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ABSTRACT. For any commutative ring A, the finiteness conditions are a useful
tool for approximating its structure. These finiteness conditions are reflected
in some way in its spectrum; for example, if A is a Noetherian ring, then
Spec(A) is a Noetherian topological space; the converse is not necessarily true.
Noetherianness of Spec(A) has an interesting consequence in the behaviour
of hereditary torsion theories in Mod— A: they are of finite type; that is,
for any hereditary torsion theory o in Mod— A there exists a cofinal set of
L(c) consisting of finitely generated ideals. The aim of this work is to study
rings and modules via finite type hereditary torsion theories. Therefore, we
restrict ourselves to considering hereditary torsion theories defined by finitely
generated ideals and finiteness conditions relative to these theories, extending
some type of rings and modules as (totally) Noetherian, (totally) Artinian or

Artinian*.
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1. Introduction

One of the techniques for studying commutative rings is to consider their spectra
since the spectrum of a commutative ring contains enough information about the
ring itself; this is the case for a Noetherian or Artinian ring. Furthermore, Spec(A)
has information in other weaker cases; for example, if Spec(A) is a Noetherian topo-
logical space. For every Noetherian ring A, the spectrum Spec(A) is a Noetherian
topological space, but the converse does not necessarily hold; another example of
a ring with a Noetherian spectrum are Laskerian rings (see [3], [8]). Our goal is to
delve deeper into the study of rings with Noetherian spectra.

Since in every Noetherian topological space, every open set is quasi—compact,

every prime ideal is the radical of a finitely generated ideal, and the converse also
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holds. For more general sets as generically closed subsets KX C Spec(A), since they
are an intersection of open subsets, they also are quasi—compact subsets whenever
Spec(A) is Noetherian.

Generically closed subsets appear in the following example: for any prime ideal
p € Spec(A), the multiplicative subset ¥ = A \ p defines a hereditary torsion
theory o4\, with Gabriel filter L(o4\,) = {h € A | b ¢ p}. In general, a
hereditary torsion theory o is defined by its Gabriel filter £(o), and produces a
partition of Spec(A) in two subsets K(o) and Z(o) = Spec(A) N L(c), being K(o)
closed under generalizations. Furthermore, for any prime ideal p € K(c), we have
0 < og\p; that is, L(o) C L(0a\p), 50 0 < Mo, | p € K(0)}. The equality holds
for half-centered hereditary torsion theories. On the other hand, for any closed
under generalization subset I C Spec(A), if K is quasi-compact, then Apcxoay,
satisfies the following property: for every ideal £ € L(Apex(o5)Ta\p), there exists
b € L(Apexoa\y) finitely generated such that h C € that is, Apexoa\, is a finite
type hereditary torsion theory.

The most known example of a finite type hereditary torsion theory is provided
by a multiplicative subset ¥ C A; thus, for the hereditary torsion theory oy, the
Gabriel filter has a basis constituted by principal ideals; K(ox) = {p € Spec(A) |
pNY = g} is quasi-compact, and ox = Apexoa\p-

We shall use quasi—compact subsets of Spec(A), hence half-centered finite type
hereditary torsion theories, for studying commutative rings and finiteness condi-
tions.

If A is a Noetherian or Artinian commutative ring with respect to a hereditary
torsion theory o, then o is of finite type; in consequence, the background on finite
type hereditary torsion theories will be an excellent tool to study finiteness condi-
tions, as is the Noetherian condition on Spec(A) or on the generically closed subset
K(o) C Spec(A).

To do this, in Section 2, starting from a finitely generated ideal a C A we

construct a finite type hereditary torsion theory o, with Gabriel filter
L(oq) ={b C A| there exists n € N such that a” C b},

and we extend this definition to any set S of finitely generated ideals. Given a
finite type hereditary torsion theory o, we have a plethora of finite type hereditary
torsion theories {o, | a € L;(A) \ L(0)}, properly containing o, and a hereditary
torsion theory 7., defined as the intersection Agqer,(a)\£(o)Ta-

After studying properties relative to hereditary torsion theories in the set {oq |

a€ Li(A)\L(0)}, we compare them with properties of 7,. This is the main aim of
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Sections 3 in which we work some examples, and 4, where we study the Noetherian
case. In Section 5 we extend some result of [1] on Artinian* rings and modules;
the Artinian case, which has the particularity that its dimension is zero, hence
elements in (o) are maximal and minimal. In these sections, we consider finite
type hereditary torsion theories extensions of a torsion theory o, and particularize
to the case where o = o.

In Section 6, we consider a more general context. Given a finite type hereditary
torsion theory o, and the partition Spec(A) = K(o) U Z(0o), for any prime ideal
p € K(o), we build a new hereditary torsion theory 7, = oV n,, satisfying K(7,) =
K(o)\ X(p). In this way, for prime ideals pq,p2 € K(o) such that ps € K(7y,), we
obtain a chain of hereditary torsion theories o < 7,, < 7, whenever 7, is of finite
type: that is, whenever KC(7y,) is quasi-compact. A sufficient condition is that p;
be the o-radical of a finitely generated ideal, in order to obtain a filtration of finite
type hereditary torsion theories o < 7,, < 7, < ---, and so on, in order to verify
the properties of A by studying this filtration. It should be noted that this has
applications if k(o) is a Noetherian ring, since in the latter case every hereditary

torsion theory 7 > ¢ is of finite type.

2. A new hereditary torsion theory

We work on a commutative ring A, in the category of A—modules and with hered-
itary torsion theories in Mod— A. Each hereditary torsion theory o is determined
by a class of modules 7,, which is closed under submodules, homomorphic images,
group extensions and direct sums: the torsion class, or equivalently by a torsionfree
class: F,.

For any module M, there is a submodule cM C M maximal among those be-
longing to 7T,: therefore, M € 7, if and only if cM = M, and M € F, if and only
if oM = 0. Furthermore, o is determined by a filter of ideals L(o) = {h C A |
A/b € Ty}, characterized by the following property: for any ideal a C A, if there
is an ideal h € L(o) such that (a : h) € L(o) for any h € b, then a € L(o). In
consequence, cM = {m € M | (0:m) € L(o)} for any module M. More about
hereditary torsion theories can be found in [4] and references therein.

Let 0 < 7 be hereditary torsion theories in Mod— A, for any A—module M, if
M is totally o—Noetherian, then it is totally 7—Noetherian. The same holds if we
consider the o—Artinian property. Our interest lies in the inverse problem; that is,

if M is totally 7—Noetherian, when is it totally c—Noetherian?
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With this generality, the problem only concerns the properties of ¢ and 7; in
a more general context, we want to characterize, in terms of o, when a module is
totally c—Noetherian for all hereditary torsion theories 7 > o.

In [4], it is proved that if the ring A is totally c—Noetherian, then the hereditary
torsion theory o is of finite type, and trivially holds if we are studying the problem
with respect to a multiplicatively closed subset S C A: S—Noetherian modules.
Therefore, it makes sense for the torsion theory o to be of finite type. This re-
striction is enforced by the fact that every totally S—Artinian ring is also totally
S—Noetherian.

Thus we shall consider a finite type hereditary torsion theory ¢ in Mod- A, and
finite type hereditary torsion theories 7 > o.

Recall that every finite type hereditary torsion theory o is determined by its
Gabriel filter £(o); furthermore, for any ideal a C A we have:

Lemma 2.1. For any ideal a C A, we represent by o, the smallest hereditary
torsion theory o such that a € L(c). The Gabriel filter of o4 is

L={hC A there exists n € N such that a™ C b}

whenever a is finitely generated. If a is not finitely generated, we only have the

inclusion “L C L(oy)”.

Proof. In the case where a is finitely generated, let h € L, and ¢ C A such that
(c: h) € L for any h € h. We can assume that h = (hq, ..., h;) is finitely generated.
For any ¢ = 1,...,t there exists n; € N such that a™ C (¢ : h;), so that N;a™ C
N;(c: h;) = (c: h). Therefore, h(N;a™) C ¢, and ¢ € L. O

We can extend this result to consider a set S of finitely generated ideals.
Given a set S of finitely generated ideals of A, we define a new hereditary torsion

theory os as follows:
os =V{o, | aeS}.
If (S) is the family of all products of elements of S, then we have:
0s = Vacs0a < 0(s);

and since a0z € os for any a1, az € S, the equality holds; that is, os = 0(s). The
Gabriel filter of og is

L(os) ={a C A| there exist a1,...,a; € S such that a; ---a; C a}.
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In particular, given a finite type hereditary torsion theory o, we can take S =
L (o) (the set of all finitely generated ideals in £(o)), and relate properties of o with
properties of o4, for any a € Lf(o). In fact, we have: 0 = V{0, | a € L;(0)} = 0s.

Lemma 2.2. For any two finitely generated ideals ai, a2 C A, the following state-
ments hold:

(1) If a1 C ag, then o4y < 0gq,.

(2) 04, V Oay = Oayas-

(3) Oa; N Oay = Oa;+ay-

Proof. We call 0,4, = 0y, for i = 1,2. Since o; is of finite type, oy = A{oa\, | p €
K(o;)}, being

K(oi) = {p € Spec(4) | a; £ p},

Z(0i) = {p € Spec(4) | a; C p}.
In addition, o is of finite type, if and only if 0 = Ax(s)04\p and K(o) C Spec(A)
is quasi—compact.

(1) Tt is clear that if a; C ag, then ay € L(07), hence g9 < 77.

the other hand, K(o1 V 02) = K(01) N K(02) = {p € Spec(A) | ar,a0 L p} ={p €
Spec(A) | aras € p} = K(0q,a,)- Thus we have

(2) Since 0; < 01 V 09, we have a; € L(o1 V 02), and ajas € L(o1 V 02). On

Tajaz < 01V 02 < AK(0q,0,)TA\p-

Since ajaq is finitely generated, oq,q, is of finite type and the equality holds.

(3) We have 01 A oa = Ao\, | p € K(01) UK(02)}, so it is half-centered. On
the other hand, since the finite union of quasi—compact subsets is quasi—compact,
01 N\ o9 is of finite type.

We have Z(01 A o2) = Z(01) N Z(02) = {p € Spec(A) | a3 + az C p}, hence
Caj+ay © 01 Aoa. If h € L(o1 A 03), there exists n € N such that a? C b, hence
(a1 + a2)?™ C b, and we have the equality o1 A 02 = 0q, tq,- O

For any A—module M, we define:
e C(M,0)={NC M| M/N € F,}, and
o L(M,0)={NCM| M/N €T,}.
Given a submodule N C M, the o—closure of N in M is CI2(N), which is
defined by the equation
o(M/N) = CIM¥(N)/N.
The set L(M,0) is a filter in the lattice L(M) of all submodules of M, and
C(M, o) is a lattice with operations:
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e Ny V Ny = CI¥(N, + Ny) for any Ny, Ny € C(M, o), and
e Niy ANy =N; NN for any N1, No € C(M,o0).

In the following, we assume o is a finite type hereditary torsion theory in
Mod- A.

As we have seen above, if ¢ is a finite type hereditary torsion theory, then o is
completely determined by the finitely generated ideals in the Gabriel filter; now we
will study what happens with the hereditary torsion theories that extend o.

Theorem 2.3. Let o be a finite type hereditary torsion theory. For any finitely
generated ideal a C A, consider the hereditary torsion theory o4, and define 74 =
oV aq. The following assertions hold:

o Ifae L(o), then 1, = 0.

o Ifad L(o), then T4 > 0.

In any case, the description of T4 is as follows:
L(1q) ={b C A| there exist h € L(0), and n € N such that ha" C b}.

Furthermore, the following statements hold:

(1) b € L(7q) if and only if C12(b) € L(r4) for any ideal b C A.
(2) Given ideals a1,a2 C A, we have:

ajag C alle(ag) - le(al)le(ag) C le}(alag).
(3) For any finitely generated ideal a C A, we have 74 = TCIA (a)-

Proof. (1) We only need to prove the sufficient condition. If C12(b) € £(7,), hence,
for every x € CI2(b), we have (b : z) € L(0) C L(74); therefore, C12(b) € L(r).
(2) Let 2, € Cl2(a1), and 2o € Cl2(ay); there is h € L(o) such that ;5 C
le(ai), for i = 1,2, so z1x2h% C ajas, and z1xzo € Cl?(alag).
(3) Given that a C Cl#(a), we have the inclusion: Tci4(a) © Ta- On the other
hand, if h € 7, there are b € L(0), and n € N such that ba™ C b; so

bCI; (a)" € CI7 (ba™) € CIZ (h).
Therefore, C12(h) € L(7c14(a)); in consequence, b € L(T¢1a(q))- O

The last result in (3) is natural because 7, subsumes the o—closure.
Given a family of finitely generated ideals & = {a; | ¢ € [ and a; € L;(A) \
L(o)}, we define 75 = A{7q | a € S§}. Therefore, for any ideal a € S, we have

0 <7s <Tq.
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In the case where S = L(A) \ L(0); that is, S is the set of all finitely generated
ideals a C A such that a ¢ L(o0), the hereditary torsion theory 7s is represented as
T,. We ask whether 7, is of finite type.

Consider the set {a € A | aA ¢ L(0o)}; our first objective will be to relate 7,
and the hereditary torsion theory A{7, | aA ¢ L(0)}.

Proposition 2.4. With the above notation 7, = N7, | aA ¢ L(0)}.

Proof. For any a € L;(A) \ L(0), we have 7, < 7,, for any a € a such that
aA ¢ L(o), therefore, 7, < A{1, | a € a}. On the other hand, if b € A7,, and
ai,...,a; € ais asystem of generators of a, for any index i € I, there are h; € L(0),
and n; € N such that h;a;* C b. If n > ny +--- 4+ ny, then by ---ha” C b, so
b € L(7q). Consequently, 7 = A{7, | a € a}, and we obtain 7, = A{7, | aA ¢

L(o)}. O

Let M be an A-module, and consider an abstract property of modules, we say
M has the

e o—property everywhere-II whenever M has the 7,—property for every
finitely generated ideal a € L¢(A) \ L(o).

e g—property everywhere-I whenever M has the 7,—property for every
a € A such that aA ¢ L(o).

Our goal is to relate the o—property, the 7,—property and the oc—properties every-
where.

In particular, we are interested in the following properties: Noetherian, totally
Noetherian, Artinian, totally Artinian, and so on, and its relationships with the

theoretical frameworks of hereditary torsion theory mentioned above.

Remark 2.5. As mentioned above, another problem that interests us is to de-
termining when 7, is of finite type. Recall that o is of finite type and that
To = NM71a | aA ¢ L(0)}, where each 7, is of finite type, but 7, is not neces-

sarily so.

3. Examples

For every finitely generated ideal a C A such that a ¢ £(0), we have the following
hereditary torsion theories: o < 7, < 74. By Theorem 2.3, we can consider a =
C124(a); therefore, an element of C(A,0) that is o—finitely generated. We can
represent by C(A, o)y the set of all o—finitely generated o—closed ideals of A.

The simplest case is when o = o; that is, £(0) = {A}, or equivalently, 0 is the

only torsion module. Let us study in this case 7,.
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Proposition 3.1. In the above situation, we have one of the following possibilities:

(1) o0 # 7o; whence A is a local Ting with mazimal ideal m, and
L(ro) ={b € A rad(h) = m}.
(2) L(1,) ={A}, if A is not local.

Proof. (1) If there exists h € L£(7,) \ {4}, let m C A be a maximal ideal such that
m D h. Let A* be the set of all regular elements of A. For any a € A*\ U(4),
given that 7, < 7,, there exists m € N such that a™ € h C m, so a € m; therefore,
m is the only maximal ideal of A; that is, A is a local ring with maximal ideal m.

Similarly, for any prime ideal p € Z(7,) and any a € A* \ U(A), we also have
a € p; therefore, p = m, and Z(7,) = {m}.

Since Z(7,) = {m}, for any h € L(7,), we have rad(h) = m. The converse is also
true; in fact, if rad(h) = m, for any a € m = A\ U(A), there exists m € N such
that a™ € b, so h € L(7,),

L(ro) ={h € A rad(h) = m}.

Is 7, necessarily of finite type? The answer is No, see Example 3.2 below.
(2) We have the following equivalent statements:
(a) A is not local.
(b) For any maximal ideal m C A, there exists a € A* \ U(A) such that a ¢ m.
(¢) For any maximal ideal m C A, there exists a € A* \ U(A) such that a™ ¢ m,
for any m € N.
(d) Z(1,) = 2.

(e) 7o =o. 0

Observe that in the local case, we also have:
Z(7o) = {m},
K(7,) = Spec(A) \ {m}.
First, we aim to study when 7, is of finite type. Recall that if 7, is of finite type,

then K(7,) is quasi-compact. We will prove that, in general, this is not the case.

Example 3.2. Consider the lexicographical order in the group G = ZM, and

the field K = C(X,, | n € N). There is a valuation v on K over C such that

v(X,) = e, = (ein): € G. Let V be the valuation ring and m its maximal ideal.
We have: m = (X,, | n € N). Since ey > €1 > eg > ---, there is a strictly

increasing chain of ideals:

(X0) S (X1) S (X2) G-+
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If p,, = rad(X,), there is a strictly increasing chain of prime ideals: po G p1 G p2 &
---. Consequently, V has infinite Krull dimension, and m is not finitely generated.

We assert that Y = Spec(V) \ {m} is not quasi—compact. In fact, if ¥ is quasi-
compact, there are elements y1,...,ys € V such that Y = X(y1) U ... U X(ys),
so there is y € V such that Y = X(y) = {p € Spec(V) | y ¢ p}, which is a
contradiction.

To complete this example we can show that in this case 7, is not of finite type.
For any ideal a € £(7,), we have rad(a) = m; if there is a finitely generated ideal
b C a such that b € L£(7,); that is, rad(b) = m, then X(b) = Y which is a

contradiction because b is finitely generated, hence principal.
In fact, we can characterize when 7, is of finite type.

Proposition 3.3. If we consider the hereditary torsion theory T,, the following
statements are equivalent:

(a) T, is of finite type.
(b) m is the radical of a finitely generated ideal.

Proof. (a) = (b) is clear.
(b) = (a) Let h € L(7,), then rad(h) = m. If ¢ C A is finitely generated and
rad() = m, there is m € N such that £™ C b, hence 7, is of finite type. O

This result partially answers the question raised in Remark 2.5. In particular,
this is the case when Spec(A) is a Noetherian space in the Zariski topology. See [7,
Proposition 3.2].

Remark 3.4. Consequently, there are three possibilities:

(1) m is finitely generated. In this case L(79) = {h € A | m C b}, and it is of finite
type.

(2) m is not finitely generated but there exists h C A finitely generated such that
rad(h) = m. In this case £(7,) is of finite type. See Example 3.5 below.

(3) There is no h C A finitely generated such that rad(h) = m. In this case 7, is
not of finite type. See Example 3.2 above.

Example 3.5. Consider a valuation domain V' with value group (Q,+,<) and
maximal ideal m. We have that m is not finitely generated, but it is the radical of

a finitely generated ideal.

Let us consider the following example related to (2) in Remark 3.4.
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K[X, | neN]

(Xpt | neNy’
ring A has a unique prime ideal, therefore, maximum: m = (z,, | n € N) C A. For

Example 3.6. Let K be a field and A = K[z,, | n € N] = The

any finitely generated ideal a € £;(A)\ {A}, given that a is nilpotent, then o, = 1;
that is, every A-module is o,—torsion, so 7, = 1. In particular, m € £(7,), and
L(1,) is different from the set {h C A | there exists n € N such that m™ C p}.

Relative to a hereditary torsion theory. A similar result can be realized if
we consider a finite type hereditary torsion theory o instead of o, as we will show
below.

An element N € C(M,o) is maximal whenever N # M and for any X €
C(M,o) if N C X, then either X = M or N = X.

Lemma 3.7. Let o be a (non—necessarily of finite type) hereditary torsion theory,

if a € C(A,0) is mazimal, then a C A is a prime ideal and a € K(o).

Proof. We just need to show that a C A is a prime ideal. Let a;,as C A such
that aja; € a and a G a;,az. By the maximality of a, we have a;,az ¢ C(M,0),
but C12(ay), Cl2(ay) € C(M,0), so Cl(ay) = A = Cl?(ay), and ay,a; € L(0);

therefore, ajay € £(o), which is a contradiction. O

The set of all maximal elements in C(A, o), or in (o), is denoted by C(o).
In the case of finite type hereditary torsion theories, we can say more about the

maximal elements in C'(4, o).

Proposition 3.8. Let o be a finite type hereditary torsion theory, for any a ¢ L(o),

there is ¢ € C(A, o), mazimal, such that ¢ 2 a. In particular, ¢ € K(o) is mazimal.

Proof. For any a ¢ £(0), we have C12(a) # A belongs to C(A, o). If we consider
the family T' = {c € C(A,0) | ¢ D a}, we assert that I' is inductive. In fact, it is
non—empty, and for any ascending chain {¢; | ¢ € I} in T', the union U;¢; belongs
to I'. Otherwise, there is an element a € A\ U;¢;, and an ideal h € £(o) such that
ah C U;c;; since we can take b finitely generated, there exists an index j € I such

that ah C ¢;, so a € ¢; C U;c;, which is a contradiction by Zorn’s lemma. O

If o is a hereditary torsion theory in Mod- A, the ring A is called o—local

whenever the set K(o) has a unique maximal element; that is, C(¢) is a unitary set.

Proposition 3.9. Let o be a finite type hereditary torsion theory, then either
(1) 0 # 74; hence A is o-local with C(o) = {m}, and L(7,) = {h C A | rad(h) =
m}UL(0).
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(2) 0 =14, if A is not o-local.

Proof. (1) If o # 7,, there exists h € L(7,)\L(0); let m € C(o) be such that h C m.
For any a € A such that aA ¢ L(o), there exists m € N such that ™ € § C m;
therefore, m is the only element of C(o). Therefore, A is o—local.

For any prime ideal p € Z(7,), we also have p = m; whence Z(7,) = {m}, and
for any h € L(7,), we have rad(h) = m.

On the other hand, if h C A and rad(h) = m, for any a € A such that aA ¢ L(0),
we have a € m, hence there exists m, € N such that a™= € h. Therefore, h € L(7).

In this case, we have
L(15) ={h C A| rad(h) = m} U L(0).

(2) We have the following equivalent statements:
(a) Z(75) = Z(0).
(b) For any p € C(o), there exists a € A such that aA ¢ L(o) and a ¢ p.
(c¢) For any p € C(0), there exists a € A such that aA ¢ L(o) and a™ ¢ p for any
m € N.
(d) C(o) has more than one element.

(e) A is not o—-local. 0

In the non o-local case we have 0 = 7,, in the o—local case we have:

Z(75) = Z(0) U {m},
K(75) = K(o) \ {m}.

Example 3.10. Let A = FgN) + IF; whose maximal ideals are:
«p=Fy",
® p,, = (1 —em)A, being e, = (6pm,i); for any m € N.
If 0 = 04\p,,, then A is 0-Noetherian, hence p,, is o—finitely generated, and o is
of finite type.
Since K(o) = {pm}, we have K(7,) = &, and 7, = 1.

It is also possible to determine when 7, is of finite type.

Proposition 3.11. If we consider the hereditary torsion theory 7., the following
statements are equivalent:

(a) T, is of finite type.

(b) m is the radical of a finitely generated ideal.

(¢) m is the radical of a o—finitely generated ideal.
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Proof. (a) = (b) If 7, is of finite type, given that m € L(7,), there exists h € L(7,),
finitely generated, such that h C m, whence rad(h) = m.

(b) = (a) Let b € L(7,), then rad(h) = m = rad(¢) for some finitely generated
ideal £ C A. Since £ C rad(h), there exists n € N such that ¢ C b, and 7, is of
finite type.

(b) = (c) is obvious.

(¢c) = (b) By the hypothesis, there are £ C h C m such that: ¢ C A is finitely
generated, h/¢ is o—torsion, rad(h) = m. From the short exact sequence 0 — ¢ —
h — b/t — 0, since h € L(7,), and b/t is 7,—torsion, we have that ¢ € L(7,),
whence rad(t) = m. O

4. Noetherian modules everywhere

Recall that an A—module M is totally c—Noetherian everywhere II when-
ever is totally 7,~Noetherian for every ideal a € Lf(A) \ L(o), and similarly for
totally c—Noetherian everywhere 1. Hereinafter, we shall refer them simply as to-
tally o—Noetherian everywhere.

We have that totally o—Noetherian modules everywhere can be characterized,
similarly to [1], as follows:

Let X be a family of submodules of £(M).

e The family X is totaly o—saturated everywhere if it is totally 7,—
saturated for every ideal a € L(A) \ L(0).

e An element N € X is totally o—maximal everywhere if it is totally
To—maximal for every ideal a € L7(A) \ L(0).

e The module M satisfies the totally c—maximal condition if every non—
empty family of submodules has a totally c—maximal element, and satisfies
the totally c—maximal condition everywhere whenever every non—
empty family of submodules has a totally c—maximal everywhere element.

e The module M is totally o—finitely generated if for every non—empty
family of submodules X if Y~ X = M, the sum of all element of F is M, there
exists h € L(0), and a finite subfamily F C X such that (> F)h = M; and
it is totally o—finitely generated everywhere whenever if it is totally

To—finitely generated for every ideal a € L¢(A4) \ L(0).

With these definitions, we have the following characterization theorem for totally

o—Noetherian modules everywhere.

Theorem 4.1. Let M be an A-module, the following statements are equivalent:

(a) M is totally c—Noetherian everywhere.
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(b) Ewvery non—-empty totally o—saturated family everywhere X of submodules of M
has a maximal element.

(c) Every non—empty family of submodules X of M has a totally c—mazimal ele-
ment everywhere.

(d) Ewvery submodule of M is totally o—finitely generated everywhere.

Proof. (a) = (b) Let I" be a non—empty totally o—saturated family everywhere of
submodules of M; for any ascending chain {N; | ¢ € I}, and any a € L;(A)\ L(0),
there exist j, € I and hy € L£(7,) such that )", N;hs € N;,. Since N; € I', we
have >, N; € I'. Finally, by Zorn’s lemma, I' has maximal elements.

(b) = (c) Given T, a non—empty family of submodules of M, define
Q={N C M |3H €T such that Va € L;(A) \ L(0),3ha € L(7a) such that Nh, C H}.
We can assume that H C N. We have I' C Q, and § is totally o—saturated
everywhere. In fact, if L, N C M, N € Q, and for any a € L;(A) \ L(0), there
exists by € L(74) such that Lh, C N, there exist H € T and ¢, € L(7,) such that
Nt, C H, whence Lht, C Nt, C H, and L € Q.

By the hypothesis, there exists N € ), maximal, and there exists H € T,
such that for any a € L(A) \ L(o), there exists an ideal h, € L(7,) such that
Nbhy C H; we can assume N O H, as N + H € Q). Now we check that H € T is
totally c-maximal. If there is L € T" such that H C L, then N + L € Q because
(N+L)yy € Nbhy+ L C H+ L= L; by the maximality of N € Q, we have L = N,
hence Lh, = Nh, C H.

(¢c) = (d) Let {N; | @ € I} be the family of finitely generated submodules
of M, and consider I' = {Z]EF N;| FCI ﬁnite}. By assumption, there exists
N = ZjeF N; €T that is totally o-maximal everywhere. For any index ¢ € I \ F,
we have N + N; € I, hence, for any a € L¢(A) \ L(0), there is h, € L(74) such
that (N + N;)ba C N; that is, N;hq C N, and we have Mbh, = (3, N;) ha € N.
Therefore, M is totally o—finitely generated everywhere.

(d) = (a) For any ascending chain of submodules {N; | i € I} of M, define
N =3, N; C M, which is totally o-finitely generated everywhere. There exists
H C N finitely generated such that for any a € L;(A)\L(o), there exists ho € L(7q)
such that Nh, € H C N. Therefore, there exists j € I such that H C N;, and we
have », Niha € N;. O

If o is a finite type hereditary torsion theory, for every ideal a ¢ L(o), there is
an ideal m € C(o) such that a C m.
We know the following implications with c—Noetherian modules:

M is Noetherian = M is totally c—Noetherian = M is totally c—Noetherian everywhere.
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The converse not necessarily holds. In a particular case we have:

Proposition 4.2. Let A be a non o-local ring, then every totally o—Noetherian

module everywhere is totally o—Noetherian.

Proof. Let {N; | i € I'} be an ascending chain of submodules of M. For every ideal
ae Ly(A)\ L(o), there exist j, € I and by € L(74) such that (3, N;) ha € Nj,.
We define h = Y {ba| a€ Lf(A)\ L(0)}. If h ¢ L(0), there is m € C(o)
such that h C m; therefore, for every a € L5(A) \ L(o), there exist £, € L(o),
and ng € N such that £,a™* C hy C h C m, hence a C m, which is a contradiction.
Consequently, h € L(0), and there exist finitely many ay,...,a; € L¢(A)\L(o) such
that b’ = Z§:1 ba, € L(0). If we take j = max{jq,,.-.,Ja, }, then (3, N;) b’ C Ny,
and M is totally c—Noetherian. (Il

Let A be aring and o a hereditary torsion theory in Mod— A, for any A—module
M, we define the o—dimension of M as the dimension of Supp(M) N K(o). In a
similar way, the co—dimension of A is the dimension of K (o). The o—dimension of
M is represented by dim, (M).

Corollary 4.3. Given a totally o—Noetherian ring A, we have that 7, is of finite

type whenever either A is not o—local or K(A) has dimension zero.

Proof. If A is not o-local, 7, = o is of finite type. If A is o0—local and C(c) = {m},
then L(7,) = {h C A | rad(h) = m}; given that m € C(A,0), there exists a
finitely generated ideal £ C A such that C17(¢) = m. For any h € £(7,), we have
t C rad(h), whence there is n € N such that £” C b; since K(o) is zero-dimensional,
then rad(¢") = m, and ¢ € L(7,). O

We discuss now the relationship between totally 7,—Noetherian, and totally o—

Noetherian everywhere in the case of o—local rings.

Proposition 4.4. Let A be a o-local ring such that 1, is of finite type, for any

A-module M, the following statements are equivalent:

(a) M is totally o—Noetherian everywhere.
(b) M is totally T,—Noetherian.

Proof. Since 7, < 7, for any ideal a € L;(A) \ L(0), we have (b) = (a).

(a) = (b) Let {H; | i € I} be an ascending chain of submodules of M; for any
ae€ Ly(A)\ L(0), there are by € L(74), and jq € I such that (3, H;) ha € Hj,. If
we define h = Y~ bq, then h € L(7,).
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Since 7, is of finite type, there is € C b such that ¢ € L(7,), and € C A is finitely
generated. Therefore, there are j;,...,75; € I such that ¢ C Zflzl Ba,, ; therefore,
f=>"_1ba, € L(T,). If we take j = max{ja,,-..,Ja,}, then (3, H;)f C Hj,
and M is totally 7,—Noetherian. O

As a consequence of Proposition 3.11, we have that if C(o) = {m}, then 7, is of
finite type, provided that m is the radical of a o—finitely generated ideal; therefore,
the previous proposition holds in the following cases: Spec(A) is Noetherian or, with
more generality, whenever (o) is Noetherian. See [5] Jara et al. In particular, if

A is totally o—Noetherian.

5. Artinian modules everywhere

An A-module M is

e o—Artinian everywhere II whenever M is 7,—Artinian for every finitely
generated ideal a ¢ L(0).
e totally c—Artinian everywhere II whenever M is totally 7,—Artinian

for every finitely generated ideal a ¢ L(o).

Similarly, we define c—Artinian everywhere I and totally c—Artinian every-
where I. Obviously, every o—Artinian module everywhere II is o—Artinian every-
where 1.

We have that totally c—Artinian modules everywhere can be characterized, fol-
lowing [1], as follows:

Let X be a family of submodules of £(M).

e The family X is totaly o—cosaturated everywhere if it is totally 7,—
cosaturated for every ideal a € L¢(A) \ L(0).

e An element N € X is totally o—minimal everywhere if it is totally
To—minimal for every ideal a € L(A) \ L(0).

e The module M satisfies the totally c—minimal condition if every non—
empty family of submodules has a totally c—minimal element, and satis-
fies the totally c—minimal condition everywhere whenever every non—
empty family of submodules has a totally c—minimal everywhere element.

e The module M is totally oc—finitely cogenerated if for every non—empty
family of submodules X, if NX = 0, the intersection of all elements in X is
zero, there exists h € L(o), and a finite subfamily 7 C X such that (NF)h =
0; and it is totally o—finitely cogenerated everywhere whenever if it

is totally 7,—finitely cogenerated for every ideal a € L;(A) \ L(0).
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With these definitions we have the following theorem of characterization of to-
tally o—Artinian modules everywhere. See [1] for totally o—Artinian everywhere I

or Theorem 4.1.

Theorem 5.1. Let M be an A—module, the following statements are equivalent:

(a) M is totally o—Artinian everywhere.

(b) Ewvery non—empty totally o—cosaturated family everywhere X of submodules of
M has a minimal element.

(¢) Every non—empty family of submodules X of M has a totally c—minimal element
everywhere.

(d) Pwvery factor module of M is totally o—finitely cogenerated everywhere.

The behaviour of totally o—Artinian modules everywhere is reflected in the fol-

lowing results.

Lemma 5.2. Let M be an A-module, and N C M a submodule, the following

statements are equivalent:

(a) M is totally o—-Artinian everywhere I1.
(b) N and M/N are totally o—Artinian everywhere II.

Similarly for totally Artinian everywhere 1.

Proof. (a) = (b) Let {H; | i € I} and {K;/N | i € I} be a decreasing chain
of submodules of N and M/N, respectively. Since {H; | i € I} is a chain of
submodules of M, for any a € C(A, o)y, there exist an index j € I, and n € N
such that H;a" C N;H;, so the chain of submodules of N stabilizes. Given that
{K; | i€ I} is a chain of submodules of M, there exist an index j € I, and n € N
such that K;a" C N;K;, whence (%) a” C Ny I]f,, and the chain of submodules of
M/N stabilizes.

(b) = (a) Let {H; | ¢ € I} be a decreasing chain of submodules of M, consider
{H;, "N | i € I} and {(H; + N)/N | i € I} chains of submodules in N and
M/N, respectively. For any ideal a € C(A, o)y, there exist indices ji,j2 € I, and
ni,ny € N, such that (H;, N N)a™ C n;(H; N N), and Wuw - Q%W
Therefore, HZﬁNa”? C ﬂ,% For j > j1,j2, n > ny,ng, and i > j, we have
short exact sequences

QHHZE\N JT H;/(HiNN) ——0

0—=H;NN H; H;/(H; N N) —> 0.
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H-jNa”: Hi and (H; N N)a" = H; N N, we have H;a" = H,. O

Since o0 TN

Lemma 5.3. Let A be a totally o—Artinian ring everywhere II, for any ideal ¢ C A,
the ring A/c is totally o' —Artinian everywhere II, being o’ the induced hereditary
torsion theory in Mod— A/c.

Similarly for totally Artinian everywhere I.

Proof. We have L(¢') = {b/c C A/c| b € L(o)}. In this case, we also have that
b/c € C(A/c,o’) if and only if b € C(A, o). In fact, they are equivalent to the
following property: for any x € A, and any h € L(0), if ) C b, then € b. On the
other hand, for any finitely generated ideal b/c € C'(A4/c,0’), we have b € C(4,0),
and there is a finitely generated ideal b’ C b such that (b’ +¢)/c = b/c.

Let {b;/c | i € I} be a decreasing chain of ideals of A/c; for any a € C(4,0)y,
there are an index j € J, and n € N, such that b;a™ C N;b;. So, (b;/c) ((a"+¢)/c) C
N;(b;/c). Consequently, A/c is totally o’—Artinian everywhere II. a

Corollary 5.4. Let ¢ C A be an ideal such that the A-module A/c is totally o'~
Artinian everywhere II, then A/c is a totally o'—Artinian ring everywhere I1.

Similarly for totally Artinian everywhere I.

Example 5.5. If 0 = o; that is, every A-module is o—torsion—free, or equivalently,
L(o) = {A}, a module M is totally o-Artinian everywhere I if and only if M is

Artinian* in the sense of Ansari and others, [1].
From the definition, it is obvious the following result:

Proposition 5.6. The different classes of Artinian modules are related as follows.

(1) Ewvery o—torsion module is c—Artinian.

(2) Every o—Artinian module is T,—Artinian.

(3) FEvery ,-Artinian module is o—-Artinian everywhere II.
In the case of totally torsion, we also have:

(1) Ewvery totally o—torsion module is totally o—Artinian.
(2’) Every totally o—Artinian module is totally T,—Artinian.

(3’) Bvery totally 7,—Artinian module is totally o—Artinian everywhere I1.

Similarly for totally Artinian everywhere I.

Proof. (1) If M is o—torsion, then C'(M, o) = {M}, hence o—Artinian.
(2) If M is o—Artinian, since o < 7,, we have C(M,7,) C C(M,0), and M is

T,—Artinian.



ARTINIAN RINGS AND MODULES EVERYWHERE 243

We have ¢ < 7,, whence CIY (N) C Clﬂ:[(N) for every submodule N C M, and
CI%(N) = Cli\f(Clg/I(N)), so for any decreasing chain {N; | i € I}, if there exists
j € I such that CI)'(N;) = CLY'(IV;), for any i > j, then C1(N;) = CI2/(N;). In
conclusion, if M is o—Artinian, then M is 7,—Artinian.

(3) Since 7, < 7, for every a ¢ L(0), the same argument as above can be applied.

(1’) and (2’) are obvious.

(3) If M is totally 7,—Artinian, for any decreasing chain of submodules {N; |
i € I}, there exist j € I and h € L(7,) such that N;jh C N;N;; since h € L(7,), for
any a, M is totally o—Artinian everywhere II. ]

t. o-torsion == t. o-art. == t. 7,—art. == t. o-art. every. Il == t. o-art. every. |

ﬂ | ﬂ ﬂ

o-torsion =—= o-art. =———= 7,—art. =——= o—art. every. Il =——= o-art. every. |

Corollary 5.7. For any A-module M, the following statements are equivalent:

(a) M is o—Artinian everywhere II.
(b) M/oM is o—Artinian everywhere II.

Proof. Since oM is always a o—Artinian module everywhere II, the result is a

direct consequence of Lemma 5.2. (Il

Proposition 5.8. If A is a non—local ring, and o the hereditary torsion theory with

L(o) = {A}, then the following statements are equivalent:

(a) M is Artinian.
(b) M is totally o—Artinian everywhere II.
)

(¢c) M is totally o-Artinian everywhere I.

See also [2, Theorem 3.21].

Proof. (a) = (b) = (c) are clear. To prove that (c) = (a), consider a decreasing
chain of submodules, {N; | i« € I} of M; for any finitely generated ideal a C A
such that a # A, there exist j, € I and n, € N such that N; a"¢ C N;N;. Define
b= ,am. If b # A, there exists a maximal ideal m D b, whence a C m, for all

a # A. Since A is non—local, we have a contradiction. On the other hand, if b = A,

there are finitely many ideals as, ..., a; such that 22:1 aZ“’L = A. Consequently,
if j = max{ja,,...,Ja, } and n = max{ng,,...,ngq,}, then N; C N;a} C N;N;; that
is Nj = N;N;, and the decreasing chain stabilizes. O

Proposition 5.9. Let o be a finite type hereditary torsion theory in Mod— A such

that A is not o—local, then the following statements are equivalent:
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(a) M is totally o—Artinian.
(b) M is totally o—Artinian everywhere I1.

(¢c) M is totally o—Artinian everywhere I.

Proof. (a) = (b) = (c) are obvious. On the other hand, to prove that (c) =
(a), consider a decreasing chain of submodules {N; | ¢ € I}. For any finitely
generated ideal a € A such that a ¢ L(o), there exist by, € L(0), ngy € N and
ja € I such that N, (bga)™ C M;N;. Define b = > {(bqa)" | a ¢ L(o)}. If
b ¢ L(0), there is n € Max(C(A4, o)) such that b C n; therefore, for any a ¢ L(0),
we have a C n, hence A is o—local, which is a contradiction. Otherwise, if b € L(0),
there is h € L(0), finitely generated, such that h C b, so there are ideals a;; such
that a;,A ¢ L(0), j = 1,...,t, such that h C Z;Zl(b% aij)"“ij, whence for any
k € I such that i; < k, we have Nph C N;N;. In conclusion, the decreasing chain
{N; | i € I} is totally o—stable; therefore, M is totally o—Artinian. O

This result can be extended to consider o—local rings, in the following sense:

Proposition 5.10. Let A be a o—local ring such that 7, is of finite type, for any

A-module M, the following statements are equivalent:

(a) M is totally o—-Artinian everywhere.
(b) M is totally To—Artinian.

Similar to Proposition 4.4.

Proposition 5.11. If A is a totally c—Artinian ring everywhere I, then dim, (A) =
0, and every element of K(o) is a mazimal ideal of A; that is K(o) C Max(A).

Proof. Let pg S py ideals in K(o). Consider the ring A/po and ¢’ the induced
hereditary torsion theory in Mod—A/py. Since A/pg is a o’—Artinian ring ev-
erywhere and 0 # p1/po C A/po is a prime ideal in K(o’), we can rename A/pg
as A, and consider an integral domain o—Artinian everywhere with prime ideals
0,p € K(o), and p # 0.

For any 0 # x € p, let us consider the decreasing chain x4 O 24 D ---. By
the hypothesis, since A ¢ L(o), there are an index j € N, and m € N, such that
(#9 A)z™ C N,2™A. Then we have 2/tMmA = 2™+ A and there is z € A such
that 277" = z7+7*1y: that is, 1 = a2y, and 2 € A is invertible. In consequence,
p = A, which is a contradiction.

In conclusion, the integral domain A is a field and each ideal pg € K(o) is a
maximal ideal; that is, (o) C Max(A), and the o—dimension of A is 0. O
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Now we can extend this result to modules as follows.
Lemma 5.12. For any A-module M, we have Supp(c M) C Z(0).

Corollary 5.13. If M is a non o—torsion totally o —Artinian module everywhere I,
then the o—dimension of M is zero, and Supp(M) N K (o) C Max(A).

Proof. Let M be a non o-torsion A-module, and p € Supp(M) N K(o); there
exists 0 # m € M such that Ann(m) C p. Then mA = A/ Ann(m) is a totally
o—Artinian A-module everywhere I, whence A/ Ann(m) is a totally ¢’—Artinian
ring everywhere I, so K(o’) C Max(A/ Ann(m)). Consequently, p € Max(A4). O

Proposition 5.14. If A is a totally c—-Artinian ring everywhere I, then K(o) is
finite, and if A is o-local, then K(o) is a singleton.

Proof. If K(o) is not local, then A is o—Artinian, and KC(o) is finite.
If K(o) is local, since dim(K(0)) = 0, K(o) = {m} is a singleton. O

Proposition 5.15. [Nakayama-like lemma] Let M be a o—finitely generated mod-
ule, and a C NC(o); if Ma = M, then M is o—torsion.

Proof. Suppose that M is not o—torsion, and consider
I'={NS M| M/N is o-torsionfree};

given that oM € T, then I # @. For any ascending chain {N; | i € I} in T', we
have U;N; € T" because o is of finite type. By Zorn’s lemma, there are maximal
elements in I'. For any N € I maximal, and any submodule N ; H C M, we have
M/H is o-torsion.

On the other hand, for any submodule N ; H C M, we have that H/N is o—
torsionfree, and any proper quotient is o—torsion. In particular, for any m € M \ N,
we have that (N : m) € C(A4,0) is maximal, hence p := (N : m) C A is a prime
ideal. For any 0 # x+ N € M/N, we also have (x + N)p = 0, so p annihilates
M/N.

Consequently, for any ideal a C NC(o), we have a C p, hence Ma C Mp C N #

M, which is a contradiction. Therefore, M must be o—torsion. O
The property totally o—Artinian everywhere is inherited by localization.

Proposition 5.16. Let A be a totally o—-Artinian ring and m € K(co), then Ay, is

totally o—Artinian everywhere.
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Proof. Let {b; | i € I} be a chain in Ay, and a; = A71(b;), for any i € I,
being A : A — Ay, the canonical map. For any 0 # a/s € mA,,, given that
aA ¢ L(o), there are j € I and m € N such that a;a™ C N;a;. Consequently,
bj(a/s) C N;b,. O

Theorem 5.17. If A is a totally o—Artinian ring everywhere which is not o—local,
then the following statements hold:

(1) K(o) =C(0) C Max(A) is finite.

2

(2) 0 =15.
(3) Ewery totally o—Artinian module everywhere is totally o—Artinian.
(4)

4) If K(o) = {my,...,my}, there is a commutative diagram
o(A) A ‘ [T'_, Am, — Coker(¢) —= 0
Im(p)

and b € L(o) such that (]_[fz1 Am,)bh C Im(p).

Proof. (1) is a direct consequence of Propositions 5.11 and 5.14 and Corollary
5.13.

(2) is a consequence of Proposition 3.9.

(3) is a consequence of Proposition 5.9.

(4) We can apply [6, Proposition 2.8], where we have that every local ring Ay,
is totally o—Artinian, hence local Artinian, and A is totally o 4\m,—Artinian.

In particular, A is totally c—Noetherian and o A is totally o—torsion. O

Following this approach to the totally c—Artinian everywhere structure, an in-

depth study of local totally o—Artinian rings everywhere remains to be carried out.

Theorem 5.18. If A is 0-local, the following statements are equivalent:

(a) A is totally o—Artinian everywhere.
(b) 7o =1, for every a € L§(A)\ L(0).
(c) For every a € L\ L(0), there is n € N such that a™ C o A.

In particular, 7, = 1.

Proof. (a) = (b) We have K(o) = C(0) = {m} is unitary. For any a € L;\ L(0),
since a € m, we have K(r,) = @. Since 7, is of finite type, 74 = AM{oa\, | p €
K(re)} =1.

(b) & (c) = (a) are straightforward. O
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Corollary 5.19. If A is a local ring and o = o, then the ring A is totally o-Artinian
everywhere if and only if A\ U(A) C Nil(A).

6. Extensions of finite type hereditary torsion theories

We can extend the construction of 7,, in the o—-local case, to a more general
framework. Thus, starting from a finite type hereditary torsion theory ¢ and any
prime ideal p € K(o), we clone the above construction of 7, to obtain a new
hereditary torsion theory 7,. In particular, we are interested in determining when
this new torsion theory 7 is of finite type.

Given a prime ideal p € Spec(A), define 7, as
L(np) ={b S A|rad(h) 2 p}.
Lemma 6.1. L(n,) is a Gabriel filter, therefore, n, is a hereditary torsion theory.

Proof. Let a € L(n,), and b C A such that for all a € a, we have (b : a) € L(n,).
For any z € p, there exists n € N such that = € a, whence (b : ™) € L(n,), and
p C rad(b : z™); therefore, there exists m € N such that ™ € (b : ™). Thus we
have z™2™ € b. This means that p C rad(b), and b € L(n,). O

Let us consider

Z(np) = {q € Spec(A) | g =rad(q) 2 p} = V(p), and
K(ny) = {a € Spec(4) | q =rad(q) 2 p} = X(p)-

Therefore, we have 1, < AM{oa\q | g € K(np)}; furthermore, we have the equality.
Lemma 6.2. 7, is half-centered, i.e., ny = NMoag | 9€ K(np)}.

Proof. Given h € L(Aca\q) for every q € K(n,), we have h ¢ q, whence b is an

intersection of prime ideals in Z(n,); since each of them contains p, p C rad(h). O

A sufficient condition to be 7, of finite type is that p is a finitely generated ideal.

We can even characterize when 7, is of finite type as follows.

Proposition 6.3. Let p C A be a prime ideal, the following statements are equiv-

alent:
(a) np is of finite type.
(b) p is the radical of a finitely generated ideal.

Proof. (a) = (b) Since p € L(7n,), there is h C A finitely generated such that
h C p. Since rad(h) D p, rad(h) = p.
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(b) = (a) Let h € L(ny), and ¢ € A finitely generated such that rad(¢) = p,
whence £ € £(n,) and £ C rad(h), then there exists n € N such that £ C . In

conclusion, 7, is of finite type. O

Note that we have 7, is of finite type if and only if p is the radical of a finitely
generated ideal if and only if K(n,) is quasi-compact. Sufficient conditions for n,
to be of finite type are that Spec(A) is a Noetherian topological space, or A is a

Noetherian ring.

Example 6.4. Let A = FgN) + Fo,

e p= IFgN), and

e p,=(1—emn)A, em = (6mi)i, for any m € N,
are the prime ideals of A.

In this case, we have:

o K(ny) ={a S Al q#p}={pn|neN}, and
o K(mp,)={aCAlqg#pn}=1{p}U{pn|neN\{m}}

The basic open subsets of Spec(A) are:

e X(a) = {pn € Spec(A) | a, # 0}, for any a € p; it has finitely many
elements.
e If a ¢ p, then a is finally constant equal to 1; let k¥ € N such that a5, = 1
for any h > k, and ap, = 0 if h < k. Since a € p,, whenever a,, = 0,
X(a) S {p}Uipn [ h >k}
In consequence, KC(n,) is not quasi-compact, and K(1,,, ) is quasi-compact for every
m € N.
We have that

® 1), is not of finite type. On the contrary, let p be the radical of a finitely
generated ideal; hence there are e, ..., e; € p such that rad(ey,...,e) = p,
then rad(3 ;_,e;) = p, which is a contradiction because rad(zzfzo e;) =
PO (Nisehi),

e since p,, is finitely generated, 7, is of finite type for any m € N.

More in general, let o be a finite type hereditary torsion theory; for any prime
ideal p € K(o), consider P = {a C A | a € Lf(A), a C p}. In this situation, if
L(og) ={h C A|a™ Ch, for any n € N}, then we have

Lemma 6.5. 1, = A{oq |a € L;(A), aCp}.
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Proof. For any h € L(n,), given that rad(h) 2 p, and for any a € P, we have
a C p, then a C rad(h), so there exists n € N such that a™ C h. Therefore, h € o,.
In conclusion, 7, < Apog.

Given h € Apay, for any a € P, there is n € N such that a™ C . Let us define
¢ = > pa™. By the hypothesis, ¢ C p. For any x € p, there is n € N such that
x™ € ¢, whence rad(c) = p, and ¢ € £(n,). In conclusion, Apo, = n,. Therefore,
7y is the wedge of finite type hereditary torsion theories, defined by multiplicative
subsets. O

Consequently, if n, is of finite type, there exists h € L(n,) N L#(A) such that
h C p; given that rad(h) O p, then p = rad(h). In particular, n, = oy. See
Proposition 6.3.

Once we have the hereditary torsion theory n,, we define a new one 7, as follows:

Tp = 0 V 1p. This new hereditary torsion theory satisfies:
K(rp) = K(e) N X(p) and  Z(7y) = Z(0) UV(p).
In addition, we have the following description:
Ty =0V, =0V (Apog) =Ap(oVog).

Consequently, 7, is a wedge of finite type hereditary torsion theories.
Since ¢ and o, are finite type hereditary torsion theories, the Gabriel filter of

Ta = 0 A 04 is easily described:
L(1q) ={h C A| there exist h; € L(o) and n € N such that h;a" C h}.

A similar description for 7, is possible whenever n, is of finite type.

Since 7, is an intersection of finite type hereditary torsion theories, it is half-
centered (an intersection of hereditary torsion theories 0 4\4 for a family of prime
ideals q). Consequently, 7, is of finite type if and only if IC(7,) is quasi-compact.

Our aim is to give sufficient conditions on p so that 7, is a finite type hereditary
torsion theory.

Note that K(7,) = K(o) N X (p), since (o) is quasi-compact, it is enough to
check that X (p) is quasi-compact; this is the case if p is the radical of a finitely
generated ideal, as we saw before. A stronger condition p = rad, (), for some

finitely generated ideal £ C A, gives the same result.

Proposition 6.6. If p = rad,(t), for some finitely generated ideal ¢ C A, then T,
is of finite type.
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Proof. If a C A, then K(o) N V(a) = K(o) N V(Cl2(a)). In fact, given that
a C Cl?(a) we have an inclusion. On the other hand, for any q € K(o) NV (a),
since a C q, we have C12(a) C g, and q € K(0) NV (Cl2(a)). In particular we have:

K(o) N X(a) = K(0) N X(Cl2(a)).

Since ¢ is of finite type, rad,(a) = rad(Cl2(a)), so if p = rad,(¢), then p =
rad(C12(€)), so X (p) = X (C12(¢)), and we have:

K(ry) =K(o) N X(p) =K(o) N X(C1A(®) = K(o) N X (k).
Since X (¥) is quasi-compact, 7, is of finite type. a

Example 6.7. Let A = FgN) + F3, and 0 = o.
e L(ny) = {p, A} is not of finite type; K(n,) = {p. | n € N} is a Noetherian

topological space; p is neither finitely generated, nor the radical of a finitely
generated ideal; the localization A,, = Hom(p, A).

e For any m € N: L(n,,,) = {(1 —emn)A, A} is of finite type; K(n,,,) =
{p}U{pn | n € N\{m}} is not a Noetherian space; p,, is finitely generated;

the localization A,, = Hom(p,,,A) is isomorphic to A.

In the case in which (o) is a Noetherian space, see [5], we have that any
p € K(0o) is the o—radical of a finitely generated ideal.

In this case, K(o) is Noetherian, the process initiated in Section 3, see Proposi-
tions 3.9 and 3.11, can be carried out more generally. For any sequence of prime
ideals {p; | ¢ = 1,...,n} in K(o) such that p,+1 € K(7p,), for any index i < n, we
obtain an ascending chain of finite type hereditary torsion theories o, 7p,,...,7p,,.
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