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Abstract. For any commutative ring A, the finiteness conditions are a useful

tool for approximating its structure. These finiteness conditions are reflected

in some way in its spectrum; for example, if A is a Noetherian ring, then

Spec(A) is a Noetherian topological space; the converse is not necessarily true.

Noetherianness of Spec(A) has an interesting consequence in the behaviour

of hereditary torsion theories in Mod–A: they are of finite type; that is,

for any hereditary torsion theory σ in Mod–A there exists a cofinal set of

L(σ) consisting of finitely generated ideals. The aim of this work is to study

rings and modules via finite type hereditary torsion theories. Therefore, we

restrict ourselves to considering hereditary torsion theories defined by finitely

generated ideals and finiteness conditions relative to these theories, extending

some type of rings and modules as (totally) Noetherian, (totally) Artinian or

Artinian∗.
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1. Introduction

One of the techniques for studying commutative rings is to consider their spectra

since the spectrum of a commutative ring contains enough information about the

ring itself; this is the case for a Noetherian or Artinian ring. Furthermore, Spec(A)

has information in other weaker cases; for example, if Spec(A) is a Noetherian topo-

logical space. For every Noetherian ring A, the spectrum Spec(A) is a Noetherian

topological space, but the converse does not necessarily hold; another example of

a ring with a Noetherian spectrum are Laskerian rings (see [3], [8]). Our goal is to

delve deeper into the study of rings with Noetherian spectra.

Since in every Noetherian topological space, every open set is quasi–compact,

every prime ideal is the radical of a finitely generated ideal, and the converse also
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holds. For more general sets as generically closed subsets K ⊆ Spec(A), since they

are an intersection of open subsets, they also are quasi–compact subsets whenever

Spec(A) is Noetherian.

Generically closed subsets appear in the following example: for any prime ideal

p ∈ Spec(A), the multiplicative subset Σ = A \ p defines a hereditary torsion

theory σA\p with Gabriel filter L(σA\p) = {h ⊆ A | h ⊈ p}. In general, a

hereditary torsion theory σ is defined by its Gabriel filter L(σ), and produces a

partition of Spec(A) in two subsets K(σ) and Z(σ) = Spec(A) ∩ L(σ), being K(σ)

closed under generalizations. Furthermore, for any prime ideal p ∈ K(σ), we have

σ ≤ σA\p; that is, L(σ) ⊆ L(σA\p), so σ ≤ ∧{σA\p | p ∈ K(σ)}. The equality holds

for half–centered hereditary torsion theories. On the other hand, for any closed

under generalization subset K ⊆ Spec(A), if K is quasi–compact, then ∧p∈KσA\p

satisfies the following property: for every ideal k ∈ L(∧p∈K(σΣ)σA\p), there exists

h ∈ L(∧p∈KσA\p) finitely generated such that h ⊆ k; that is, ∧p∈KσA\p is a finite

type hereditary torsion theory.

The most known example of a finite type hereditary torsion theory is provided

by a multiplicative subset Σ ⊆ A; thus, for the hereditary torsion theory σΣ, the

Gabriel filter has a basis constituted by principal ideals; K(σΣ) = {p ∈ Spec(A) |
p ∩ Σ = ∅} is quasi–compact, and σΣ = ∧p∈KσA\p.

We shall use quasi–compact subsets of Spec(A), hence half–centered finite type

hereditary torsion theories, for studying commutative rings and finiteness condi-

tions.

If A is a Noetherian or Artinian commutative ring with respect to a hereditary

torsion theory σ, then σ is of finite type; in consequence, the background on finite

type hereditary torsion theories will be an excellent tool to study finiteness condi-

tions, as is the Noetherian condition on Spec(A) or on the generically closed subset

K(σ) ⊆ Spec(A).

To do this, in Section 2, starting from a finitely generated ideal a ⊆ A we

construct a finite type hereditary torsion theory σa with Gabriel filter

L(σa) = {h ⊆ A | there exists n ∈ N such that an ⊆ h},

and we extend this definition to any set S of finitely generated ideals. Given a

finite type hereditary torsion theory σ, we have a plethora of finite type hereditary

torsion theories {σa | a ∈ Lf (A) \ L(σ)}, properly containing σ, and a hereditary

torsion theory τσ, defined as the intersection ∧a∈Lf (A)\L(σ)σa.

After studying properties relative to hereditary torsion theories in the set {σa |
a ∈ Lf (A)\L(σ)}, we compare them with properties of τσ. This is the main aim of
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Sections 3 in which we work some examples, and 4, where we study the Noetherian

case. In Section 5 we extend some result of [1] on Artinian∗ rings and modules;

the Artinian case, which has the particularity that its dimension is zero, hence

elements in K(σ) are maximal and minimal. In these sections, we consider finite

type hereditary torsion theories extensions of a torsion theory σ, and particularize

to the case where σ = o.

In Section 6, we consider a more general context. Given a finite type hereditary

torsion theory σ, and the partition Spec(A) = K(σ) ∪ Z(σ), for any prime ideal

p ∈ K(σ), we build a new hereditary torsion theory τp = σ ∨ ηp, satisfying K(τp) =

K(σ) \X(p). In this way, for prime ideals p1, p2 ∈ K(σ) such that p2 ∈ K(τp1
), we

obtain a chain of hereditary torsion theories σ ≤ τp1 ≤ τp2 whenever τp1 is of finite

type: that is, whenever K(τp1
) is quasi–compact. A sufficient condition is that p1

be the σ–radical of a finitely generated ideal, in order to obtain a filtration of finite

type hereditary torsion theories σ ≤ τp1
≤ τp2

≤ · · · , and so on, in order to verify

the properties of A by studying this filtration. It should be noted that this has

applications if K(σ) is a Noetherian ring, since in the latter case every hereditary

torsion theory τ ≥ σ is of finite type.

2. A new hereditary torsion theory

We work on a commutative ring A, in the category of A–modules and with hered-

itary torsion theories in Mod–A. Each hereditary torsion theory σ is determined

by a class of modules Tσ, which is closed under submodules, homomorphic images,

group extensions and direct sums: the torsion class, or equivalently by a torsionfree

class: Fσ.

For any module M , there is a submodule σM ⊆ M maximal among those be-

longing to Tσ: therefore, M ∈ Tσ if and only if σM = M , and M ∈ Fσ if and only

if σM = 0. Furthermore, σ is determined by a filter of ideals L(σ) = {h ⊆ A |
A/h ∈ Tσ}, characterized by the following property: for any ideal a ⊆ A, if there

is an ideal h ∈ L(σ) such that (a : h) ∈ L(σ) for any h ∈ h, then a ∈ L(σ). In

consequence, σM = {m ∈ M | (0 : m) ∈ L(σ)} for any module M . More about

hereditary torsion theories can be found in [4] and references therein.

Let σ ≤ τ be hereditary torsion theories in Mod–A, for any A–module M , if

M is totally σ–Noetherian, then it is totally τ–Noetherian. The same holds if we

consider the σ–Artinian property. Our interest lies in the inverse problem; that is,

if M is totally τ–Noetherian, when is it totally σ–Noetherian?
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With this generality, the problem only concerns the properties of σ and τ ; in

a more general context, we want to characterize, in terms of σ, when a module is

totally σ–Noetherian for all hereditary torsion theories τ > σ.

In [4], it is proved that if the ring A is totally σ–Noetherian, then the hereditary

torsion theory σ is of finite type, and trivially holds if we are studying the problem

with respect to a multiplicatively closed subset S ⊆ A: S–Noetherian modules.

Therefore, it makes sense for the torsion theory σ to be of finite type. This re-

striction is enforced by the fact that every totally S–Artinian ring is also totally

S–Noetherian.

Thus we shall consider a finite type hereditary torsion theory σ in Mod–A, and

finite type hereditary torsion theories τ > σ.

Recall that every finite type hereditary torsion theory σ is determined by its

Gabriel filter L(σ); furthermore, for any ideal a ⊆ A we have:

Lemma 2.1. For any ideal a ⊆ A, we represent by σa the smallest hereditary

torsion theory σ such that a ∈ L(σ). The Gabriel filter of σa is

L = {h ⊆ A | there exists n ∈ N such that an ⊆ h}

whenever a is finitely generated. If a is not finitely generated, we only have the

inclusion “L ⊆ L(σa)”.

Proof. In the case where a is finitely generated, let h ∈ L, and c ⊆ A such that

(c : h) ∈ L for any h ∈ h. We can assume that h = ⟨h1, . . . , ht⟩ is finitely generated.

For any i = 1, . . . , t there exists ni ∈ N such that ani ⊆ (c : hi), so that ∩ia
ni ⊆

∩i(c : hi) = (c : h). Therefore, h(∩ia
ni) ⊆ c, and c ∈ L. □

We can extend this result to consider a set S of finitely generated ideals.

Given a set S of finitely generated ideals of A, we define a new hereditary torsion

theory σS as follows:

σS = ∨{σa | a ∈ S}.

If ⟨S⟩ is the family of all products of elements of S, then we have:

σS = ∨a∈Sσa ≤ σ⟨S⟩,

and since a1a2 ∈ σS for any a1, a2 ∈ S, the equality holds; that is, σS = σ⟨S⟩. The

Gabriel filter of σS is

L(σS) = {a ⊆ A | there exist a1, . . . , at ∈ S such that a1 · · · at ⊆ a}.
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In particular, given a finite type hereditary torsion theory σ, we can take S =

Lf (σ) (the set of all finitely generated ideals in L(σ)), and relate properties of σ with

properties of σa, for any a ∈ Lf (σ). In fact, we have: σ = ∨{σa | a ∈ Lf (σ)} = σS .

Lemma 2.2. For any two finitely generated ideals a1, a2 ⊆ A, the following state-

ments hold:

(1) If a1 ⊆ a2, then σa2
≤ σa1

.

(2) σa1
∨ σa2

= σa1a2
.

(3) σa1 ∧ σa2 = σa1+a2 .

Proof. We call σai
= σi, for i = 1, 2. Since σi is of finite type, σi = ∧{σA\p | p ∈

K(σi)}, being
K(σi) = {p ∈ Spec(A) | ai ⊈ p},
Z(σi) = {p ∈ Spec(A) | ai ⊆ p}.

In addition, σ is of finite type, if and only if σ = ∧K(σ)σA\p and K(σ) ⊆ Spec(A)

is quasi–compact.

(1) It is clear that if a1 ⊆ a2, then a2 ∈ L(σ1), hence σ2 ≤ σ1.

(2) Since σi ≤ σ1 ∨ σ2, we have ai ∈ L(σ1 ∨ σ2), and a1a2 ∈ L(σ1 ∨ σ2). On

the other hand, K(σ1 ∨ σ2) = K(σ1) ∩ K(σ2) = {p ∈ Spec(A) | a1, a2 ⊈ p} = {p ∈
Spec(A) | a1a2 ⊈ p} = K(σa1a2

). Thus we have

σa1a2
≤ σ1 ∨ σ2 ≤ ∧K(σa1a2

)σA\p.

Since a1a2 is finitely generated, σa1a2 is of finite type and the equality holds.

(3) We have σ1 ∧ σ2 = ∧{σA\p | p ∈ K(σ1) ∪ K(σ2)}, so it is half–centered. On

the other hand, since the finite union of quasi–compact subsets is quasi–compact,

σ1 ∧ σ2 is of finite type.

We have Z(σ1 ∧ σ2) = Z(σ1) ∩ Z(σ2) = {p ∈ Spec(A) | a1 + a2 ⊆ p}, hence
σa1+a2

⊆ σ1 ∧ σ2. If h ∈ L(σ1 ∧ σ2), there exists n ∈ N such that ani ⊆ h, hence

(a1 + a2)
2n ⊆ h, and we have the equality σ1 ∧ σ2 = σa1+a2

. □

For any A–module M , we define:

• C(M,σ) = {N ⊆ M | M/N ∈ Fσ}, and
• L(M,σ) = {N ⊆ M | M/N ∈ Tσ}.

Given a submodule N ⊆ M , the σ–closure of N in M is ClMσ (N), which is

defined by the equation

σ(M/N) = ClMσ (N)/N.

The set L(M,σ) is a filter in the lattice L(M) of all submodules of M , and

C(M,σ) is a lattice with operations:
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• N1 ∨N2 = ClMσ (N1 +N2) for any N1, N2 ∈ C(M,σ), and

• N1 ∧N2 = N1 ∩N2 for any N1, N2 ∈ C(M,σ).

In the following, we assume σ is a finite type hereditary torsion theory in

Mod–A.

As we have seen above, if σ is a finite type hereditary torsion theory, then σ is

completely determined by the finitely generated ideals in the Gabriel filter; now we

will study what happens with the hereditary torsion theories that extend σ.

Theorem 2.3. Let σ be a finite type hereditary torsion theory. For any finitely

generated ideal a ⊆ A, consider the hereditary torsion theory σa, and define τa =

σ ∨ σa. The following assertions hold:

• If a ∈ L(σ), then τa = σ.

• If a /∈ L(σ), then τa > σ.

In any case, the description of τa is as follows:

L(τa) = {b ⊆ A | there exist h ∈ L(σ), and n ∈ N such that han ⊆ b}.

Furthermore, the following statements hold:

(1) b ∈ L(τa) if and only if ClAσ (b) ∈ L(τa) for any ideal b ⊆ A.

(2) Given ideals a1, a2 ⊆ A, we have:

a1a2 ⊆ a1Cl
A
σ (a2) ⊆ ClAσ (a1)Cl

A
σ (a2) ⊆ ClAσ (a1a2).

(3) For any finitely generated ideal a ⊆ A, we have τa = τClAσ (a).

Proof. (1) We only need to prove the sufficient condition. If ClAσ (b) ∈ L(τa), hence,
for every x ∈ ClAσ (b), we have (b : x) ∈ L(σ) ⊆ L(τa); therefore, ClAσ (b) ∈ L(τa).

(2) Let x1 ∈ ClAσ (a1), and x2 ∈ ClAσ (a2); there is h ∈ L(σ) such that xih ⊆
ClAσ (ai), for i = 1, 2, so x1x2h

2 ⊆ a1a2, and x1x2 ∈ ClAσ (a1a2).

(3) Given that a ⊆ ClAσ (a), we have the inclusion: τClAσ (a) ⊆ τa. On the other

hand, if h ∈ τa, there are b ∈ L(σ), and n ∈ N such that ban ⊆ h; so

bClAσ (a)
n ⊆ ClAσ (ba

n) ⊆ ClAσ (h).

Therefore, ClAσ (h) ∈ L(τClAσ (a)); in consequence, h ∈ L(τClAσ (a)). □

The last result in (3) is natural because τa subsumes the σ–closure.

Given a family of finitely generated ideals S = {ai | i ∈ I and ai ∈ Lf (A) \
L(σ)}, we define τS = ∧{τa | a ∈ S}. Therefore, for any ideal a ∈ S, we have

σ ≤ τS ≤ τa.
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In the case where S = Lf (A) \L(σ); that is, S is the set of all finitely generated

ideals a ⊆ A such that a /∈ L(σ), the hereditary torsion theory τS is represented as

τσ. We ask whether τσ is of finite type.

Consider the set {a ∈ A | aA /∈ L(σ)}; our first objective will be to relate τσ

and the hereditary torsion theory ∧{τa | aA /∈ L(σ)}.

Proposition 2.4. With the above notation τσ = ∧{τa | aA /∈ L(σ)}.

Proof. For any a ∈ Lf (A) \ L(σ), we have τa ≤ τa, for any a ∈ a such that

aA /∈ L(σ), therefore, τa ≤ ∧{τa | a ∈ a}. On the other hand, if b ∈ ∧τa, and
a1, . . . , at ∈ a is a system of generators of a, for any index i ∈ I, there are hi ∈ L(σ),
and ni ∈ N such that hia

ni
i ⊆ b. If n > n1 + · · · + nt, then h1 · · · htan ⊆ b, so

b ∈ L(τa). Consequently, τa = ∧{τa | a ∈ a}, and we obtain τσ = ∧{τa | aA /∈
L(σ)}. □

Let M be an A–module, and consider an abstract property of modules, we say

M has the

• σ–property everywhere-II whenever M has the τa–property for every

finitely generated ideal a ∈ Lf (A) \ L(σ).
• σ–property everywhere-I whenever M has the τa–property for every

a ∈ A such that aA /∈ L(σ).

Our goal is to relate the σ–property, the τσ–property and the σ–properties every-

where.

In particular, we are interested in the following properties: Noetherian, totally

Noetherian, Artinian, totally Artinian, and so on, and its relationships with the

theoretical frameworks of hereditary torsion theory mentioned above.

Remark 2.5. As mentioned above, another problem that interests us is to de-

termining when τσ is of finite type. Recall that σ is of finite type and that

τσ = ∧{τa | aA /∈ L(σ)}, where each τa is of finite type, but τσ is not neces-

sarily so.

3. Examples

For every finitely generated ideal a ⊆ A such that a /∈ L(σ), we have the following
hereditary torsion theories: σ ≤ τσ ≤ τa. By Theorem 2.3, we can consider a =

ClAσ (a); therefore, an element of C(A, σ) that is σ–finitely generated. We can

represent by C(A, σ)f the set of all σ–finitely generated σ–closed ideals of A.

The simplest case is when σ = o; that is, L(o) = {A}, or equivalently, 0 is the

only torsion module. Let us study in this case τo.
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Proposition 3.1. In the above situation, we have one of the following possibilities:

(1) o ̸= τo; whence A is a local ring with maximal ideal m, and

L(τo) = {h ⊆ A | rad(h) = m}.

(2) L(τo) = {A}, if A is not local.

Proof. (1) If there exists h ∈ L(τo) \ {A}, let m ⊆ A be a maximal ideal such that

m ⊇ h. Let A∗ be the set of all regular elements of A. For any a ∈ A∗ \ U(A),

given that τo ≤ τa, there exists m ∈ N such that am ∈ h ⊆ m, so a ∈ m; therefore,

m is the only maximal ideal of A; that is, A is a local ring with maximal ideal m.

Similarly, for any prime ideal p ∈ Z(τo) and any a ∈ A∗ \ U(A), we also have

a ∈ p; therefore, p = m, and Z(τo) = {m}.
Since Z(τo) = {m}, for any h ∈ L(τo), we have rad(h) = m. The converse is also

true; in fact, if rad(h) = m, for any a ∈ m = A \ U(A), there exists m ∈ N such

that am ∈ h, so h ∈ L(τo),

L(τo) = {h ⊆ A | rad(h) = m}.

Is τo necessarily of finite type? The answer is No, see Example 3.2 below.

(2) We have the following equivalent statements:

(a) A is not local.

(b) For any maximal ideal m ⊆ A, there exists a ∈ A∗ \ U(A) such that a /∈ m.

(c) For any maximal ideal m ⊆ A, there exists a ∈ A∗ \ U(A) such that am /∈ m,

for any m ∈ N.
(d) Z(τo) = ∅.

(e) τo = o. □

Observe that in the local case, we also have:

Z(τo) = {m},
K(τo) = Spec(A) \ {m}.

First, we aim to study when τo is of finite type. Recall that if τo is of finite type,

then K(τo) is quasi–compact. We will prove that, in general, this is not the case.

Example 3.2. Consider the lexicographical order in the group G = Z(N), and

the field K = C(Xn | n ∈ N). There is a valuation v on K over C such that

v(Xn) = en = (ein)i ∈ G. Let V be the valuation ring and m its maximal ideal.

We have: m = (Xn | n ∈ N). Since e0 > e1 > e2 > · · · , there is a strictly

increasing chain of ideals:

(X0) ⫋ (X1) ⫋ (X2) ⫋ · · · .
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If pn = rad(Xn), there is a strictly increasing chain of prime ideals: p0 ⫋ p1 ⫋ p2 ⫋
· · · . Consequently, V has infinite Krull dimension, and m is not finitely generated.

We assert that Y = Spec(V ) \ {m} is not quasi–compact. In fact, if Y is quasi–

compact, there are elements y1, . . . , ys ∈ V such that Y = X(y1) ∪ . . . ∪ X(ys),

so there is y ∈ V such that Y = X(y) = {p ∈ Spec(V ) | y /∈ p}, which is a

contradiction.

To complete this example we can show that in this case τo is not of finite type.

For any ideal a ∈ L(τo), we have rad(a) = m; if there is a finitely generated ideal

b ⊆ a such that b ∈ L(τo); that is, rad(b) = m, then X(b) = Y which is a

contradiction because b is finitely generated, hence principal.

In fact, we can characterize when τo is of finite type.

Proposition 3.3. If we consider the hereditary torsion theory τo, the following

statements are equivalent:

(a) τo is of finite type.

(b) m is the radical of a finitely generated ideal.

Proof. (a) ⇒ (b) is clear.

(b) ⇒ (a) Let h ∈ L(τo), then rad(h) = m. If k ⊆ A is finitely generated and

rad(k) = m, there is m ∈ N such that km ⊆ h, hence τo is of finite type. □

This result partially answers the question raised in Remark 2.5. In particular,

this is the case when Spec(A) is a Noetherian space in the Zariski topology. See [7,

Proposition 3.2].

Remark 3.4. Consequently, there are three possibilities:

(1) m is finitely generated. In this case L(τ0) = {h ⊆ A | m ⊆ h}, and it is of finite

type.

(2) m is not finitely generated but there exists h ⊆ A finitely generated such that

rad(h) = m. In this case L(τo) is of finite type. See Example 3.5 below.

(3) There is no h ⊆ A finitely generated such that rad(h) = m. In this case τo is

not of finite type. See Example 3.2 above.

Example 3.5. Consider a valuation domain V with value group (Q,+,≤) and

maximal ideal m. We have that m is not finitely generated, but it is the radical of

a finitely generated ideal.

Let us consider the following example related to (2) in Remark 3.4.
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Example 3.6. Let K be a field and A = K[xn | n ∈ N] =
K[Xn | n ∈ N]
⟨Xn+1

n | n ∈ N⟩
. The

ring A has a unique prime ideal, therefore, maximum: m = ⟨xn | n ∈ N⟩ ⊆ A. For

any finitely generated ideal a ∈ Lf (A)\{A}, given that a is nilpotent, then σa = 1;

that is, every A–module is σa–torsion, so τo = 1. In particular, m ∈ L(τo), and
L(τo) is different from the set {h ⊆ A | there exists n ∈ N such that mn ⊆ h}.

Relative to a hereditary torsion theory. A similar result can be realized if

we consider a finite type hereditary torsion theory σ instead of o, as we will show

below.

An element N ∈ C(M,σ) is maximal whenever N ̸= M and for any X ∈
C(M,σ) if N ⊆ X, then either X = M or N = X.

Lemma 3.7. Let σ be a (non–necessarily of finite type) hereditary torsion theory,

if a ∈ C(A, σ) is maximal, then a ⊆ A is a prime ideal and a ∈ K(σ).

Proof. We just need to show that a ⊆ A is a prime ideal. Let a1, a2 ⊆ A such

that a1a2 ⊆ a and a ⫋ a1, a2. By the maximality of a, we have a1, a2 /∈ C(M,σ),

but ClAσ (a1),Cl
A
σ (a1) ∈ C(M,σ), so ClAσ (a1) = A = ClAσ (a2), and a1, a2 ∈ L(σ);

therefore, a1a2 ∈ L(σ), which is a contradiction. □

The set of all maximal elements in C(A, σ), or in K(σ), is denoted by C(σ).
In the case of finite type hereditary torsion theories, we can say more about the

maximal elements in C(A, σ).

Proposition 3.8. Let σ be a finite type hereditary torsion theory, for any a /∈ L(σ),
there is c ∈ C(A, σ), maximal, such that c ⊇ a. In particular, c ∈ K(σ) is maximal.

Proof. For any a /∈ L(σ), we have ClAσ (a) ̸= A belongs to C(A, σ). If we consider

the family Γ = {c ∈ C(A, σ) | c ⊇ a}, we assert that Γ is inductive. In fact, it is

non–empty, and for any ascending chain {ci | i ∈ I} in Γ, the union ∪ici belongs

to Γ. Otherwise, there is an element a ∈ A \ ∪ici, and an ideal h ∈ L(σ) such that

ah ⊆ ∪ici; since we can take h finitely generated, there exists an index j ∈ I such

that ah ⊆ cj , so a ∈ cj ⊆ ∪ici, which is a contradiction by Zorn’s lemma. □

If σ is a hereditary torsion theory in Mod–A, the ring A is called σ–local

whenever the set K(σ) has a unique maximal element; that is, C(σ) is a unitary set.

Proposition 3.9. Let σ be a finite type hereditary torsion theory, then either

(1) σ ̸= τσ; hence A is σ–local with C(σ) = {m}, and L(τσ) = {h ⊆ A | rad(h) =

m} ∪ L(σ).
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(2) σ = τσ, if A is not σ–local.

Proof. (1) If σ ̸= τσ, there exists h ∈ L(τσ)\L(σ); let m ∈ C(σ) be such that h ⊆ m.

For any a ∈ A such that aA /∈ L(σ), there exists m ∈ N such that am ∈ h ⊆ m;

therefore, m is the only element of C(σ). Therefore, A is σ–local.

For any prime ideal p ∈ Z(τσ), we also have p = m; whence Z(τσ) = {m}, and
for any h ∈ L(τσ), we have rad(h) = m.

On the other hand, if h ⊆ A and rad(h) = m, for any a ∈ A such that aA /∈ L(σ),
we have a ∈ m, hence there exists ma ∈ N such that ama ∈ h. Therefore, h ∈ L(τσ).
In this case, we have

L(τσ) = {h ⊆ A | rad(h) = m} ∪ L(σ).

(2) We have the following equivalent statements:

(a) Z(τσ) = Z(σ).

(b) For any p ∈ C(σ), there exists a ∈ A such that aA /∈ L(σ) and a /∈ p.

(c) For any p ∈ C(σ), there exists a ∈ A such that aA /∈ L(σ) and am /∈ p for any

m ∈ N.
(d) C(σ) has more than one element.

(e) A is not σ–local. □

In the non σ–local case we have σ = τσ, in the σ–local case we have:

Z(τσ) = Z(σ) ∪ {m},
K(τσ) = K(σ) \ {m}.

Example 3.10. Let A = F(N)
2 + F2 whose maximal ideals are:

• p = F(N)
2 ,

• pm = (1− em)A, being em = (δm,i)i for any m ∈ N.

If σ = σA\pm
, then A is σ–Noetherian, hence pm is σ–finitely generated, and σ is

of finite type.

Since K(σ) = {pm}, we have K(τσ) = ∅, and τσ = 1.

It is also possible to determine when τσ is of finite type.

Proposition 3.11. If we consider the hereditary torsion theory τσ, the following

statements are equivalent:

(a) τσ is of finite type.

(b) m is the radical of a finitely generated ideal.

(c) m is the radical of a σ–finitely generated ideal.
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Proof. (a)⇒ (b) If τσ is of finite type, given that m ∈ L(τσ), there exists h ∈ L(τσ),
finitely generated, such that h ⊆ m, whence rad(h) = m.

(b) ⇒ (a) Let h ∈ L(τσ), then rad(h) = m = rad(k) for some finitely generated

ideal k ⊆ A. Since k ⊆ rad(h), there exists n ∈ N such that kn ⊆ h, and τσ is of

finite type.

(b) ⇒ (c) is obvious.

(c) ⇒ (b) By the hypothesis, there are k ⊆ h ⊆ m such that: k ⊆ A is finitely

generated, h/k is σ–torsion, rad(h) = m. From the short exact sequence 0 → k →
h → h/k → 0, since h ∈ L(τσ), and h/k is τσ–torsion, we have that k ∈ L(τσ),
whence rad(k) = m. □

4. Noetherian modules everywhere

Recall that an A–module M is totally σ–Noetherian everywhere II when-

ever is totally τa–Noetherian for every ideal a ∈ Lf (A) \ L(σ), and similarly for

totally σ–Noetherian everywhere I. Hereinafter, we shall refer them simply as to-

tally σ–Noetherian everywhere.

We have that totally σ–Noetherian modules everywhere can be characterized,

similarly to [1], as follows:

Let X be a family of submodules of L(M).

• The family X is totaly σ–saturated everywhere if it is totally τa–

saturated for every ideal a ∈ Lf (A) \ L(σ).
• An element N ∈ X is totally σ–maximal everywhere if it is totally

τa–maximal for every ideal a ∈ Lf (A) \ L(σ).
• The module M satisfies the totally σ–maximal condition if every non–

empty family of submodules has a totally σ–maximal element, and satisfies

the totally σ–maximal condition everywhere whenever every non–

empty family of submodules has a totally σ–maximal everywhere element.

• The module M is totally σ–finitely generated if for every non–empty

family of submodules X if
∑

X = M , the sum of all element of F isM , there

exists h ∈ L(σ), and a finite subfamily F ⊆ X such that (
∑

F)h = M ; and

it is totally σ–finitely generated everywhere whenever if it is totally

τa–finitely generated for every ideal a ∈ Lf (A) \ L(σ).

With these definitions, we have the following characterization theorem for totally

σ–Noetherian modules everywhere.

Theorem 4.1. Let M be an A–module, the following statements are equivalent:

(a) M is totally σ–Noetherian everywhere.
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(b) Every non–empty totally σ–saturated family everywhere X of submodules of M

has a maximal element.

(c) Every non–empty family of submodules X of M has a totally σ–maximal ele-

ment everywhere.

(d) Every submodule of M is totally σ–finitely generated everywhere.

Proof. (a) ⇒ (b) Let Γ be a non–empty totally σ–saturated family everywhere of

submodules of M ; for any ascending chain {Ni | i ∈ I}, and any a ∈ Lf (A) \L(σ),
there exist ja ∈ I and ha ∈ L(τa) such that

∑
i Niha ⊆ Nja . Since Nja ∈ Γ, we

have
∑

i Ni ∈ Γ. Finally, by Zorn’s lemma, Γ has maximal elements.

(b) ⇒ (c) Given Γ, a non–empty family of submodules of M , define

Ω = {N ⊆ M | ∃H ∈ Γ such that ∀a ∈ Lf (A) \ L(σ),∃ha ∈ L(τa) such that Nha ⊆ H}.

We can assume that H ⊆ N . We have Γ ⊆ Ω, and Ω is totally σ–saturated

everywhere. In fact, if L,N ⊆ M , N ∈ Ω, and for any a ∈ Lf (A) \ L(σ), there
exists ha ∈ L(τa) such that Lha ⊆ N , there exist H ∈ Γ and ka ∈ L(τa) such that

Nka ⊆ H, whence Lhaka ⊆ Nka ⊆ H, and L ∈ Ω.

By the hypothesis, there exists N ∈ Ω, maximal, and there exists H ∈ Γ,

such that for any a ∈ Lf (A) \ L(σ), there exists an ideal ha ∈ L(τa) such that

Nha ⊆ H; we can assume N ⊇ H, as N + H ∈ Ω. Now we check that H ∈ Γ is

totally σ–maximal. If there is L ∈ Γ such that H ⊆ L, then N + L ∈ Ω because

(N +L)ha ⊆ Nha +L ⊆ H + L = L; by the maximality of N ∈ Ω, we have L = N ,

hence Lha = Nha ⊆ H.

(c) ⇒ (d) Let {Ni | i ∈ I} be the family of finitely generated submodules

of M , and consider Γ =
{∑

j∈F Nj | F ⊆ I finite
}
. By assumption, there exists

N =
∑

j∈F Nj ∈ Γ that is totally σ–maximal everywhere. For any index i ∈ I \ F ,

we have N + Nj ∈ Γ, hence, for any a ∈ Lf (A) \ L(σ), there is ha ∈ L(τa) such

that (N + Nj)ha ⊆ N ; that is, Niha ⊆ N , and we have Mha = (
∑

i Ni) ha ⊆ N .

Therefore, M is totally σ–finitely generated everywhere.

(d) ⇒ (a) For any ascending chain of submodules {Ni | i ∈ I} of M , define

N =
∑

i Ni ⊆ M , which is totally σ–finitely generated everywhere. There exists

H ⊆ N finitely generated such that for any a ∈ Lf (A)\L(σ), there exists ha ∈ L(τa)
such that Nha ⊆ H ⊆ N . Therefore, there exists j ∈ I such that H ⊆ Nj , and we

have
∑

i Niha ⊆ Nj . □

If σ is a finite type hereditary torsion theory, for every ideal a /∈ L(σ), there is

an ideal m ∈ C(σ) such that a ⊆ m.

We know the following implications with σ–Noetherian modules:

M is Noetherian ⇒ M is totally σ–Noetherian ⇒ M is totally σ–Noetherian everywhere.
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The converse not necessarily holds. In a particular case we have:

Proposition 4.2. Let A be a non σ–local ring, then every totally σ–Noetherian

module everywhere is totally σ–Noetherian.

Proof. Let {Ni | i ∈ I} be an ascending chain of submodules of M . For every ideal

a ∈ Lf (A) \ L(σ), there exist ja ∈ I and ha ∈ L(τa) such that (
∑

i Ni) ha ⊆ Nja .

We define h =
∑

{ha | a ∈ Lf (A) \ L(σ)}. If h /∈ L(σ), there is m ∈ C(σ)
such that h ⊆ m; therefore, for every a ∈ Lf (A) \ L(σ), there exist ka ∈ L(σ),
and na ∈ N such that kaa

na ⊆ ha ⊆ h ⊆ m, hence a ⊆ m, which is a contradiction.

Consequently, h ∈ L(σ), and there exist finitely many a1, . . . , at ∈ Lf (A)\L(σ) such
that h′ =

∑t
j=1 haj

∈ L(σ). If we take j = max{ja1
, . . . , jat

}, then (
∑

i Ni) h
′ ⊆ Nj ,

and M is totally σ–Noetherian. □

Let A be a ring and σ a hereditary torsion theory in Mod–A, for any A–module

M , we define the σ–dimension of M as the dimension of Supp(M) ∩ K(σ). In a

similar way, the σ–dimension of A is the dimension of K(σ). The σ–dimension of

M is represented by dimσ(M).

Corollary 4.3. Given a totally σ–Noetherian ring A, we have that τσ is of finite

type whenever either A is not σ–local or K(A) has dimension zero.

Proof. If A is not σ–local, τσ = σ is of finite type. If A is σ–local and C(σ) = {m},
then L(τσ) = {h ⊆ A | rad(h) = m}; given that m ∈ C(A, σ), there exists a

finitely generated ideal k ⊆ A such that ClAσ (k) = m. For any h ∈ L(τσ), we have

k ⊆ rad(h), whence there is n ∈ N such that kn ⊆ h; since K(σ) is zero–dimensional,

then rad(kn) = m, and kn ∈ L(τσ). □

We discuss now the relationship between totally τσ–Noetherian, and totally σ–

Noetherian everywhere in the case of σ–local rings.

Proposition 4.4. Let A be a σ–local ring such that τσ is of finite type, for any

A–module M , the following statements are equivalent:

(a) M is totally σ–Noetherian everywhere.

(b) M is totally τσ–Noetherian.

Proof. Since τσ ≤ τa for any ideal a ∈ Lf (A) \ L(σ), we have (b) ⇒ (a).

(a) ⇒ (b) Let {Hi | i ∈ I} be an ascending chain of submodules of M ; for any

a ∈ Lf (A) \ L(σ), there are ha ∈ L(τa), and ja ∈ I such that (
∑

i Hi) ha ⊆ Hja . If

we define h =
∑

a ha, then h ∈ L(τσ).
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Since τσ is of finite type, there is k ⊆ h such that k ∈ L(τσ), and k ⊆ A is finitely

generated. Therefore, there are j1, . . . , jt ∈ I such that k ⊆
∑t

n=1 hajn
; therefore,

f =
∑t

n=1 hajn
∈ L(τσ). If we take j = max{ja1 , . . . , jat}, then (

∑
i Hi) f ⊆ Hj ,

and M is totally τσ–Noetherian. □

As a consequence of Proposition 3.11, we have that if C(σ) = {m}, then τσ is of

finite type, provided that m is the radical of a σ–finitely generated ideal; therefore,

the previous proposition holds in the following cases: Spec(A) is Noetherian or, with

more generality, whenever K(σ) is Noetherian. See [5] Jara et al. In particular, if

A is totally σ–Noetherian.

5. Artinian modules everywhere

An A–module M is

• σ–Artinian everywhere II whenever M is τa–Artinian for every finitely

generated ideal a /∈ L(σ).
• totally σ–Artinian everywhere II whenever M is totally τa–Artinian

for every finitely generated ideal a /∈ L(σ).

Similarly, we define σ–Artinian everywhere I and totally σ–Artinian every-

where I. Obviously, every σ–Artinian module everywhere II is σ–Artinian every-

where I.

We have that totally σ–Artinian modules everywhere can be characterized, fol-

lowing [1], as follows:

Let X be a family of submodules of L(M).

• The family X is totaly σ–cosaturated everywhere if it is totally τa–

cosaturated for every ideal a ∈ Lf (A) \ L(σ).
• An element N ∈ X is totally σ–minimal everywhere if it is totally

τa–minimal for every ideal a ∈ Lf (A) \ L(σ).
• The module M satisfies the totally σ–minimal condition if every non–

empty family of submodules has a totally σ–minimal element, and satis-

fies the totally σ–minimal condition everywhere whenever every non–

empty family of submodules has a totally σ–minimal everywhere element.

• The module M is totally σ–finitely cogenerated if for every non–empty

family of submodules X , if ∩X = 0, the intersection of all elements in X is

zero, there exists h ∈ L(σ), and a finite subfamily F ⊆ X such that (∩F)h =

0; and it is totally σ–finitely cogenerated everywhere whenever if it

is totally τa–finitely cogenerated for every ideal a ∈ Lf (A) \ L(σ).
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With these definitions we have the following theorem of characterization of to-

tally σ–Artinian modules everywhere. See [1] for totally σ–Artinian everywhere I

or Theorem 4.1.

Theorem 5.1. Let M be an A–module, the following statements are equivalent:

(a) M is totally σ–Artinian everywhere.

(b) Every non–empty totally σ–cosaturated family everywhere X of submodules of

M has a minimal element.

(c) Every non–empty family of submodules X of M has a totally σ–minimal element

everywhere.

(d) Every factor module of M is totally σ–finitely cogenerated everywhere.

The behaviour of totally σ–Artinian modules everywhere is reflected in the fol-

lowing results.

Lemma 5.2. Let M be an A–module, and N ⊆ M a submodule, the following

statements are equivalent:

(a) M is totally σ–Artinian everywhere II.

(b) N and M/N are totally σ–Artinian everywhere II.

Similarly for totally Artinian everywhere I.

Proof. (a) ⇒ (b) Let {Hi | i ∈ I} and {Ki/N | i ∈ I} be a decreasing chain

of submodules of N and M/N , respectively. Since {Hi | i ∈ I} is a chain of

submodules of M , for any a ∈ C(A, σ)f , there exist an index j ∈ I, and n ∈ N
such that Hja

n ⊆ ∩iHi, so the chain of submodules of N stabilizes. Given that

{Ki | i ∈ I} is a chain of submodules of M , there exist an index j ∈ I, and n ∈ N
such that Kja

n ⊆ ∩iKi, whence
(

Kj

N

)
an ⊆ ∩i

Ki

N , and the chain of submodules of

M/N stabilizes.

(b) ⇒ (a) Let {Hi | i ∈ I} be a decreasing chain of submodules of M , consider

{Hi ∩ N | i ∈ I} and {(Hi + N)/N | i ∈ I} chains of submodules in N and

M/N , respectively. For any ideal a ∈ C(A, σ)f , there exist indices j1, j2 ∈ I, and

n1, n2 ∈ N, such that (Hj1 ∩ N)an1 ⊆ ∩i(Hi ∩ N), and
(Hj2+N)

N an2 ⊆ ∩i
(Hi+N)

N .

Therefore,
Hj2

Hj2
∩N an2 ⊆ ∩i

Hi

Hi∩N . For j ≥ j1, j2, n ≥ n1, n2, and i ≥ j, we have

short exact sequences

0 // Hi ∩N //
� _

��

Hi
//

� _

��

Hj/(Hi ∩N) //
� _

��

0

0 // Hj ∩N // Hj
// Hj/(Hj ∩N) // 0.
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Since
Hj

Hj∩N an = Hi

Hi∩N , and (Hj ∩N)an = Hi ∩N , we have Hja
n = Hi. □

Lemma 5.3. Let A be a totally σ–Artinian ring everywhere II, for any ideal c ⊆ A,

the ring A/c is totally σ′–Artinian everywhere II, being σ′ the induced hereditary

torsion theory in Mod–A/c.

Similarly for totally Artinian everywhere I.

Proof. We have L(σ′) = {b/c ⊆ A/c | b ∈ L(σ)}. In this case, we also have that

b/c ∈ C(A/c, σ′) if and only if b ∈ C(A, σ). In fact, they are equivalent to the

following property: for any x ∈ A, and any h ∈ L(σ), if xh ⊆ b, then x ∈ b. On the

other hand, for any finitely generated ideal b/c ∈ C(A/c, σ′), we have b ∈ C(A, σ),

and there is a finitely generated ideal b′ ⊆ b such that (b′ + c)/c = b/c.

Let {bi/c | i ∈ I} be a decreasing chain of ideals of A/c; for any a ∈ C(A, σ)f ,

there are an index j ∈ J , and n ∈ N, such that bja
n ⊆ ∩ibi. So, (bj/c) ((a

n+c)/c) ⊆
∩i(bi/c). Consequently, A/c is totally σ′–Artinian everywhere II. □

Corollary 5.4. Let c ⊆ A be an ideal such that the A–module A/c is totally σ′–

Artinian everywhere II, then A/c is a totally σ′–Artinian ring everywhere II.

Similarly for totally Artinian everywhere I.

Example 5.5. If σ = o; that is, every A–module is σ–torsion–free, or equivalently,

L(o) = {A}, a module M is totally o–Artinian everywhere I if and only if M is

Artinian* in the sense of Ansari and others, [1].

From the definition, it is obvious the following result:

Proposition 5.6. The different classes of Artinian modules are related as follows.

(1) Every σ–torsion module is σ–Artinian.

(2) Every σ–Artinian module is τσ–Artinian.

(3) Every τσ–Artinian module is σ–Artinian everywhere II.

In the case of totally torsion, we also have:

(1’) Every totally σ–torsion module is totally σ–Artinian.

(2’) Every totally σ–Artinian module is totally τσ–Artinian.

(3’) Every totally τσ–Artinian module is totally σ–Artinian everywhere II.

Similarly for totally Artinian everywhere I.

Proof. (1) If M is σ–torsion, then C(M,σ) = {M}, hence σ–Artinian.

(2) If M is σ–Artinian, since σ ≤ τσ, we have C(M, τσ) ⊆ C(M,σ), and M is

τσ–Artinian.
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We have σ ≤ τa, whence ClMσ (N) ⊆ ClMτa (N) for every submodule N ⊆ M , and

ClMτa (N) = ClMτa (Cl
M
σ (N)), so for any decreasing chain {Ni | i ∈ I}, if there exists

j ∈ I such that ClMσ (Nj) = ClMσ (Ni), for any i ≥ j, then ClMτa (Nj) = ClMτa (Ni). In

conclusion, if M is σ–Artinian, then M is τσ–Artinian.

(3) Since τσ ≤ τa for every a /∈ L(σ), the same argument as above can be applied.

(1’) and (2’) are obvious.

(3’) If M is totally τσ–Artinian, for any decreasing chain of submodules {Ni |
i ∈ I}, there exist j ∈ I and h ∈ L(τσ) such that Njh ⊆ ∩iNi; since h ∈ L(τa), for
any a, M is totally σ–Artinian everywhere II. □

t. σ–torsion +3

��

t. σ–art. +3

��

t. τσ–art. +3

��

t. σ–art. every. II +3

��

t. σ–art. every. I

��
σ–torsion +3 σ–art. +3 τσ–art. +3 σ–art. every. II +3 σ–art. every. I

Corollary 5.7. For any A–module M , the following statements are equivalent:

(a) M is σ–Artinian everywhere II.

(b) M/σM is σ–Artinian everywhere II.

Proof. Since σM is always a σ–Artinian module everywhere II, the result is a

direct consequence of Lemma 5.2. □

Proposition 5.8. If A is a non–local ring, and o the hereditary torsion theory with

L(o) = {A}, then the following statements are equivalent:

(a) M is Artinian.

(b) M is totally o–Artinian everywhere II.

(c) M is totally o–Artinian everywhere I.

See also [2, Theorem 3.21].

Proof. (a) ⇒ (b) ⇒ (c) are clear. To prove that (c) ⇒ (a), consider a decreasing

chain of submodules, {Ni | i ∈ I} of M ; for any finitely generated ideal a ⊆ A

such that a ̸= A, there exist ja ∈ I and na ∈ N such that Njaa
na ⊆ ∩iNi. Define

b =
∑

a a
na . If b ̸= A, there exists a maximal ideal m ⊇ b, whence a ⊆ m, for all

a ̸= A. Since A is non–local, we have a contradiction. On the other hand, if b = A,

there are finitely many ideals a1, . . . , at such that
∑t

h=1 a
nah

h = A. Consequently,

if j = max{ja1 , . . . , jat} and n = max{na1 , . . . , nat}, then Nj ⊆ Nja
n
h ⊆ ∩iNi; that

is Nj = ∩iNi, and the decreasing chain stabilizes. □

Proposition 5.9. Let σ be a finite type hereditary torsion theory in Mod–A such

that A is not σ–local, then the following statements are equivalent:
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(a) M is totally σ–Artinian.

(b) M is totally σ–Artinian everywhere II.

(c) M is totally σ–Artinian everywhere I.

Proof. (a) ⇒ (b) ⇒ (c) are obvious. On the other hand, to prove that (c) ⇒
(a), consider a decreasing chain of submodules {Ni | i ∈ I}. For any finitely

generated ideal a ∈ A such that a /∈ L(σ), there exist ba ∈ L(σ), na ∈ N and

ja ∈ I such that Nja(baa)
na ⊆ ∩iNi. Define b =

∑
{(baa)na | a /∈ L(σ)}. If

b /∈ L(σ), there is n ∈ Max(C(A, σ)) such that b ⊆ n; therefore, for any a /∈ L(σ),
we have a ⊆ n, hence A is σ–local, which is a contradiction. Otherwise, if b ∈ L(σ),
there is h ∈ L(σ), finitely generated, such that h ⊆ b, so there are ideals aij such

that aijA /∈ L(σ), j = 1, . . . , t, such that h ⊆
∑t

j=1(baij
aij )

naij , whence for any

k ∈ I such that ij < k, we have Nkh ⊆ ∩iNi. In conclusion, the decreasing chain

{Ni | i ∈ I} is totally σ–stable; therefore, M is totally σ–Artinian. □

This result can be extended to consider σ–local rings, in the following sense:

Proposition 5.10. Let A be a σ–local ring such that τσ is of finite type, for any

A–module M , the following statements are equivalent:

(a) M is totally σ–Artinian everywhere.

(b) M is totally τσ–Artinian.

Similar to Proposition 4.4.

Proposition 5.11. If A is a totally σ–Artinian ring everywhere I, then dimσ(A) =

0, and every element of K(σ) is a maximal ideal of A; that is K(σ) ⊆ Max(A).

Proof. Let p0 ⫋ p1 ideals in K(σ). Consider the ring A/p0 and σ′ the induced

hereditary torsion theory in Mod–A/p0. Since A/p0 is a σ′–Artinian ring ev-

erywhere and 0 ̸= p1/p0 ⊆ A/p0 is a prime ideal in K(σ′), we can rename A/p0

as A, and consider an integral domain σ–Artinian everywhere with prime ideals

0, p ∈ K(σ), and p ̸= 0.

For any 0 ̸= x ∈ p, let us consider the decreasing chain xA ⊇ x2A ⊇ · · · . By

the hypothesis, since xA /∈ L(σ), there are an index j ∈ N, and m ∈ N, such that

(xjA)xm ⊆ ∩nx
nA. Then we have xj+mA = xj+m+1A, and there is x ∈ A such

that xj+n = xj+n+1y; that is, 1 = xy, and x ∈ A is invertible. In consequence,

p = A, which is a contradiction.

In conclusion, the integral domain A is a field and each ideal p0 ∈ K(σ) is a

maximal ideal; that is, K(σ) ⊆ Max(A), and the σ–dimension of A is 0. □
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Now we can extend this result to modules as follows.

Lemma 5.12. For any A–module M , we have Supp(σM) ⊆ Z(σ).

Corollary 5.13. If M is a non σ–torsion totally σ–Artinian module everywhere I,

then the σ–dimension of M is zero, and Supp(M) ∩ K(σ) ⊆ Max(A).

Proof. Let M be a non σ–torsion A–module, and p ∈ Supp(M) ∩ K(σ); there

exists 0 ̸= m ∈ M such that Ann(m) ⊆ p. Then mA ∼= A/Ann(m) is a totally

σ–Artinian A–module everywhere I, whence A/Ann(m) is a totally σ′–Artinian

ring everywhere I, so K(σ′) ⊆ Max(A/Ann(m)). Consequently, p ∈ Max(A). □

Proposition 5.14. If A is a totally σ–Artinian ring everywhere I, then K(σ) is

finite, and if A is σ–local, then K(σ) is a singleton.

Proof. If K(σ) is not local, then A is σ–Artinian, and K(σ) is finite.

If K(σ) is local, since dim(K(σ)) = 0, K(σ) = {m} is a singleton. □

Proposition 5.15. [Nakayama–like lemma] Let M be a σ–finitely generated mod-

ule, and a ⊆ ∩C(σ); if Ma = M , then M is σ–torsion.

Proof. Suppose that M is not σ–torsion, and consider

Γ = {N ⫋ M | M/N is σ–torsionfree};

given that σM ∈ Γ, then Γ ̸= ∅. For any ascending chain {Ni | i ∈ I} in Γ, we

have ∪iNi ∈ Γ because σ is of finite type. By Zorn’s lemma, there are maximal

elements in Γ. For any N ∈ Γ maximal, and any submodule N ⫋ H ⊆ M , we have

M/H is σ–torsion.

On the other hand, for any submodule N ⫋ H ⊆ M , we have that H/N is σ–

torsionfree, and any proper quotient is σ–torsion. In particular, for anym ∈ M \N ,

we have that (N : m) ∈ C(A, σ) is maximal, hence p := (N : m) ⊆ A is a prime

ideal. For any 0 ̸= x+N ∈ M/N , we also have (x + N)p = 0, so p annihilates

M/N .

Consequently, for any ideal a ⊆ ∩C(σ), we have a ⊆ p, hence Ma ⊆ Mp ⊆ N ̸=
M , which is a contradiction. Therefore, M must be σ–torsion. □

The property totally σ–Artinian everywhere is inherited by localization.

Proposition 5.16. Let A be a totally σ–Artinian ring and m ∈ K(σ), then Am is

totally o–Artinian everywhere.
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Proof. Let {bi | i ∈ I} be a chain in Am, and ai = λ−1(bi), for any i ∈ I,

being λ : A −→ Am the canonical map. For any 0 ̸= a/s ∈ mAm, given that

aA /∈ L(σ), there are j ∈ I and m ∈ N such that aja
m ⊆ ∩iai. Consequently,

bj(a/s) ⊆ ∩ibi. □

Theorem 5.17. If A is a totally σ–Artinian ring everywhere which is not σ–local,

then the following statements hold:

(1) K(σ) = C(σ) ⊆ Max(A) is finite.

(2) σ = τσ.

(3) Every totally σ–Artinian module everywhere is totally σ–Artinian.

(4) If K(σ) = {m1, . . . ,mt}, there is a commutative diagram

σ(A) // A
φ //

!!

∏t
i=1 Ami

// Coker(φ) // 0

Im(φ)

99

and h ∈ L(σ) such that (
∏t

i=1 Ami
)h ⊆ Im(φ).

Proof. (1) is a direct consequence of Propositions 5.11 and 5.14 and Corollary

5.13.

(2) is a consequence of Proposition 3.9.

(3) is a consequence of Proposition 5.9.

(4) We can apply [6, Proposition 2.8], where we have that every local ring Ami

is totally o–Artinian, hence local Artinian, and A is totally σA\mi
–Artinian.

In particular, A is totally σ–Noetherian and σA is totally σ–torsion. □

Following this approach to the totally σ–Artinian everywhere structure, an in-

depth study of local totally o–Artinian rings everywhere remains to be carried out.

Theorem 5.18. If A is σ–local, the following statements are equivalent:

(a) A is totally σ–Artinian everywhere.

(b) τa = 1, for every a ∈ Lf (A) \ L(σ).
(c) For every a ∈ Lf \ L(σ), there is n ∈ N such that an ⊆ σA.

In particular, τσ = 1.

Proof. (a) ⇒ (b) We have K(σ) = C(σ) = {m} is unitary. For any a ∈ Lf \ L(σ),
since a ⊆ m, we have K(τa) = ∅. Since τa is of finite type, τa = ∧{σA\p | p ∈
K(τa)} = 1.

(b) ⇔ (c) ⇒ (a) are straightforward. □
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Corollary 5.19. If A is a local ring and σ = o, then the ring A is totally o–Artinian

everywhere if and only if A \ U(A) ⊆ Nil(A).

6. Extensions of finite type hereditary torsion theories

We can extend the construction of τσ, in the σ–local case, to a more general

framework. Thus, starting from a finite type hereditary torsion theory σ and any

prime ideal p ∈ K(σ), we clone the above construction of τσ to obtain a new

hereditary torsion theory τp. In particular, we are interested in determining when

this new torsion theory τp is of finite type.

Given a prime ideal p ∈ Spec(A), define ηp as

L(ηp) = {h ⊆ A | rad(h) ⊇ p}.

Lemma 6.1. L(ηp) is a Gabriel filter, therefore, ηp is a hereditary torsion theory.

Proof. Let a ∈ L(ηp), and b ⊆ A such that for all a ∈ a, we have (b : a) ∈ L(ηp).
For any x ∈ p, there exists n ∈ N such that xn ∈ a, whence (b : xn) ∈ L(ηp), and
p ⊆ rad(b : xn); therefore, there exists m ∈ N such that xm ∈ (b : xn). Thus we

have xnxm ∈ b. This means that p ⊆ rad(b), and b ∈ L(ηp). □

Let us consider

Z(ηp) = {q ∈ Spec(A) | q = rad(q) ⊇ p} = V (p), and

K(ηp) = {q ∈ Spec(A) | q = rad(q) ⊉ p} = X(p).

Therefore, we have ηp ≤ ∧{σA\q | q ∈ K(ηp)}; furthermore, we have the equality.

Lemma 6.2. ηp is half–centered, i.e., ηp = ∧{σA\q | q ∈ K(ηp)}.

Proof. Given h ∈ L(∧σA\q) for every q ∈ K(ηp), we have h ⊈ q, whence h is an

intersection of prime ideals in Z(ηp); since each of them contains p, p ⊆ rad(h). □

A sufficient condition to be ηp of finite type is that p is a finitely generated ideal.

We can even characterize when ηp is of finite type as follows.

Proposition 6.3. Let p ⊆ A be a prime ideal, the following statements are equiv-

alent:

(a) ηp is of finite type.

(b) p is the radical of a finitely generated ideal.

Proof. (a) ⇒ (b) Since p ∈ L(ηp), there is h ⊆ A finitely generated such that

h ⊆ p. Since rad(h) ⊇ p, rad(h) = p.
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(b) ⇒ (a) Let h ∈ L(ηp), and k ∈ A finitely generated such that rad(k) = p,

whence k ∈ L(ηp) and k ⊆ rad(h), then there exists n ∈ N such that kn ⊆ h. In

conclusion, ηp is of finite type. □

Note that we have ηp is of finite type if and only if p is the radical of a finitely

generated ideal if and only if K(ηp) is quasi–compact. Sufficient conditions for ηp

to be of finite type are that Spec(A) is a Noetherian topological space, or A is a

Noetherian ring.

Example 6.4. Let A = F(N)
2 + F2,

• p = F(N)
2 , and

• pm = (1− em)A, em = (δmi)i, for any m ∈ N,

are the prime ideals of A.

In this case, we have:

• K(ηp) = {q ⊆ A | q ̸= p} = {pn | n ∈ N}, and
• K(ηpm) = {q ⊆ A | q ̸= pm} = {p} ∪ {pn | n ∈ N \ {m}}.

The basic open subsets of Spec(A) are:

• X(a) = {pn ∈ Spec(A) | an ̸= 0}, for any a ∈ p; it has finitely many

elements.

• If a /∈ p, then a is finally constant equal to 1; let k ∈ N such that ah = 1

for any h ≥ k, and ah = 0 if h < k. Since a ∈ pn whenever an = 0,

X(a) ⊆ {p} ∪ {ph | h ≥ k}.

In consequence, K(ηp) is not quasi–compact, and K(ηpm
) is quasi–compact for every

m ∈ N.
We have that

• ηp is not of finite type. On the contrary, let p be the radical of a finitely

generated ideal; hence there are e0, . . . , et ∈ p such that rad(e1, . . . , et) = p,

then rad(
∑t

i=0 ei) = p, which is a contradiction because rad(
∑t

i=0 ei) =

p ∩ (∩i>tpi),

• since pm is finitely generated, ηpm is of finite type for any m ∈ N.

More in general, let σ be a finite type hereditary torsion theory; for any prime

ideal p ∈ K(σ), consider P = {a ⊆ A | a ∈ Lf (A), a ⊆ p}. In this situation, if

L(σa) = {h ⊆ A | an ⊆ h, for any n ∈ N}, then we have

Lemma 6.5. ηp = ∧{σa | a ∈ Lf (A), a ⊆ p}.
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Proof. For any h ∈ L(ηp), given that rad(h) ⊇ p, and for any a ∈ P, we have

a ⊆ p, then a ⊆ rad(h), so there exists n ∈ N such that an ⊆ h. Therefore, h ∈ σa.

In conclusion, ηp ≤ ∧Pσa.

Given h ∈ ∧Pσa, for any a ∈ P, there is n ∈ N such that an ⊆ h. Let us define

c =
∑

P an. By the hypothesis, c ⊆ p. For any x ∈ p, there is n ∈ N such that

xn ∈ c, whence rad(c) = p, and c ∈ L(ηp). In conclusion, ∧Pσa = ηp. Therefore,

ηp is the wedge of finite type hereditary torsion theories, defined by multiplicative

subsets. □

Consequently, if ηp is of finite type, there exists h ∈ L(ηp) ∩ Lf (A) such that

h ⊆ p; given that rad(h) ⊇ p, then p = rad(h). In particular, ηp = σh. See

Proposition 6.3.

Once we have the hereditary torsion theory ηp, we define a new one τp as follows:

τp = σ ∨ ηp. This new hereditary torsion theory satisfies:

K(τp) = K(σ) ∩X(p) and Z(τp) = Z(σ) ∪ V (p).

In addition, we have the following description:

τp = σ ∨ ηp = σ ∨ (∧Pσa) = ∧P(σ ∨ σa).

Consequently, τp is a wedge of finite type hereditary torsion theories.

Since σ and σa are finite type hereditary torsion theories, the Gabriel filter of

τa = σ ∧ σa is easily described:

L(τa) = {h ⊆ A | there exist h1 ∈ L(σ) and n ∈ N such that h1a
n ⊆ h}.

A similar description for τp is possible whenever ηp is of finite type.

Since τp is an intersection of finite type hereditary torsion theories, it is half–

centered (an intersection of hereditary torsion theories σA\q for a family of prime

ideals q). Consequently, τp is of finite type if and only if K(τp) is quasi–compact.

Our aim is to give sufficient conditions on p so that τp is a finite type hereditary

torsion theory.

Note that K(τp) = K(σ) ∩ X(p), since K(σ) is quasi–compact, it is enough to

check that X(p) is quasi–compact; this is the case if p is the radical of a finitely

generated ideal, as we saw before. A stronger condition p = radσ(k), for some

finitely generated ideal k ⊆ A, gives the same result.

Proposition 6.6. If p = radσ(k), for some finitely generated ideal k ⊆ A, then τp

is of finite type.
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Proof. If a ⊆ A, then K(σ) ∩ V (a) = K(σ) ∩ V (ClAσ (a)). In fact, given that

a ⊆ ClAσ (a) we have an inclusion. On the other hand, for any q ∈ K(σ) ∩ V (a),

since a ⊆ q, we have ClAσ (a) ⊆ q, and q ∈ K(σ)∩ V (ClAσ (a)). In particular we have:

K(σ) ∩X(a) = K(σ) ∩X(ClAσ (a)).

Since σ is of finite type, radσ(a) = rad(ClAσ (a)), so if p = radσ(k), then p =

rad(ClAσ (k)), so X(p) = X(ClAσ (k)), and we have:

K(τp) = K(σ) ∩X(p) = K(σ) ∩X(ClAσ (k)) = K(σ) ∩X(k).

Since X(k) is quasi–compact, τp is of finite type. □

Example 6.7. Let A = F(N)
2 + F2, and σ = o.

• L(ηp) = {p, A} is not of finite type; K(ηp) = {pn | n ∈ N} is a Noetherian

topological space; p is neither finitely generated, nor the radical of a finitely

generated ideal; the localization Aηp
∼= Hom(p, A).

• For any m ∈ N: L(ηpm
) = {(1 − em)A,A} is of finite type; K(ηpm

) =

{p}∪{pn | n ∈ N\{m}} is not a Noetherian space; pm is finitely generated;

the localization Aηpm
∼= Hom(pm, A) is isomorphic to A.

In the case in which K(σ) is a Noetherian space, see [5], we have that any

p ∈ K(σ) is the σ–radical of a finitely generated ideal.

In this case, K(σ) is Noetherian, the process initiated in Section 3, see Proposi-

tions 3.9 and 3.11, can be carried out more generally. For any sequence of prime

ideals {pi | i = 1, . . . , n} in K(σ) such that pi+1 ∈ K(τpi
), for any index i < n, we

obtain an ascending chain of finite type hereditary torsion theories σ, τp1 , . . . , τpn .
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