple lattice, that is, A ky

f/e\zkf fer fer

is a coatom of L. Thus, for any f € I,
Jac(L) < A kg < ky,
fer

k>
Jac

so that f € S (L) Consequently, Socy(S) C = O

Jac(L)*

Definition 3.44. Let L € Ly and S = Endg,,(L). We say that L is weakly
Hopfian if for each linear epimorphism f € S, one has that k; is a superfluous
element in L.

Regarding the monoid S, we say that it is left weakly co-Hopfian if for each left
monomorphism ¢ : § — S, one has that ¢(S) is an essential left ideal of S.
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Example 3.45. Let P(N) denote the power set of the set N of natural numbers.
As any power set, P(N) is partially ordered by inclusion, and furthermore, P(N)
is a complete modular lattice whose join and meet operations are the union and
intersection of sets, respectively. Clearly, 0py) = ) and Ipayy = N.
Write 2N for the set of even natural numbers, and 2N + 1 for the set of odd
natural numbers. The mapping h : P(N) — 2N/p such that
X—2X={2z|ze X}

is a lattice isomorphism. Also, by modularity, we have an isomorphism
k
NfaN+1=2NUEN+ 1D oy 41 2NN 2N +1) = 2N/,

In this way, we obtain a lattice isomorphism f’ = h~! ok : Nan+1 — P(N).

Let us now define the mapping f : P(N) — P(N) by f(X) = f(X U (2N +1)).
Note that f is a linear epimorphism in S = End,,,(P(N)). Thus, by Lemma 3.27,
the mapping _o f : S — S is a left monomorphism. However, note that S o f C
S§§+1, and that S§NZ+1 is not an essential left ideal of S because S§§+1 N S§§ =
{0}. (The fact that S§§ # {0} can be verified analogously to our construction of
0# f € S§§+1.) Therefore, S o f is not an essential left ideal of S, so that S is not
left weakly co-Hopfian.

Let L € Ly and S = End,(L). For a left endomorphism ¢ : S — S, let us
call the set
{g€51¢(g) =0}
the kernel of ¢. (It is a left ideal of S.)

Lemma 3.46. Let L € Lo and S = Endg,, (L), and let ¢ : S — S be a left
endomorphism. If ¢ is a left monomorphism, then the kernel of ¢ is trivial. The

converse holds for coretractable L.

Proof. The necessity is Lemma 3.26.
For the sufficiency, note first that, by Remark 3.25, ¢ = _o f where f = ¢(Idy).
We may then suppose that f is left regular. Since L is coretractable, by Lemma

3.37, f is an epimorphism, hence, by Lemma 3.27, ¢ is a left monomorphism. [

Definition 3.47. We say that a lattice L € L4 is weakly co-compressible if for all
a € L with a # 1z, there exists a linear morphism f € S*2 such that f2 # 0.

Definition 3.48. A lattice L € L is cyclic if it has a superfluous coatom.

Definition 3.49. We say that a lattice L € L is finitely generated if for any

subset {4 }aca C L such that \/ x, = 1, there exists a finite subset F' C A with
acA
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V LTg = 1L-
a€F

Similarly, we say that the monoid S = End.,, (L) is finitely cogenerated if for
any family of left ideals {I,}qeca of S such that () I, = {0}, there exists a finite

acA
subset F' of A with
N 1. = {0}.
acF
We say that S is semiprime if for every left ideal I and 0 # n € N,
I'#{0} = I" # {0},

where I = {f10...0f, | fi € I for each 1 <4 <n}.

Definition 3.50. We say that the monoid S = End,,,(L) is cocyclic if there exists

a non-trivial endomorphism f € S that lies in every nonzero left ideal of S.

Theorem 3.51. Let L € L be coretractable and semi-injective, and let S =
Endr, (L). Then, the following statements are true:

(a) L is weakly Hopfian if and only if S is left weakly co-Hopfian.

(b) Homg,(L,a/01) = {0} for every superfluous element a € L if and only if
Zy(S) = {0}.

(¢) If L is weakly co-compressible, then S is semiprime.

(d) L is cyclic if and only if S is cocyclic.

(e) If S is finitely cogenerated, then L is finitely generated.

Proof. (a) (=) Let ¢ : § — S be a left monomorphism. Note that, by Remark

3.25, ¢ = _o f where f = p(Idy). As L is coretractable, by Lemma 3.27, f is a

linear epimorphism. Now, as L is weakly Hopfian, the element k¢ is superfluous

in L, and thus also in 12/ A k, (seeing as A kg < kf). Set I = ¢(S) = So f.
geS

ges
By Lemma 3.42 (and its proof), I = Ski s and h/e\Ikh = ky, so Theorem 3.23(c)
(making J = S) provides that I = ¢(5) ;: Iessential in S. Therefore, S is left weakly
co-Hopfian.

(<) Let f € S be a linear epimorphism. By Lemma 3.27, _o f is a left
monomorphism. Since S is weakly co-Hopfian (and bearing in mind Theorem 3.19),
Sof= S:fz is essential in S. Therefore, by Theorem 3.23(a), ks is superfluous in
L.

(b) Note first that, since L is coretractable and semi-injective,
Zy(S) ={f € S|f(1L) is superfluous in L}

due to Proposition 3.43(a).
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(=) Let f € S be such that f(1;) is superfluous in L. Then, the corestriction
of f to its image lies in Homg, (L, f(11)/0L) = {0}. Therefore, f = 0, and
consequently, Z,(S) = {0}.

(<) Let a € L be superfluous in L, and let f € Homg,,(L,a/05). If ¢ denotes
the appropriate inclusion mapping, then the composite ¢ o f € S. Furthermore,
(to f)(1r) < a, so that (io f)(11) is a superfluous element in L. Thus, io f €
Zy(S) = {0} which implies that f = 0. Therefore, Hom,,,(L,a/0r) = {0}.

(c) Let us assume that L is weakly co-compressible and that S is not semiprime.
Then, there exists a non-trivial left ideal I of S such that I* = {0} for some k > 2.
Take the least such k, so that I*=! # {0}. Now, given 0 # f € I*~! and in view
of Theorem 3.19, S;ljfz = So f C I*~1. Furthermore, since k; # 17, and L is weakly
co-compressible, there exists h € S,]ffz such that h? # 0. However, h? € 1?2 = {0}
because 2k — 2 > k for k > 2. Therefore, S is semiprime.

(d) (=) Let a € L be a superfluous coatom. Since L is semi-injective, Theorem
3.23, parts (a) and (f), gives that S¥Z is a simple and essential left ideal of S. It
follows that any nonzero element of S¥~ lies in every nonzero left ideal of S.

(<) Assume that 0 # g € S belongs to every non-trivial left ideal of S. For each
x € L with © # 11, L being coretractable implies that Homg,,(15/z,L) # {0}.
Further, by Lemma 3.18, S%= =£ {0}, and so, g € Sk=. It follows that = < k, for
all 1; > 2 € L. Moreover, as g # 0, kg # 11, so that k, is a superfluous coatom.

(e) Let {zq}aca € L be such that \/ x, = 1. Then,

acA
0y =54, = N sk
aeAxa acA

Hence, as S is finitely cogenerated, there exists a finite subset F' C A such that

N sez =Sy, =10k
ac

a€EF
By Lemma 3.18 and the fact that L is coretractable, \/ z, = 1. Therefore, L is

acF
finitely generated. U

Definition 3.52. A lattice L € L is co-Hopfian if every linear monomorphism

L L> L is a linear epimorphism.
Proposition 3.53. If L € L is semi-injective and Hopfian, then L is co-Hopfian.

Proof. Let f : L — L be a linear monomorphism. Since L is semi-injective, there

exists a linear morphism ¢ : L — L that makes the diagram
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b

commutative, that is, go f = Idy. Hence, as a function, g has a right inverse, so it
is surjective. Then, g is a linear epimorphism. Since L is Hopfian, g is also a linear

monomorphism, and hence an isomorphism. Consequently,

1, =97"(12) =g ' ((go (A1) = f(1L).

Thus, f is an epimorphism, and so L is co-Hopfian. O

Definition 3.54. We say that a lattice L € L is directly finite if it is not iso-
morphic to any initial interval a/0r, where ¢ < 1p and a has a complement in
L.

Proposition 3.55. If L € L is co-Hopfian, then L is directly finite.

Proof. If L is not directly finite, then, in particular, there exists an isomorphism
a: L — a/0y, for some proper a € L. Now, if a/0;, — L denotes the inclusion
mapping, then the composite t o« : L — L is a monomorphism that is not an

epimorphism. Thus, L is not co-Hopfian. ([

Proposition 3.56. Let L € L be semi-injective, and let a € L be essential and
strongly invariant in L. Then, L is co-Hopfian if and only if a/0y is co-Hopfian.

Proof. By Theorem 3.15, a is strongly invariant in L°P. Further, the fact that a
is essential in L implies that a is superfluous in L°P. Moreover, since L is semi-
injective, Theorem 3.11 gives that L°P is semi-projective. Hence, by [8, Proposition
3.58], L°P is Hopfian if and only if (a/0.)°" is Hopfian. It follows that L is co-
Hopfian if and only if L°P is Hopfian, which holds if and only if (a/0r)° is Hopfian,
which is equivalent to a/0r being co-Hopfian. (I

We say that a lattice L € Laq is atomic if for every a € L with a # 0p, the

initial interval a/0r, has at least one atom.

Definition 3.57. Let L € L4, and let A, be the set of all atoms of L. Then, the

socle of L is

Soc(L) = (\VAL)/0f.

Corollary 3.58. Let L € L g be semi-injective and atomic. Then, L is co-Hopfian
if and only if Soc(L) is co-Hopfian.
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Proof. According to [2, Proposition 2.2], \/ Ay, is strongly invariant in L. Also,
it is readily verified (and noted, for example, in [6, p. 120]) that, as L is atomic,
\/ Ap is the smallest essential element in L. The result follows from Proposition
3.56. 0

Definition 3.59. For a lattice L € L, we introduce the following conditions:

C1: For each a € L with 0; < a, there exists a complement ¢ € L such that
¢ > a and a is essential in ¢/0y,.

C2: If a € L is such that a/0; = ¢/0y, and ¢ a complement in L, then a is a
complement.

C3: Given two complements k and ¢ in L, with kA ¢ = 0, the element k V c is
a complement.

D1: For each a € L, there exists a complement ¢ € L such that ¢ < a and a is
superfluous in 1y, /c.

D2: If a € L is such that 1;/a = ¢/0p, with ¢ a complement in L, then, a is a
complement.

D3: Given two complements k and ¢ in L with kV ¢ = 1p, the element k A ¢ is

a complement.

Definition 3.60. Let L € L. We say that L is extending if it satisfies condition
C1. Moreover, we say that L is continuous if it is extending and satisfies condition

C2, and that it is quasi-continuous if it is extending and satisfies condition C3.
Lemma 3.61. Any semi-injective lattice L € Laq is a C2 lattice.

Proof. Let L € L be semi-injective, and let a,c € L such that a/0; = ¢/0p,
with ¢ a complement in L. Note that, by Theorem 3.11, L°P is semi-projective, so
it satisfies condition D2 by [8, Lemma 3.63]. Now, as a/0r, = ¢/0r, in L, (a/0)%P =
(¢/0)°P in L°P. Furthermore, if d denotes the complement of ¢ in L, by modularity,
(¢/0L) = (1/d) in L, so that (¢/0r)°P = (1/d)°P in L°P. Therefore, (a/0L)%P =
(15/d)°P in L°P. As L°P is a D2 lattice, a is a complement in L°P, and consequently,

a complement in L. O
Proposition 3.62. Let L € Lyg. If L is a C2 lattice, then L is a C3 lattice.
Proof. See [4, Proposition 1.10(5)]. |

Theorem 3.63. Let L € L be semi-injective. Then, the following statements
are equivalent:
(1) L is extending.

(2) L is continuous.
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(3) L is quasi-continuous.

Proof. (1) = (2) By Lemma 3.61, seeing as L is semi-injective.
(2) = (3) By Proposition 3.62.
(3) = (1) By definition. O

o~ o~

Definition 3.64. We say that a lattice L € L is indecomposable if the only

complements in L are Oy and 1j.

Proposition 3.65. Let L € L be indecomposable and semi-injective. Then, L is

continuous if and only if L is uniform.

Proof. (=) Since L is continuous, it is extending. Then, for any nonzero x € L,
there exists a complement ¢ > x such that x is essential in ¢/0p. Since L is
indecomposable, necessarily ¢ = 1. Thus, = is essential in L. Therefore, L is
uniform.

(<) Let x € L with « # 0. Since L is uniform, we have that z is essential in
L=1./0y. As 1y, is always a complement in L, L satisfies condition C1, that is,

L is extending. Lemma 3.61 ends the proof. (]

Definition 3.66. We say that a lattice L € L is pseudo semi-injective if for any
two linear morphisms f,g € Endg,, (L) with ky = kg, there exists h € End,, (L)
such that ho f = g.

Remark 3.67. Any semi-injective lattice is pseudo semi-injective.

Next, we show a lattice that is not pseudo semi-injective, and a lattice that is

pseudo semi-injective but not semi-injective.

Example 3.68. Consider the lattice L = {1}, cy (0} U{0} with the order induced
by R.
Set g : L — L such that g(0) =0, g(1) = §, g(3) = 3, and g(+) = A5 for all
n > 3. Clearly, g is a linear monomorphism. Then, for the diagram
L= L
lIdL

L
there is no h € Endg,,(L) such that h o g = Id;. Indeed, if such endomorphism
existed, it would happen that

1=1d(1) = h(9(1)) = h(3) < h(1) <1,

a contradiction. Therefore, L is not a pseudo semi-injective lattice.

Example 3.69. Let us denote by L the following lattice:
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5
|
4
|
3

2a/ \Qb
%
|

0

We first claim that L is not semi-injective. Indeed, by [8, Example 3.72], L°P is
not semi-projective. Hence, by Theorem 3.11 L, is not semi-injective.

Let us now show that L is pseudo semi-injective. Observe that only the quotient
intervals 5/5, 5/4, 5/3, and 5/0 are isomorphic to an initial interval of L. Thus,
the kernel of any linear endomorphism of L lies in the set {5,4,3,0}. Let f,g €
Endg,,(L) such that kf = ky. If ky = k; = 5, then f = g and the map h = Idy,
satisfies h o f = g. Similarly, one shows that f = g when ky = k; = 4. Suppose
now that ky = k; = 3. Then,

f(5)/0=5/ks =5/kg = g(5)/0.
Here, we find two possible cases: f(5) = ¢g(5) or f(5) # g(5). If f(5) = ¢(5), then
f(5) = g(5) € {2a,2b}, f(4) =1=g(4) and f(x) =0 = g(x) for all z < 3, so that
f=g. I f(5) # g(5), there are two following subcases: f(5) = 2a and g(5) = 20,
or f(5) = 2b and ¢(5) = 2a. Set h : L — L by h(2a) = 2b, h(2b) = 2a, and
h(z) = x for 2a # x # 2b. Clearly, h is a linear morphism such that ho f = g.

Lastly, if kf = kg = 0, then f and g are linear monomorphisms, and thus, L
being finite, lattice isomorphisms. Hence, h = g o f~! satisfies ho f = g.

Therefore, L is pseudo semi-injective.

Lemma 3.70. A lattice L € L is pseudo semi-injective if and only if for any
f.9 € Endg,, (L) with ky = kg, one has that Endg,, (L) o f = Endg,,(L)og.

Proof. (=) Let f,g € Endg,,(L) such that ky = k,. Since L is pseudo semi-
injective, there exists h € End,,(L) such that ho f = g. Then,

Endg,,(L)og C Endg,,(L)o f.
Similarly, ' o g = f for some h' € End,,, (L), and so,

Endz, (L)o f C Endg,,(L)og.
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Therefore, equality holds.
(<) Let f,g € End,,, (L) such that ky = k,. By hypothesis, we have that

Endg,,(L)o f =Endg,,(L)og.

Thus, there exists h € Endg,,(L) such that ho f = Idog = ¢g. Hence, L is pseudo

semi-injective. (I

Remark 3.71. For a pseudo semi-injective lattice L € L, if f,g € Endg,, (L)
are such that ky = k; = 0, and f(11) is essential in L, then the linear morphism
h € Endg,,(L) that makes the diagram

L,

J/g ///
K h

L

commutative is a monomorphism. Indeed, by the proof of [1, Lemma 2.1],
—1
Op =kg=knog = f (f(1L) Akn).
Then, f(15) A kp =0y, so that, f(11) being essential in L, k, = 0r,. Hence, h is a

monomorphism.

Proposition 3.72. If L € L is pseudo semi-injective and uniform, then L is
co-Hopfian.

Proof. Note that the zero lattice is co-Hopfian. Assume then that L is non-trivial.
Let f € Endz,, (L) be a linear monomorphism, and let us consider the following

commutative diagram.

Il
fh
~

: ~
K &
B
N
N
N

Since L is uniform, the element f(1) is essential in L, so, by Remark 3.71, h is a

linear monomorphism. Then, as

1y =1Id(1) = h(f(11)),

it follows that f(1) = 1. Thus, f is a linear epimorphism. Therefore, L is
co-Hopfian. ([l

Corollary 3.73. If L € L is pseudo semi-injective and uniform, then L is directly
finite.
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