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Abstract. In a previous paper, we explored, in the context of the category
LM of complete modular lattices and linear morphisms introduced by T. Albu
and M. Iosif, the lattice-theoretic counterparts of semi-projective retractable
modules and their ring of endomorphisms. In this work, we investigate the dual
situation. That is, we introduce the concept of semi-injective coretractable lat-
tices, and we study their relation to their monoid of endomorphisms.
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1. Introduction

In [1], T. Albu and M. Iosif introduced the category LM of bounded modular
lattices and linear morphisms.

The class of bounded modular lattices becomes a category when equipped with
the usual lattice homomorphisms. However, these homomorphisms fail to express
important module-theoretic properties. In contrast, linear lattice morphisms, or
linear morphisms for short, which will be defined in the next section, summon the
notions of kernel and image of module homomorphisms, so the First Isomorphism
Theorem for modules holds for bounded modular lattices. This property motivated
us to explore lattice-theoretic counterparts of module-theoretic results, restricting
ourselves to complete modular lattices (see [7], [8], [12], [13], and [14]).

To be precise, in [8], we defined a semi-projective lattice as a lattice L ∈ LM

such that for any initial interval a/0L of L and any diagram
L

L a/0L 0

g

f

with exact row1, there exists a linear morphism h : L −→ L that makes

1Exactness of a sequence of linear morphisms is defined in [8]. This notion parallels the corre-
sponding one for modules.
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L

L a/0L

h g

f

a commutative diagram; that is, f ◦ h = g. (The concept of semi-projectivity for
lattices is inspired by the works of Haghany and Vedadi [10] and of M. K. Patel [15].)
Building on this definition, we found some properties of retractable2 semi-projective
lattices and their relation to their monoid of endomorphisms.

In Section 3 of this paper, we introduce the dual notion of semi-injective lat-
tices. Shortly thereafter, we prove that the concepts of semi-projectivity and semi-
injectivity are indeed dual to each other, in the formal sense that a lattice L ∈ LM

is semi-projective if and only if its opposite lattice is semi-injective. This result
establishes a bridge that allows us to prove the dual propositions of several results
in [8].

2. Preliminaries

This section presents fundamental concepts and definitions related to bounded
lattices and to the category LM of linear modular lattices and linear morphisms.

For a bounded lattice L, we write 0L (resp., 1L) for the least (resp., greatest)
element of L. Also, given elements a, b ∈ L with a ≤ b, we define the interval

b/a = {x ∈ L|a ≤ x ≤ b}.

Special cases are the initial interval a/0L, where a ∈ L, and the quotient interval
1L/b, where b ∈ L.

We write Lop to denote the opposite lattice of L. Let us write ∧op and ∨op for the
meet and join operations in Lop, respectively. Of course, 0Lop = 1L and 1Lop = 0L.
When there is no room for ambiguity, we use (b/a)op to denote the interval a/b of
Lop. Note that the opposite of an initial interval of L is a quotient interval of Lop,
and vice versa.

Denote as L the collection of all bounded modular lattices.

Definition 2.1. [1, Definition 1.1] Let L,L′ ∈ L. The mapping f : L −→ L′ is
called a linear morphism if there exists kf ∈ L, referred to as the kernel of f , and
a′ ∈ L′ such that the following two conditions hold:

1) f(x) = f(x ∨ kf ) for all x ∈ L.
2) The function f induces a lattice isomorphism f : 1L/kf −→ a′/0L′ such

that f(x) = f(x) for all x ∈ 1/kf .

2Also defined in [8].
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For basic properties of linear morphisms, we refer the reader to [1, Section 1].
In [1, Proposition 2.2(1)], the authors introduce the category LM of linear mod-

ular lattices, whose objects are bounded modular lattices and whose morphisms are
linear morphisms.

As proved in [1, Proposition 2.2(2)-(4)], in this category monomorphisms are pre-
cisely injective linear morphisms (which are precisely linear morphisms with kernel
zero), epimorphisms are precisely surjective linear morphisms, and isomorphisms
are precisely lattice isomorphisms.

Throughout this work, the class of objects of LM will be the subclass of L
consisting of all complete modular lattices. Thus, also [3, Lemma 0.6] is relevant.

We observe that the category LM is not abelian, as it fails to be preadditive,
among other conditions (see [9, Theorem 6.5.5(c)] for a proof). However, as il-
lustrated in [8], it possesses a rich structure that brings it closer to this property.
For instance, it has a zero object, which is the zero lattice (that is, the lattice
with a single element, denoted as 0), and a unique zero morphism in each hom-
set (namely, the morphism that factors through the zero object). Further, every
morphism L

f−→ L′ has a kernel3 given by the inclusion mapping kf/0L
i
↪→ L, a

cokernel3, given by the canonical linear morphism L′
∨f(1L)

−−−−−−−−−→ 1L′/f(1L), and an
image3, given by the inclusion mapping f(1L)/0L′

i
↪→ L′ (for more details on these

categorical constructions, see [8, Section 2]). Moreover, LM is an exact category in
the following sense:

Definition 2.2. [11, Chapter I, Section 15] A category is exact if it satisfies the
following three conditions:

(1) Each morphism has a kernel and a cokernel.
(2) Every monomorphism is the kernel of some morphism, and every epimor-

phism is a cokernel.
(3) Any morphism f can be expressed as f = m◦e, wherem is a monomorphism

and e is an epimorphism.

Categories as the above have also been called p-exact categories after Puppe (see
[5]).

Theorem 2.3. LM is an exact category.

Proof. Let L f−→ L′ be a linear morphism. Then, by [8, Theorem 2.3] and [8,
Theorem 2.5], f has a kernel and a cokernel, respectively. Further, by [8, Remark

3In the categorical sense.
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2.9], f can be decomposed as f = mf ◦ef , where mf is an injective linear morphism
and ef is a surjective linear morphism.

Lastly, let us assume that f : L −→ M is a monomorphism. Then, f is the

kernel of the linear morphism M
f(1L)∨(−)−→ 1M/f(1L). Likewise, if M g−→ L is an

epimorphism, then g is the cokernel of the inclusion mapping kg/0M
ι
↪→ M . □

Given a lattice L ∈ LM, the set

S =
{
L

f−→ L | f is a linear morphism
}

= EndLM(L)

becomes a monoid whose binary operation is composition. The identity element
for this operation is IdL. Note that this is a monoid with zero: the zero morphism
0L,L.

Definition 2.4. Let L ∈ LM and let S = EndLM(L). We say that H ⊆ S is a
right ideal of S if H is non-empty and closed under right composition with elements
of S; that is, for h ∈ H and f ∈ S, we have that h◦f ∈ H. Accordingly, we say that
H ⊆ S is a left ideal of S if H is non-empty and is closed under left composition,
that is, f ◦ h ∈ H for any h ∈ H and f ∈ S.

Clearly, H is a right ideal of S if and only if 0L,L ∈ H and H is closed under
right composition with elements of S. Further, the set R(S) of right ideals in S is
partially ordered by inclusion. Hence,

(
R(S),⊆) is a lattice whose meet and join

operations are intersection and union of sets, respectively. Moreover, R(S) ∈ LM

as every distributive lattice is modular. Symmetrical statements hold for the set
L(S) of left ideals of S.

Recall that an element a of a lattice L with zero is said to be essential (in L) if
for every 0L ̸= b ∈ L, it happens that a ∧ b ̸= 0L.

Definition 2.5. Let I and J be two right (left) ideals of S = EndLM(L), with
I ⊆ J . We say that I is essential in J if I is an essential element of the initial
interval J/{0} of R(S) (L(S)).

Definition 2.6. Let L be a bounded lattice. We say that a ∈ L is uniform (in L)
if every nonzero b ∈ L such that b ≤ a is essential in a/0L. Furthermore, we say
that the lattice L is uniform if the element 1L is uniform in L.

Thus, for L ∈ LM, a right (left) ideal J of S = EndLM(L) is uniform if every
right (left) ideal I contained in J is essential in J .

We close this section with two lemmas required for subsequent proofs.
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Lemma 2.7. [8, Lemma 2.4] If L,L′ ∈ LM and f, g : L −→ L′ are linear mor-
phisms with respective kernels kf , kg, such that kf = kg and that the induced lattice
isomorphisms f and g coincide, then f = g.

Lemma 2.8. Given the linear morphisms L h−→ M and M f−→ N , if x ∈ (f◦h)(L),
then

(f ◦ h)
−1

(x) = h
−1(

h(1L) ∧ f
−1(x)

)
.

Proof. By the proof of [1, Lemma 2.1],

kf◦h = h
−1(h(1L) ∧ kf ) ≤ h

−1(h(1L) ∧ f
−1(x)),

for all x ∈ f(1M )/0N .
Now, as x ∈ (f ◦ h)(L) = f

(
h(1L)/0M

)
,

f
−1(x) ≤ f

−1(
(f ◦ h)(1L)

)
= h(1L) ∨ kf .

Thus, by modularity,

(f ◦ h)
(
h

−1(
h(1L) ∧ f

−1(x)
))

= f
(
h(1L) ∧ f

−1(x)
)

= f
((
h(1L) ∧ f

−1(x)
)

∨ kf

)
= f

((
h(1L) ∨ kf

)
∧ f

−1(x)
)

= f
(
f

−1(x)
)

= x.

Since the restriction of the linear morphism f ◦ h to 1L/kf◦h is injective,

(f ◦ h)
−1

(x) = h
−1(

h(1L) ∧ f
−1(x)

)
. □

3. Semi-injective lattices

We start this section by translating the definition of some well-known module
properties into lattice-theoretic language.

Definition 3.1. Let L ∈ LM. An initial interval a/0L of L is L-cyclic if it is
isomorphic to a quotient interval of L. Symmetrically, a quotient interval 1L/b of
L ∈ LM is L-cocyclic if it is isomorphic to an initial interval of L.

Remark 3.2. For a lattice L ∈ LM, the set of isomorphism classes of L-cyclic
initial intervals is in a one-to-one correspondence with the set of isomorphism classes
of L-cocyclic quotient intervals.

Definition 3.3. A lattice L ∈ LM is coretractable if for any non-trivial quotient
interval 1L/b of L, one has that

HomLM(1L/b, L) ̸= 0.

In other words, L is coretractable if every non-trivial quotient interval of L has
a non-trivial L-cocyclic quotient interval. The following two examples display a
coretractable and a non-coretractable lattice, respectively.
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Example 3.4. Every complemented lattice L ∈ LM is coretractable. Indeed, let
1L/b be a non-trivial quotient interval of the complemented lattice L. If a ∈ L is a
complement of b, then the mapping

1L/b = a ∨ b/b
∧a

−−−−−−→ a/a ∧ b = a/0L

is a lattice isomorphism, by modularity. Hence, the composite ι ◦ (
∧
a) is a non-

trivial linear morphism in HomLM(1L/b, L).

Example 3.5. Let us consider the lattice L = { 1
n }n∈N\{0}∪{0}, with order induced

by the rational numbers. We claim that L is not coretractable. Indeed, L does
not have finite non-trivial initial intervals. Thus, the simple quotient interval 1/ 1

2
cannot be isomorphic to any initial interval.

Definition 3.6. A lattice L ∈ LM is semi-injective if for any quotient interval
1L/b of L, and any diagram

0 1L/b L

L

g

k

with exact row, there exists a linear morphism h : L −→ L that makes

1L/b L

L

k

g
h

a commutative diagram; that is, h ◦ k = g.

The following two examples are of both semi-injective and coretractable lattices.

Example 3.7. The simple lattice {0, 1} is semi-injective and coretractable, because
it is a complemented lattice whose only non-trivial initial interval is the lattice
{0, 1}.

Recall that the length of a chain C is |C| − 1, and that the length of a lattice L
is the greatest length of a chain in L.

Example 3.8. Every lattice L ∈ LM of length 2 is semi-injective and coretractable.
Indeed, any such lattice has the form

•

• • . . .

•
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Clearly, if L has only three elements, then it is coretractable, and if L has
more than three elements, then it is complemented. Thus, these lattices are all
coretractable.

Let now 1L/a be a quotient interval of a lattice L ∈ LM of length 2, and consider
the diagram

0 1L/a L

L

f

g

with exact row. Note that if g = 0, then 0L,L makes the diagram

1L/a L

L

f

g
0L,L

commutative.
We now assume that g ̸= 0. In particular, a < 1L. If a = 0L, exactness of the

top row implies that f is a lattice isomorphism, so that g◦f−1 is a linear morphism
that makes the diagram

0 1L/a L

L

f

g
g◦f−1

commutative. Suppose now that a ∈ L is a coatom, so the quotient interval 1L/a is a
simple lattice. In this case, any non-trivial linear morphism 1L/a

α−→ L is uniquely
determined by the image α(1L). With this in mind, set the mapping h : L −→ L

such that h(f(1L)) = g(1L), h(g(1L)) = f(1L), and h(x) = x for all x ∈ L with
x /∈ {f(1L), g(1L)}. Note that h is a lattice isomorphism and consequently a linear
morphism. Furthermore, the composite h ◦ f is a non-trivial linear morphism and
(h ◦ f)(1L) = g(1L), so that

0 1L/a L

L

f

g
h

is a commutative diagram. Therefore, L is a semi-injective lattice.

Remark 3.9. Given f ∈ EndLM(L), the induced lattice isomorphism 1L/kf
f−→

f(1L)/0L gives rise to a lattice isomorphism φ : (f(1L)/0L)op −→ (1L/kf )op such
that φ(x) = f

−1(x). Note that kφ = f(1L). Further, since φ is an isomorphism
from a quotient interval to an initial interval, it induces the linear endomorphism
fop ∈ EndLM(Lop) such that
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fop(x) = φ
(
x ∨op f(1L)

)
= f

−1(
x ∧ f(1L)

)
,

so that φ = fop.
Henceforward, we will refer to fop as the opposite linear morphism of f . Note

that kfop = f(1L), that fop(1Lop) = kf , and that (fop)op = f .
Clearly, for any linear morphism L

f→ H, the above construction yields the
opposite linear morphism Hop fop

→ Lop.

Lemma 3.10. Let f, h ∈ EndLM(L). Then, (h ◦ f)op = fop ◦ hop.

Proof. By the proof of [1, Lemma 2.1], for the linear morphism g = h ◦ f , we have
that

kfop◦hop = hop
−1(kfop ∧op h

op(1Lop)) = hop
−1(f(1L) ∧op kh) = h(f(1L) ∨ kh) =

h(f(1L)) = g(1L) = kgop .

Furthermore, by Lemma 2.8, for x ∈
(

g(1L)/0L

)op one has that

gop(x) = g−1(x) = h ◦ f−1(x) = f
−1(

h
−1(x) ∧ f(1L)

)
= fop

(
h

−1(x) ∨op f(1L)
)

= fop
(
h

−1(x)
)

= fop
(
hop(x)

)
= (fop ◦ hop)(x).

Therefore, by Lemma 2.7, gop = fop ◦ hop, that is, (h ◦ f)op = fop ◦ hop. □

Note that the above lemma holds for any L,L′, L′′ ∈ LM and any linear mor-
phisms L f→ L′ h→ L′′.

The next result shows that the duality between semi-injective and semi-projective
lattices comes from the dualities between lattices and opposite lattices, and mor-
phisms and opposite morphisms.

Observe that if a linear morphism f is injective, then fop is surjective, and vice
versa.

Theorem 3.11. A lattice L ∈ LM is semi-projective if and only if Lop is semi-
injective.

Proof. (⇒) Let 1Lop/b = (b/0L)op be a quotient interval of Lop. Consider the
diagram

0 (b/0L)op Lop

Lop

g

f

with exact row. Then, for the opposite linear morphisms fop and gop, we get the
solid part of the diagram
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L

L b/0L 0

h gop

fop

again with exact row. Since L is semi-projective, there exists h such that fop ◦ h =
gop. By Lemma 3.10,

hop ◦ f = (fop ◦ h)op = (gop)op = g.

Therefore, Lop is semi-injective.
(⇐) Consider the diagram

L

L a/0L 0

g

f

with exact row. Taking the opposite linear morphisms, we obtain the solid part of
the diagram

0 (a/0L)op Lop

Lop

gop

fop

h

with exact row. This time, h exists because Lop is semi-injective, and it satisfies
that (h ◦ fop) = gop. Thus, by Lemma 3.10,

f ◦ hop = (h ◦ fop)op = (gop)op = g.

Therefore, L is semi-projective. □

Furthermore, the duality between left ideals in EndLM(L) and right ideals in
EndLM(Lop) follows from the composition of linear morphisms in the monoid of
endomorphisms, as we show in the next result.

Lemma 3.12. A subset I ⊆ EndLM(L) is a left ideal if and only if Iop = {fop|f ∈
I} is a right ideal of EndLM(Lop).

Proof. (⇒) Let fop ∈ Iop and g ∈ EndLM(Lop). By Lemma 3.10, (fop ◦ g)op =
gop ◦ f ∈ I, and thus,

fop ◦ g = ((fop ◦ g)op)op ∈ Iop.

Therefore, Iop is a right ideal of EndLM(Lop).
(⇐) Let f ∈ I and g ∈ EndLM(L). By Lemma 3.10, (g ◦ f)op = fop ◦ gop ∈ Iop,

so that
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g ◦ f = ((g ◦ f)op)op ∈ I.

Hence, I is a left ideal of EndLM(L). □

Corollary 3.13. Let L ∈ LM. The lattice of left ideals of EndLM(L) is isomorphic
to the lattice of right ideals of EndLM(Lop).

Clearly, symmetrical versions of the last two results hold.

Definition 3.14. For a lattice L ∈ LM and an element a ∈ L, we call the element
a strongly invariant (in L) if f(a) ≤ a for any linear endomorphism f ∈ EndLM(L).

Theorem 3.15. Let L ∈ LM. If a ∈ L is strongly invariant, then a is strongly
invariant in Lop.

Proof. Let L f−→ L be a linear morphism, so that Lop fop

−→ Lop. By hypothesis,
f(a) ≤ a in L. Thus, in Lop,

fop(a) ≤op f
op(f(a)) = f

−1(f(a)) = a ∨ kf ≤op a.

Therefore, a is strongly invariant in Lop. □

Proposition 3.16. Let L ∈ LM. Then, L is semi-injective if and only if

EndLM(L) ◦ g ⊆ EndLM(L) ◦ f

for any f, g ∈ EndLM(L) such that kg ≥ kf .

Proof. By Theorem 3.11, L is semi-injective if and only if Lop is semi-projective.
Also, according to [8, Proposition 3.6], a lattice L ∈ LM is semi-projective if and
only if

g ◦ EndLM(L) ⊆ f ◦ EndLM(L)

for any f, g ∈ EndLM(L) such that g(1L) ≤ f(1L).
Thus, a lattice L ∈ LM is semi-injective if and only if

gop ◦ EndLM(Lop) ⊆ fop ◦ EndLM(Lop)

for any fop, gop ∈ EndLM(Lop) such that gop(1Lop) ≤op fop(1Lop). However, by
Lemma 3.10, the latter can be formulated as

EndLM(L) ◦ g ⊆ EndLM(L) ◦ f ,

for any f, g ∈ EndLM(L) such that kg ≥ kf , which concludes the proof. □

Definition 3.17. For a lattice L ∈ LM and an element b ∈ L, we write

Sk≥
b = {f ∈ S|kf ⩾ b}.
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We claim that the set Sk≥
b is a left ideal of S = EndLM(L). Indeed, for f ∈ S,

f ∈ Sk≥
b if and only if f(b) = 0L (see [1, Proposition 1.3(2)]).

Lemma 3.18. Let L ∈ LM and let b ∈ L. Then, a bijection exists between the sets
HomLM(1L/b, L) and Sk≥

b .

Proof. Note that, for f ∈ HomLM(1L/b, L), the composite f ◦ ( ∨ kf ) ∈ S =
EndLM(L). Furthermore, f ◦ ( ∨ kf ) ∈ Sk≥

b .
We claim that the mapping HomLM(1L/b, L) F−→ Sk≥

b such that

f 7−→ f ◦ ( ∨ kf )

is a bijection. On the one hand, if f, g ∈ HomLM(1L/b, L) are such that

f ◦ ( ∨ kf ) = F(f) = F(g) = g ◦ (
∨
kg),

then

kf = kf◦( ∨kf ) = kg◦( ∨kg) = kg,

so that f = g. Thus, by Lemma 2.7, f = g. Therefore, F is injective. On the other
hand, if f ∈ Sk≥

b , then the linear morphism f |1/b lies in the preimage of f under
F , so that F is surjective. □

Theorem 3.19. Let L ∈ LM, and let S = EndLM(L). Then, L is semi-injective
if and only if

S ◦ f = Sk≥
kf

for any f ∈ S.

Proof. Note first that, by Theorem 3.11, L is semi-injective if and only if Lop is
semi-projective, and that this last claim is equivalent, by [8, Theorem 3.11], to

fop ◦ EndLM(Lop) = HomLM(Lop, fop(Lop))

for any fop ∈ EndLM(Lop).
Now, for necessity, let f ∈ S. For any g ∈ Sk≥

kf
, kg ≥ kf , that is, gop(1Lop) ≤op

fop(1Lop). This means that gop(Lop) ⊆ fop(Lop), and thus, one can write gop :
Lop −→ fop(Lop). Consequently, there exists some hop ∈ EndLM(Lop) such that
fop ◦hop = gop, that is, h◦f = g with h ∈ S. Hence, g ∈ S ◦f , and so, Sk≥

kf
⊆ S ◦f .

The reverse inclusion is clear.
For sufficiency, let fop ∈ EndLM(Lop). As, clearly,

fop ◦ EndLM(Lop) ⊆ HomLM(Lop, fop(Lop)),
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it suffices to prove the reverse inclusion. Since fop(Lop) = (1L/kf )op, each gop ∈
HomLM(Lop, fop(Lop)) can be written as gop : Lop −→ (1L/kf )op. Then, g :
(1L/kf ) −→ L, so that kg ≥ kf , and thus, g ∈ Sk≥

kf
= S ◦ f . It follows that

there exists h ∈ S such that g = h ◦ f , that is, gop = fop ◦ hop. Therefore,
gop ∈ fop ◦ EndLM(Lop), which ends the proof. □

Theorem 3.20. Let L ∈ LM be a semi-injective lattice. Then, a bijection exists
between the set of L-cocyclic quotient intervals of L and the set of principal left
ideals of S = EndLM(L).

Proof. Note first that, as L ∈ LM is semi-injective, Lop is semi-projective, by
Theorem 3.11. Thus, by [8, Theorem 3.14], there exists a bijection between the
set of Lop-cyclic initial intervals of Lop and the set of principal right ideals of
EndLM(Lop).

Now, there is an obvious bijection between the set of Lop-cyclic initial intervals
of Lop and the set of L-cocyclic quotient intervals of L. Also, by Lemma 3.12,
there is a one-to-one correspondence between the set of principal right ideals of
EndLM(Lop) and the set of principal left ideals of S. The result follows. □

Recall that an element a of a lattice L with a greatest element 1L is said to be
superfluous (in L) if for every 1L ̸= b ∈ L, it happens that a ∨ b ̸= 1L.

Definition 3.21. Let L ∈ LM. We say that a ∈ L is hollow (in L) if every element
of 1L/a is superfluous in 1L/a. Furthermore, we say that the lattice L is hollow if
the element 0L is hollow in L.

Definition 3.22. Let L ∈ LM, and let 1L/m be a quotient interval of L. We say
that L co-generates 1L/m if there exists a family of linear morphisms {ft}t∈T ⊆
HomLM(1L/m,L) such that

m =
∧

t∈T

kft .

Theorem 3.23. Let L ∈ LM be a coretractable lattice and let S = EndLM(L).
For I, J ∈ L(S) such that I ⊆ J and n,m ∈ L such that n ≤ m, the following
statements hold:

(a) If Sk≥
m is essential in Sk≥

n , then m is superfluous in 1L/n. If L is semi-
injective, then the converse holds.

(b) If I is essential in Sk≥∧
g∈J

kg
, then

∧
f∈I

kf is superfluous in 1L/
∧

g∈J

kg.

(c) Suppose that L is semi-injective. If I = Sk≥∧
f∈I

kf
and

∧
f∈I

kf is superfluous in

1L/
∧

g∈J

kg, then I is essential in J .
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(d) If Sk≥
m is uniform as a left ideal of S, then m is hollow in L. If L is

semi-injective, then the converse holds.
(e) Suppose that L is semi-injective. If

∧
f∈I

kf is hollow in L, then I is a uniform

left ideal of S.
(f) Consider the following statements:

(i) Sk≥
m is simple (that is, an atom of L(S)).

(ii) 1L/m is the simple lattice.
If L co-generates 1L/m, then (i) implies (ii). If L is semi-injective, then
(ii) implies (i).

(g) If I = Sk≥∧
f∈I

kf
is simple, then 1L/

∧
f∈I

kf is the simple lattice. If L is semi-

injective, then the converse holds.

Proof. (a) Let t ∈ 1L/n such that m ∨ t = 1L. Note that Sk≥
t ⊆ Sk≥

n because
t ≥ n. Now, if f ∈ Sk≥

m ∩ Sk≥
t , then kf ≥ m ∨ t = 1L, so f = 0. Thus, as Sk≥

m is
essential in Sk≥

n by hypothesis, Sk≥
t = {0}. Then, as L is coretractable, t = 1L, so

that m is superfluous in 1L/n.
For the converse, let L be semi-injective, and assume that Sk≥

m ∩(S ◦f) = {0} for
f ∈ Sk≥

n . Then, by Theorem 3.19, S ◦ f = Sk≥
kf

, and thus, Sk≥
m ∩ Sk≥

kf
= {0}. Since

Sk≥
m ∩ Sk≥

kf
= Sk≥

m∨kf
and L is coretractable, it follows that m ∨ kf = 1L. Hence,

kf = 1L, that is, f = 0. Therefore, Sk≥
m is essential in Sk≥

n .
(b) Since I ⊆ Sk≥∧

f∈I

kf
⊆ Sk≥∧

f∈J

kf
and I is essential in Sk≥∧

g∈J

kg
, clearly Sk≥∧

f∈I

kf
is

also essential in Sk≥∧
g∈J

kg
. Hence, by part (a), it follows that

∧
f∈I

kf is superfluous in

1L/
∧

g∈J

kg.

(c) By part (a), Sk≥∧
f∈I

kf
is essential in Sk≥∧

g∈J

kg
. Now, let K ∈ L(S) such that

K ⊆ J and I ∩ K = {0}. Since K ⊆ J ⊆ Sk≥∧
g∈J

kg
and I = Sk≥∧

f∈I

kf
is essential in

Sk≥∧
g∈J

kg
, K = {0}. Therefore, I is essential in J .

(d) Let x, y ∈ 1L/m, with x, y < 1L. As L is coretractable, both Sk≥
x and

Sk≥
y are non-trivial. Since Sk≥

x , Sk≥
y ⊆ Sk≥

m , and Sk≥
m is uniform by hypothesis, we

obtain that

Sk≥
x∨y = Sk≥

x ∩ Sk≥
y ̸= {0}.

Therefore, x ∨ y ̸= 1L, so that m is hollow in L.
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For the converse, note first that, by Theorem 3.11, Lop is semi-projective. Also,
since m is hollow in L, m is uniform in Lop. Thus, [8, Theorem 3.17(e)] provides that
HomLM

(
Lop, (1L/m)op

)
is a uniform right ideal of EndLM(Lop). The result follows

from noting that
(
HomLM

(
Lop, (1L/m)op)

)op = Sk≥
m and that EndLM((Lop)op) =

S.
(e) By (d), Sk≥∧

f∈I

kf
is a uniform left ideal of S. The fact that I ⊆ Sk≥∧

f∈I

kf
yields

the result.
(f) Note first that (i) implies that m ̸= 1L. Let m ≤ k < 1L. Then, since

L is coretractable, Sk≥
k ̸= {0}. As Sk≥

m is simple and Sk≥
k ⊆ Sk≥

m , it follows that
Sk≥

k = Sk≥
m . Now, as L co-generates 1L/m, there exists a family of linear morphisms

{ft}t∈T ⊆ Sk≥
m such that m =

∧
t∈T

kft
. It follows that

m ≤ k ≤
∧

t∈T

kft = m.

Hence, k = m, and thus, the lattice 1L/m is simple.
Suppose now that (ii) holds. Then, by coretractability, Sk≥

m ̸= {0}. Let f ∈ Sk≥
m

such that f ̸= 0. By (ii), kf = m. Since L is semi-injective, by Theorem 3.19

Sk≥
m = Sk≥

kf
= S ◦ f .

Therefore, Sk≥
m is a simple left ideal.

(g) Necessity follows directly from (f).
For sufficiency, note first that, by (f), Sk≥∧

f∈I

kf
is simple. Now, since

∧
f∈I

kf ̸= 1L,

it happens that {0} ̸= I ⊆ Sk≥∧
f∈I

kf
, so that I = Sk≥∧

f∈I

kf
. □

Definition 3.24. Let L ∈ LM, and let S = EndLM(L). For I ∈ L(S), we call a
function ψ : I −→ S a left morphism if for any g ∈ I and f ∈ S

ψ(f ◦ g) = f ◦ ψ(g).

(Note that, in this situation, ψ(I) is necessarily a left ideal of S.)
In case I = S, we shall call ψ a left endomorphism.

Remark 3.25. A left endomorphism ψ : S −→ S satisfies that

ψ(f) = ψ(f ◦ IdL) = f ◦ ψ(IdL)

for any f ∈ S. Hence, the left endomorphism ψ is completely determined by its
effect on IdL.

Note that, for a given L, the set of left endomorphisms from S to S is closed
under composition. A left endomorphism will be called a left monomorphism if,
with respect to this operation, it is cancellable on the left.
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Lemma 3.26. Let L ∈ LM, and S = EndLM(L). For any left monomorphism
φ : S −→ S, {

f ∈ S|φ(f) = 0
}

= {0}.

Proof. Let g ∈ S such that φ(g) = 0. Set ψg : S −→ S, such that ψg(h) = h ◦ g.
Note that ψg is a left endomorphism. Then, for h ∈ S,

(φ ◦ ψg)(h) = φ(ψg(h)) = φ(h ◦ g) = h ◦ φ(g) = h ◦ 0 = 0.

Thus, φ ◦ ψg = 0 = φ ◦ 0, so that ψg = 0 because φ is a left monomorphism. But
then,

0 = ψg(IdL) = IdL ◦ g = g. □

Lemma 3.27. Let L ∈ LM, and let S = EndLM(L). For f ∈ S, if f is an
epimorphism, then S

◦f−→ S is a left monomorphism. The converse is true for
coretractable L.

Proof. (⇒) Since L f−→ L is a linear epimorphism, S ◦f−→ S is injective. And, of
course, every injective left endomorphism is a left monomorphism.

(⇐) If f(1L) < 1L, since L is coretractable, there exists 0 ̸= g ∈ HomLM(1L/f(1L), L).
Set as h the composite

L
∨f(1L)−→ 1L/f(1L)

g→ L.

Since g ̸= 0 and ∨ f(1L) is an epimorphism, 0 ̸= h ∈ S. However, h ◦ f = 0, so,
by Lemma 3.26, ◦ f cannot be a left monomorphism. □

Remark 3.28. A left endomorphism ψ : S −→ S is surjective if and only if there
exists f ∈ S such that ψ(f) = IdL. Indeed, if f ∈ S is such that ψ(f) = IdL, then

ψ(g ◦ f) = g ◦ ψ(f) = g ◦ IdL = g

for any g ∈ S.

Definition 3.29. Let L ∈ LM. We say that L is Hopfian if every linear epimor-
phism f : L −→ L is a monomorphism.

Definition 3.30. Let L ∈ LM, and let S = EndLM(L). We call the monoid S

Hopfian if there does not exist a bijective left morphism between S and a proper
left ideal of S.

Definition 3.31. Let L ∈ LM, and let S = EndLM(L). We say that f ∈ S is left
regular if g ◦ f = 0 with g ∈ S implies that g = 0.

Lemma 3.32. For a lattice L ∈ LM, the monoid S = EndLM(L) is Hopfian if
every left regular element in S is a unit.
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Proof. Let I ∈ L(S) and let ψ : I −→ S be a bijective left morphism. Let g ∈ I

such that ψ(g) = IdL. We claim that g is left regular. Indeed, if h ∈ S is such that
h ◦ g = 0, then

0 = ψ(0) = ψ(h ◦ g) = h ◦ ψ(g) = h ◦ IdL = h.

Thus, by hypothesis, g is a unit, so that there exists f ∈ S such that IdL = f ◦g ∈ I.
It follows that I = S. Therefore, S is Hopfian. □

Definition 3.33. For L ∈ LM and f ∈ S = EndLM(L), the left annihilator of f
is

Annℓ(f) =
{
g ∈ S| g ◦ f = 0

}
.

Remark 3.34. Annℓ(f) is a left ideal of the monoid S for any L ∈ LM.

Definition 3.35. Let L ∈ LM and let S = EndLM(L). The left singular ideal of
S is

Zℓ(S) = {f ∈ S| Annℓ(f) is essential in L(S)}.

Remark 3.36. Zℓ(S) is a two-sided ideal of the monoid S. The proof mirrors that
in [8, Remark 3.32].

Lemma 3.37. Let L ∈ LM and let S = EndLM(L). For f ∈ S, if f is an
epimorphism, then f is left regular. The converse holds if L is coretractable.

Proof. Note first that

Annℓ(f) = {g ∈ S| g ◦ f = 0} = Sk≥
f(1L).

Also, a morphism f ∈ S is an epimorphism if and only if f(1L) = 1L. Now, if f ∈ S

is an epimorphism, then

Annℓ(f) = Sk≥
f(1L) = Sk≥

1L
= {0}.

However, Annℓ(f) = {0} if and only if f is left regular.
For coretractable L, observe that if Sk≥

f(1L) = {0}, then f(1L) = 1L. □

Definition 3.38. Let L ∈ LM, and let CL be the set of all coatoms in L. Then,
the Jacobson radical of L is

Jac(L) =
∧

x∈CL

x.

For a lattice L ∈ LM, a left ideal I of S = EndLM(L), and an initial interval
K of L, we denote by (I)(K) (or just IK, when there is no room for ambiguity)
the initial interval of L determined by

∨
f∈I

f(1K) (which, by [3, Lemma 0.6(1)], is

a strongly invariant element of L). That is,



ON SEMI-INJECTIVE LATTICES 213

(I)(K) =
( ∨

f∈I

f(1K)
)
/0L.

Definition 3.39. Let L ∈ LM and S = EndLM(L). We say that L is quasi-
projective if for any linear epimorphism L

g−→ N and any linear morphism L
f−→ N ,

there exists f ′ ∈ S such that the following diagram is commutative.
L

L N

f
f ′

g

In module-theoretic language, the above notion can be rendered as L is L-
projective, as L belongs to its own projectivity class, or as L belongs to its own
projectivity domain.

Theorem 3.40. Let L ∈ LM be coretractable, and let S = EndLM(L). Then, the
following statements hold:

(a) L is Hopfian if and only if S is Hopfian.
(b) If L is quasi-projective, then each left regular element in S has a right

inverse in S.
(c) Zℓ(S) ⊆ {f ∈ S| f(1L) is superfluous in L}, and further, (Zℓ(S))(L) ⊆

Jac(L)/0L.

Proof. (a) (⇒) Let f ∈ S be left regular. By Lemma 3.37, f is an epimorphism.
Since L is Hopfian, f is also a monomorphism and, consequently, a unit. Therefore,
S is Hopfian by Lemma 3.32.

(⇐) Assume that L is not Hopfian. Then, there exists a linear epimorphism
f : L −→ L that is not a linear monomorphism. Then, IdL /∈ Sk≥

kf
, because

kf ̸= 0L. Therefore, Sk≥
kf

is a proper left ideal of S. Consider now the induced
isomorphism f : 1L/kf −→ L. Set as ψ the composite

Sk≥
kf

α→ HomLM(1L/kf , L) ◦f
−1

−→ S,

where α is the bijection provided by Lemma 3.18.
We claim that ψ : Sk≥

kf
→ S is a bijective left morphism. Indeed, given g ∈ Sk≥

kf

and h ∈ S,

ψ(h◦g) = α(h◦g)◦f−1 = (h◦g)|1L/kf
◦f−1 = h◦(g|1L/kf

)◦f−1 = h◦α(g)◦f−1 = h◦ψ(g),

so that ψ is a left morphism. Also, since f−1 is surjective, ◦f−1 is injective, and
then so is ψ. For surjectivity, it suffices to verify that ◦ f−1 is surjective. Let
then g ∈ S, and note that g ◦ f ∈ HomLM(1L/kf , L) is such that (g ◦ f) ◦ f−1 = g.

Therefore, the monoid S is not Hopfian.
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(b) Let f ∈ S be left regular. By Lemma 3.37, f is an epimorphism. Thus, f
induces the lattice isomorphism f : 1L/kf → L. Now, the following diagram has
an exact row, so by quasi-projectivity, there is g ∈ S that makes it commutative:

L

L 1L/kf 0.
f

−1g

∨kf

Let x ∈ L. As f is a linear morphism,

(f ◦ g)(x) = f(g(x)) = f(g(x) ∨ kf ) = f(f−1(x)) = x.

Therefore, g is a right inverse of f in S.
(c) As noted in the proof of Lemma 3.37, Annℓ(f) = Sk≥

f(1L) for each f ∈ S. In
particular, when f ∈ Zℓ(S), Sk≥

f(1L) is essential in S. Thus, by Theorem 3.23(a),
f(1L) is superfluous in L.

Now, for the second statement, let x ∈ L be a coatom and let f ∈ Zℓ(S). Then,
since f(1L) is superfluous in L, f(1L) ∨ x = x, that is, f(1L) ≤ x. It follows that

f(1L) ≤
∧

x∈CL

x = Jac(L),

and hence, ∨
f∈Zℓ(S)

f(1L) ≤ Jac(L). □

Definition 3.41. Let L ∈ LM and let S = EndLM(L). We call the set

Socℓ(S) =
⋃ {

I | I is a simple left ideal of S
}

the left socle of S.

Lemma 3.42. Let L ∈ LM and S = EndLM(L). Then, L is semi-injective if and
only if I = Sk≥∧

f∈I

kf
for any cyclic left ideal I of S.

Proof. Let I = S ◦ g for some g ∈ S. For any h ∈ S, it is clear that kg ≤ kh◦g,
and hence,

kg ≤
∧

h∈S

kh◦g =
∧
f∈I

kf ≤ kg.

Therefore,
∧

f∈I

kf = kg, hence the result follows from Theorem 3.19. □

Proposition 3.43. Let L ∈ LM be coretractable and semi-injective, and let S =
EndLM(L). Then,

(a) Zℓ(S) = {f ∈ S|f(1L) is superfluous in L}.
(b)

∧
f∈Socℓ(S)

kf = Jac(L).
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(c) Socℓ(S) ⊆ Sk≥
Jac(L).

Proof. (a) By Theorem 3.40(c),

Zℓ(S) ⊆ {f ∈ S|f(1L) is superfluous in L}.

For the reverse inclusion, let f ∈ S be such that f(1L) is superfluous in L. Since L is
semi-injective, by Theorem 3.23(a), Annℓ(f) = Sk≥

f(1L) is essential in S. Therefore,
f ∈ Zℓ(S), and so,

{f ∈ S|f(1L) is superfluous in L} ⊆ Zℓ(S).

(b) On the one hand, given a coatom a ∈ L, Sk≥
a ̸= {0} because L is core-

tractable. Further, since 1L/a is a simple lattice, for any nonzero f ∈ Sk≥
a , it must

happen that kf = a. Also, as L is semi-injective, by Theorem 3.23(f), Sk≥
a is a

simple left ideal. Thus, ∧
f∈Socℓ(S)

kf ≤
∧

f∈S
k≥
a

kf = a,

so that ∧
f∈Socℓ(S)

kf ≤ Jac(L).

On the other hand, since L is semi-injective, any simple left ideal I of S can be
written as I = Sk≥∧

f∈I

kf
, by Lemma 3.42. Hence, by Theorem 3.23(g), 1L/

∧
f∈I

kf is a

simple lattice, that is,
∧

f∈I

kf is a coatom of L. Therefore,

Jac(L) ≤
∧

f∈Socℓ(S)
kf .

(c) Let I be a simple left ideal of S. Since L is semi-injective, by Lemma 3.42,
I = Sk≥∧

f∈I

kf
. Further, by Theorem 3.23(g), 1L/

∧
f∈I

kf is a simple lattice, that is,
∧

f∈I

kf

is a coatom of L. Thus, for any f ∈ I,

Jac(L) ≤
∧

f∈I

kf ≤ kf ,

so that f ∈ Sk≥
Jac(L). Consequently, Socℓ(S) ⊆ Sk≥

Jac(L). □

Definition 3.44. Let L ∈ LM and S = EndLM(L). We say that L is weakly
Hopfian if for each linear epimorphism f ∈ S, one has that kf is a superfluous
element in L.
Regarding the monoid S, we say that it is left weakly co-Hopfian if for each left
monomorphism φ : S −→ S, one has that φ(S) is an essential left ideal of S.
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Example 3.45. Let P(N) denote the power set of the set N of natural numbers.
As any power set, P(N) is partially ordered by inclusion, and furthermore, P(N)
is a complete modular lattice whose join and meet operations are the union and
intersection of sets, respectively. Clearly, 0P(N) = ∅ and 1P(N) = N.

Write 2N for the set of even natural numbers, and 2N + 1 for the set of odd
natural numbers. The mapping h : P(N) −→ 2N/∅ such that

X 7→ 2X = {2x | x ∈ X}

is a lattice isomorphism. Also, by modularity, we have an isomorphism

N/2N + 1 = 2N ∪ (2N + 1)/2N + 1
k∼= 2N/2N ∩ (2N + 1) = 2N/∅.

In this way, we obtain a lattice isomorphism f ′ = h−1 ◦ k : N/2N + 1 −→ P(N).
Let us now define the mapping f : P(N) −→ P(N) by f(X) = f ′(X ∪ (2N+ 1)).

Note that f is a linear epimorphism in S = EndLM(P(N)). Thus, by Lemma 3.27,
the mapping ◦ f : S −→ S is a left monomorphism. However, note that S ◦ f ⊆
Sk≥

2N+1, and that Sk≥
2N+1 is not an essential left ideal of S because Sk≥

2N+1 ∩ Sk≥
2N =

{0}. (The fact that Sk≥
2N ̸= {0} can be verified analogously to our construction of

0 ̸= f ∈ Sk≥
2N+1.) Therefore, S ◦ f is not an essential left ideal of S, so that S is not

left weakly co-Hopfian.

Let L ∈ LM and S = EndLM(L). For a left endomorphism φ : S −→ S, let us
call the set

{g ∈ S | φ(g) = 0}

the kernel of φ. (It is a left ideal of S.)

Lemma 3.46. Let L ∈ LM and S = EndLM(L), and let φ : S −→ S be a left
endomorphism. If φ is a left monomorphism, then the kernel of φ is trivial. The
converse holds for coretractable L.

Proof. The necessity is Lemma 3.26.
For the sufficiency, note first that, by Remark 3.25, φ = ◦ f where f = φ(IdL).

We may then suppose that f is left regular. Since L is coretractable, by Lemma
3.37, f is an epimorphism, hence, by Lemma 3.27, φ is a left monomorphism. □

Definition 3.47. We say that a lattice L ∈ LM is weakly co-compressible if for all
a ∈ L with a ̸= 1L, there exists a linear morphism f ∈ Sk≥

a such that f2 ̸= 0.

Definition 3.48. A lattice L ∈ LM is cyclic if it has a superfluous coatom.

Definition 3.49. We say that a lattice L ∈ LM is finitely generated if for any
subset {xa}a∈A ⊆ L such that

∨
a∈A

xa = 1L, there exists a finite subset F ⊆ A with
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∨
a∈F

xa = 1L.

Similarly, we say that the monoid S = EndLM(L) is finitely cogenerated if for
any family of left ideals {Ia}a∈A of S such that

⋂
a∈A

Ia = {0}, there exists a finite

subset F of A with ⋂
a∈F

Ia = {0}.

We say that S is semiprime if for every left ideal I and 0 ̸= n ∈ N,

I ̸= {0} ⇒ In ̸= {0},

where In = {f1 ◦ . . . ◦ fn | fi ∈ I for each 1 ≤ i ≤ n}.

Definition 3.50. We say that the monoid S = EndLM(L) is cocyclic if there exists
a non-trivial endomorphism f ∈ S that lies in every nonzero left ideal of S.

Theorem 3.51. Let L ∈ LM be coretractable and semi-injective, and let S =
EndLM(L). Then, the following statements are true:

(a) L is weakly Hopfian if and only if S is left weakly co-Hopfian.
(b) HomLM(L, a/0L) = {0} for every superfluous element a ∈ L if and only if

Zℓ(S) = {0}.
(c) If L is weakly co-compressible, then S is semiprime.
(d) L is cyclic if and only if S is cocyclic.
(e) If S is finitely cogenerated, then L is finitely generated.

Proof. (a) (⇒) Let φ : S −→ S be a left monomorphism. Note that, by Remark
3.25, φ = ◦ f where f = φ(IdL). As L is coretractable, by Lemma 3.27, f is a
linear epimorphism. Now, as L is weakly Hopfian, the element kf is superfluous
in L, and thus also in 1L/

∧
g∈S

kg (seeing as
∧

g∈S

kg ≤ kf ). Set I = φ(S) = S ◦ f .

By Lemma 3.42 (and its proof), I = Sk≥∧
f∈I

kf
and

∧
h∈I

kh = kf , so Theorem 3.23(c)

(making J = S) provides that I = φ(S) is essential in S. Therefore, S is left weakly
co-Hopfian.

(⇐) Let f ∈ S be a linear epimorphism. By Lemma 3.27, ◦ f is a left
monomorphism. Since S is weakly co-Hopfian (and bearing in mind Theorem 3.19),
S ◦ f = Sk≥

kf
is essential in S. Therefore, by Theorem 3.23(a), kf is superfluous in

L.
(b) Note first that, since L is coretractable and semi-injective,

Zℓ(S) = {f ∈ S|f(1L) is superfluous in L}

due to Proposition 3.43(a).
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(⇒) Let f ∈ S be such that f(1L) is superfluous in L. Then, the corestriction
of f to its image lies in HomLM(L, f(1L)/0L) = {0}. Therefore, f = 0, and
consequently, Zℓ(S) = {0}.

(⇐) Let a ∈ L be superfluous in L, and let f ∈ HomLM(L, a/0L). If ι denotes
the appropriate inclusion mapping, then the composite ι ◦ f ∈ S. Furthermore,
(ι ◦ f)(1L) ≤ a, so that (i ◦ f)(1L) is a superfluous element in L. Thus, i ◦ f ∈
Zℓ(S) = {0} which implies that f = 0. Therefore, HomLM(L, a/0L) = {0}.

(c) Let us assume that L is weakly co-compressible and that S is not semiprime.
Then, there exists a non-trivial left ideal I of S such that Ik = {0} for some k ≥ 2.
Take the least such k, so that Ik−1 ̸= {0}. Now, given 0 ̸= f ∈ Ik−1, and in view
of Theorem 3.19, Sk≥

kf
= S ◦ f ⊆ Ik−1. Furthermore, since kf ̸= 1L and L is weakly

co-compressible, there exists h ∈ Sk≥
kf

such that h2 ̸= 0. However, h2 ∈ I2k−2 = {0}
because 2k − 2 ≥ k for k ≥ 2. Therefore, S is semiprime.

(d) (⇒) Let a ∈ L be a superfluous coatom. Since L is semi-injective, Theorem
3.23, parts (a) and (f), gives that Sk≥

a is a simple and essential left ideal of S. It
follows that any nonzero element of Sk≥

a lies in every nonzero left ideal of S.
(⇐) Assume that 0 ̸= g ∈ S belongs to every non-trivial left ideal of S. For each

x ∈ L with x ̸= 1L, L being coretractable implies that HomLM(1L/x, L) ̸= {0}.
Further, by Lemma 3.18, Sk≥

x ̸= {0}, and so, g ∈ Sk≥
x . It follows that x ≤ kg for

all 1L > x ∈ L. Moreover, as g ̸= 0, kg ̸= 1L, so that kg is a superfluous coatom.
(e) Let {xa}a∈A ⊆ L be such that

∨
a∈A

xa = 1L. Then,

{0} = Sk≥∨
a∈A

xa
=

⋂
a∈A

Sk≥
xa

.

Hence, as S is finitely cogenerated, there exists a finite subset F ⊆ A such that

⋂
a∈F

Sk≥
xa

= Sk≥∨
a∈F

xa
= {0}.

By Lemma 3.18 and the fact that L is coretractable,
∨

a∈F

xa = 1L. Therefore, L is

finitely generated. □

Definition 3.52. A lattice L ∈ LM is co-Hopfian if every linear monomorphism
L

f−→ L is a linear epimorphism.

Proposition 3.53. If L ∈ LM is semi-injective and Hopfian, then L is co-Hopfian.

Proof. Let f : L −→ L be a linear monomorphism. Since L is semi-injective, there
exists a linear morphism g : L −→ L that makes the diagram
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L L

L

f

Id
g

commutative, that is, g ◦ f = IdL. Hence, as a function, g has a right inverse, so it
is surjective. Then, g is a linear epimorphism. Since L is Hopfian, g is also a linear
monomorphism, and hence an isomorphism. Consequently,

1L = g−1(1L) = g−1((g ◦ f)(1L)) = f(1L).

Thus, f is an epimorphism, and so L is co-Hopfian. □

Definition 3.54. We say that a lattice L ∈ LM is directly finite if it is not iso-
morphic to any initial interval a/0L, where a < 1L and a has a complement in
L.

Proposition 3.55. If L ∈ LM is co-Hopfian, then L is directly finite.

Proof. If L is not directly finite, then, in particular, there exists an isomorphism
α : L −→ a/0L for some proper a ∈ L. Now, if a/0L

ι−→ L denotes the inclusion
mapping, then the composite ι ◦ α : L −→ L is a monomorphism that is not an
epimorphism. Thus, L is not co-Hopfian. □

Proposition 3.56. Let L ∈ LM be semi-injective, and let a ∈ L be essential and
strongly invariant in L. Then, L is co-Hopfian if and only if a/0L is co-Hopfian.

Proof. By Theorem 3.15, a is strongly invariant in Lop. Further, the fact that a
is essential in L implies that a is superfluous in Lop. Moreover, since L is semi-
injective, Theorem 3.11 gives that Lop is semi-projective. Hence, by [8, Proposition
3.58], Lop is Hopfian if and only if (a/0L)op is Hopfian. It follows that L is co-
Hopfian if and only if Lop is Hopfian, which holds if and only if (a/0L)op is Hopfian,
which is equivalent to a/0L being co-Hopfian. □

We say that a lattice L ∈ LM is atomic if for every a ∈ L with a ̸= 0L, the
initial interval a/0L has at least one atom.

Definition 3.57. Let L ∈ LM, and let AL be the set of all atoms of L. Then, the
socle of L is

Soc(L) =
( ∨

AL

)
/0L.

Corollary 3.58. Let L ∈ LM be semi-injective and atomic. Then, L is co-Hopfian
if and only if Soc(L) is co-Hopfian.
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Proof. According to [2, Proposition 2.2],
∨

AL is strongly invariant in L. Also,
it is readily verified (and noted, for example, in [6, p. 120]) that, as L is atomic,∨

AL is the smallest essential element in L. The result follows from Proposition
3.56. □

Definition 3.59. For a lattice L ∈ LM, we introduce the following conditions:

C1: For each a ∈ L with 0L < a, there exists a complement c ∈ L such that
c ≥ a and a is essential in c/0L.

C2: If a ∈ L is such that a/0L
∼= c/0L and c a complement in L, then a is a

complement.
C3: Given two complements k and c in L, with k ∧ c = 0L, the element k ∨ c is

a complement.
D1: For each a ∈ L, there exists a complement c ∈ L such that c ≤ a and a is

superfluous in 1L/c.
D2: If a ∈ L is such that 1L/a ∼= c/0L, with c a complement in L, then, a is a

complement.
D3: Given two complements k and c in L with k ∨ c = 1L, the element k ∧ c is

a complement.

Definition 3.60. Let L ∈ LM. We say that L is extending if it satisfies condition
C1. Moreover, we say that L is continuous if it is extending and satisfies condition
C2, and that it is quasi-continuous if it is extending and satisfies condition C3.

Lemma 3.61. Any semi-injective lattice L ∈ LM is a C2 lattice.

Proof. Let L ∈ LM be semi-injective, and let a, c ∈ L such that a/0L
∼= c/0L,

with c a complement in L. Note that, by Theorem 3.11, Lop is semi-projective, so
it satisfies condition D2 by [8, Lemma 3.63]. Now, as a/0L

∼= c/0L in L, (a/0L)op ∼=
(c/0L)op in Lop. Furthermore, if d denotes the complement of c in L, by modularity,
(c/0L) ∼= (1L/d) in L, so that (c/0L)op ∼= (1L/d)op in Lop. Therefore, (a/0L)op ∼=
(1L/d)op in Lop. As Lop is a D2 lattice, a is a complement in Lop, and consequently,
a complement in L. □

Proposition 3.62. Let L ∈ LM. If L is a C2 lattice, then L is a C3 lattice.

Proof. See [4, Proposition 1.10(5)]. □

Theorem 3.63. Let L ∈ LM be semi-injective. Then, the following statements
are equivalent:

(1) L is extending.
(2) L is continuous.
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(3) L is quasi-continuous.

Proof. (1) ⇒ (2) By Lemma 3.61, seeing as L is semi-injective.
(2) ⇒ (3) By Proposition 3.62.
(3) ⇒ (1) By definition. □

Definition 3.64. We say that a lattice L ∈ LM is indecomposable if the only
complements in L are 0L and 1L.

Proposition 3.65. Let L ∈ LM be indecomposable and semi-injective. Then, L is
continuous if and only if L is uniform.

Proof. (⇒) Since L is continuous, it is extending. Then, for any nonzero x ∈ L,
there exists a complement c ≥ x such that x is essential in c/0L. Since L is
indecomposable, necessarily c = 1L. Thus, x is essential in L. Therefore, L is
uniform.

(⇐) Let x ∈ L with x ̸= 0. Since L is uniform, we have that x is essential in
L = 1L/0L. As 1L is always a complement in L, L satisfies condition C1, that is,
L is extending. Lemma 3.61 ends the proof. □

Definition 3.66. We say that a lattice L ∈ LM is pseudo semi-injective if for any
two linear morphisms f, g ∈ EndLM(L) with kf = kg, there exists h ∈ EndLM(L)
such that h ◦ f = g.

Remark 3.67. Any semi-injective lattice is pseudo semi-injective.

Next, we show a lattice that is not pseudo semi-injective, and a lattice that is
pseudo semi-injective but not semi-injective.

Example 3.68. Consider the lattice L = { 1
n }n∈N\{0} ∪ {0} with the order induced

by R.
Set g : L −→ L such that g(0) = 0, g(1) = 1

2 , g( 1
2 ) = 1

3 , and g( 1
n ) = 1

n+1 for all
n ≥ 3. Clearly, g is a linear monomorphism. Then, for the diagram

L L

L

IdL

g

there is no h ∈ EndLM(L) such that h ◦ g = IdL. Indeed, if such endomorphism
existed, it would happen that

1 = IdL(1) = h(g(1)) = h( 1
2 ) < h(1) ≤ 1,

a contradiction. Therefore, L is not a pseudo semi-injective lattice.

Example 3.69. Let us denote by L the following lattice:
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5

4

3

2a 2b

1

0
We first claim that L is not semi-injective. Indeed, by [8, Example 3.72], Lop is

not semi-projective. Hence, by Theorem 3.11 L, is not semi-injective.
Let us now show that L is pseudo semi-injective. Observe that only the quotient

intervals 5/5, 5/4, 5/3, and 5/0 are isomorphic to an initial interval of L. Thus,
the kernel of any linear endomorphism of L lies in the set {5, 4, 3, 0}. Let f, g ∈
EndLM(L) such that kf = kg. If kf = kg = 5, then f = g and the map h = IdL

satisfies h ◦ f = g. Similarly, one shows that f = g when kf = kg = 4. Suppose
now that kf = kg = 3. Then,

f(5)/0 ∼= 5/kf = 5/kg
∼= g(5)/0.

Here, we find two possible cases: f(5) = g(5) or f(5) ̸= g(5). If f(5) = g(5), then
f(5) = g(5) ∈ {2a, 2b}, f(4) = 1 = g(4) and f(x) = 0 = g(x) for all x ≤ 3, so that
f = g. If f(5) ̸= g(5), there are two following subcases: f(5) = 2a and g(5) = 2b,
or f(5) = 2b and g(5) = 2a. Set h : L −→ L by h(2a) = 2b, h(2b) = 2a, and
h(x) = x for 2a ̸= x ̸= 2b. Clearly, h is a linear morphism such that h ◦ f = g.

Lastly, if kf = kg = 0, then f and g are linear monomorphisms, and thus, L
being finite, lattice isomorphisms. Hence, h = g ◦ f−1 satisfies h ◦ f = g.

Therefore, L is pseudo semi-injective.

Lemma 3.70. A lattice L ∈ LM is pseudo semi-injective if and only if for any
f, g ∈ EndLM(L) with kf = kg, one has that EndLM(L) ◦ f = EndLM(L) ◦ g.

Proof. (⇒) Let f, g ∈ EndLM(L) such that kf = kg. Since L is pseudo semi-
injective, there exists h ∈ EndLM(L) such that h ◦ f = g. Then,

EndLM(L) ◦ g ⊆ EndLM(L) ◦ f .

Similarly, h′ ◦ g = f for some h′ ∈ EndLM(L), and so,

EndLM(L) ◦ f ⊆ EndLM(L) ◦ g.
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Therefore, equality holds.
(⇐) Let f, g ∈ EndLM(L) such that kf = kg. By hypothesis, we have that

EndLM(L) ◦ f = EndLM(L) ◦ g.

Thus, there exists h ∈ EndLM(L) such that h◦f = IdL ◦g = g. Hence, L is pseudo
semi-injective. □

Remark 3.71. For a pseudo semi-injective lattice L ∈ LM, if f, g ∈ EndLM(L)
are such that kf = kg = 0L and f(1L) is essential in L, then the linear morphism
h ∈ EndLM(L) that makes the diagram

L L

L

g

f

h

commutative is a monomorphism. Indeed, by the proof of [1, Lemma 2.1],

0L = kg = kh◦f = f
−1(f(1L) ∧ kh).

Then, f(1L) ∧ kh = 0L, so that, f(1L) being essential in L, kh = 0L. Hence, h is a
monomorphism.

Proposition 3.72. If L ∈ LM is pseudo semi-injective and uniform, then L is
co-Hopfian.

Proof. Note that the zero lattice is co-Hopfian. Assume then that L is non-trivial.
Let f ∈ EndLM(L) be a linear monomorphism, and let us consider the following
commutative diagram.

L L

L

IdL

f

h

Since L is uniform, the element f(1L) is essential in L, so, by Remark 3.71, h is a
linear monomorphism. Then, as

1L = IdL(1L) = h(f(1L)),

it follows that f(1L) = 1L. Thus, f is a linear epimorphism. Therefore, L is
co-Hopfian. □

Corollary 3.73. If L ∈ LM is pseudo semi-injective and uniform, then L is directly
finite.
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