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Abstract. Let R be a prime ring of characteristic different from 2, Qm
r be its

maximal right ring of quotients, C be its extended centroid and ω(s1, . . . , sn)

be a noncentral multilinear polynomial over C. Suppose that H1, H2 and H3

are three X-generalized derivations on R. If

H1

(
H2(ω(s1, . . . , sn))ω(s1, . . . , sn)

)
= H3(ω(s1, . . . , sn)

2)

for all s1, . . . , sn ∈ R, then we detail all potential configurations of the maps

H1,H2 and H3.
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1. Introduction

Across this entire work, unless stated differently, we consider R as an associative

prime ring with center Z(R). Let Qm
r be the maximal right ring of quotients of

R. The center of Qm
r is called the extended centroid of R and denoted by C. An

additive map ζ : R → R satisfying ζ(uv) = ζ(u)v+uζ(v), for all u, v ∈ R, is called

a derivation of R. An additive map F : R → R satisfying the condition F(uv) =

F(u)v+uζ(v), for all u, v ∈ R, where ζ : R → R is a derivation of R, is called a gen-

eralized derivation of R. Let ω(s1, . . . , sn) = s1s2 . . . sn +
∑

I ̸=σ∈Sn

ασsσ(1) . . . sσ(n),

where ασ ∈ C and ω(s1, . . . , sn) is a noncentral multilinear polynomial over C in n

noncommuting variables, and let S = {ω(s1, . . . , sn)|s1, . . . , sn ∈ R}.
Let us consider the set P(H1,H2,H3, S) = {H1(H2(s)s)−H3(s

2)|s ∈ S} where

H1,H2,H3 : R → R are three additive maps. Many authors extensively exam-

ined the set P(H1,H2,H3, S). In [6], Dhara and Argac assessed the scenario

P(H1,H2, 0, S) = 0 where H1 and H2 are two generalized derivations and then

they acquired all potential versions of the maps H1 and H2.

In [20], Tiwari evaluated the configuration P(H1,H2,H3, S) = 0, where H1, H2

and H3 are three generalized derivations on R.
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In this current study, we generalize Tiwari’s result [20] to X-generalized deriva-

tions in prime rings. In [13], Kosan and Lee put forward the framework of X-

generalized derivations on R. An additive map Fb : R → Qm
r is called an X-

generalized derivation of R if Fb(uv) = Fb(u)v + bud(v) holds for all u, v ∈ R,

where b ∈ Qm
r and d : R → Qm

r is an additive map. In [13, Theorem 2.3], the

authors proved that if R is a prime ring and b ̸= 0, then the associated map d

must be a derivation of R and the form of the map Fb will be Fb(u) = au+ bd(u)

for all u ∈ R. For some a, b, c ∈ Qm
r , the map Fb(u) = au + buc is an example

of an X-generalized derivation of R, which is also called as an inner X-generalized

derivation of R.

Recently in some papers ([4], [7], [10], [16], [18], [19], [21]), this type of X-

generalized derivations were studied. In the present paper, our goal is to study the

condition

P(H1,H2,H3, S) = 0

where H1, H2 and H3 are three X-generalized derivations on R. With greater

specificity, we prove the following theorem:

Theorem 1.1. Let R be a prime ring of characteristic different from 2, Qm
r be the

maximal right ring of quotients of R and ω(s1, . . . , sn) be a noncentral multilinear

polynomial over C = Z(Qm
r ). Suppose that H1, H2 and H3 are three X-generalized

derivations of R such that

H1

(
H2(ω(s))ω(s)

)
= H3

(
ω(s)2

)
for all s = (s1, . . . , sn) ∈ Rn. Then for all x ∈ R, one of the following holds:

(1) there exist a, b, c, p, b′,m, u ∈ Qm
r and a derivation g such that H1(x) =

ax+ bxc, H2(x) = px+ b′g(x) and H3(x) = mx+ xu with H1(p) = m+ u,

H1(b
′) = bb′ = 0, ap−m, bp ∈ C;

(2) there exist a, b, c, p, q, b′,m ∈ Qm
r such that H1(x) = ax + bxc, H2(x) =

px+ b′xq and H3(x) = mx with H1(p) = m, bp = bb′ = H1(b
′) = 0;

(3) there exist a, b, p, b′,m, b′′ ∈ Qm
r , λ ∈ C and derivations d and g such that

H1(x) = ax+ bd(x), H2(x) = px+ b′g(x) and H3(x) = mx+ λb′′d(x) with

H1(p) = m, bp = λb′′, bb′ = H1(b
′) = 0;

(4) there exist a, b, p, b′,m, b′′, t′ ∈ Qm
r and derivation d such that H1(x) =

ax+ bd(x), H2(x) = px+µb′d(x)+ b′[t′, x] and H3(x) = mx+λb′′d(x) with

H1(p) = m, bp = λb′′, bb′ = H1(b
′) = 0;

(5) R satisfies s4;

(6) ω(s1, . . . , sn)
2 is central valued on R and one of the following holds:
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(a) there exist a, b, c, p,m, b′′, u ∈ Qm
r and a derivation g such that H1(x) =

ax+ bxc, H2(x) = px+ b′g(x) and H3(x) = mx+ b′′xu for all x ∈ R

with H1(p) = m+ b′′u, H1(b
′) = bb′ = 0;

(b) there exist a, b, c, p, q, b′,m, b′′, u ∈ Qm
r such that H1(x) = ax + bxc,

H2(x) = px + b′xq and H3(x) = mx + b′′xu with H1(p) = m + b′′u,

ab′ = 0 = bb′;

(c) there exist a, b, p, b′,m, b′′, q ∈ Qm
r , λ ∈ C and derivations d and g

such that H1(x) = ax + bd(x), H2(x) = px + b′g(x) and H3(x) =

mx+ λb′′d(x) + b′′[q, x] with H1(p) = m, bp = λb′′, bb′ = H1(b
′) = 0;

(d) there exist a, b, c, p, b′,m, b′′, t′ ∈ Qm
r and derivation d such that H1(x) =

ax+bd(x), H2(x) = px+µb′d(x)+b′[t′, x] and H3(x) = mx+λb′′d(x)+

b′′[c, x] with H1(p) = m, bp = λb′′, bb′ = H1(b
′) = 0.

2. The case of inner X-generalized derivations

Let’s begin with some important lemmas. Suppose that R is a noncommutative

prime ring with extended centroid C, ω(s1, . . . , sn) a noncentral multilinear poly-

nomial over C and ξ(s1, . . . , sn) be any polynomial over C, which is not an identity

for R.

Lemma 2.1. Let char (R) ̸= 2, u, v, v′ ∈ R. If

uξ(s) + vξ(s)v′ = 0

for all s = (s1, . . . , sn) ∈ Rn, then one of the following holds:

(1) v′ ∈ C and u+ vv′ = 0;

(2) v = 0 = u;

(3) u+ vv′ = 0 and ξ(s1, . . . , sn) is central valued on R.

Proof. By [5, Lemma 2.9], one of the following holds:

(1) v′ ∈ C and u+ vv′ = 0, as desired.

(2) u, v ∈ C and u + vv′ = 0. In this case vv′ ∈ C. Since v ∈ C, this implies

either v = 0 or v′ ∈ C. If v = 0, we have the conclusion (2) and if v′ ∈ C, we have

the conclusion (1).

(3) u+ vv′ = 0 and ξ(s1, . . . , sn) is central valued on R, as desired. □

Lemma 2.2. [1, Lemma 2.4] Let char (R) ̸= 2 and assume that R does not embed

in M2(E), the algebra of 2 × 2 matrices over some fields E. If a, b, p, q, u, v ∈ R

such that

aω(s)2b+ pω(s)2q = uω(s)2 + ω(s)2v
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for all s = (s1, . . . , sn) ∈ Rn, then one of the following holds:

(1) b, p, ab− u, pq − v ∈ C with ab+ pq = u+ v;

(2) a, q, ab− v, pq − u ∈ C with ab+ pq = u+ v;

(3) b, q, v ∈ C with ab+ pq = u+ v;

(4) a, p, u ∈ C with ab+ pq = u+ v;

(5) there exist 0 ̸= α, λ, µ ∈ C such that a+αp = λ, q−αb = µ and λb−v, µp−
u ∈ C with ab+ pq = u+ v;

(6) ab+ pq = u+ v and ω(s1, . . . , sn)
2 is central valued on R.

Proposition 2.3. Suppose that R = Mt(C) is the ring of all t× t matrices over the

field C with t ≥ 2. Let a, p, b, b′, b′′, q, c,m, u ∈ R and ω(s1, . . . , sn) be a noncentral

multilinear polynomial over C. If R satisfies apω(s)2 + ab′ω(s)qω(s) + bpω(s)2c +

bb′ω(s)qω(s)c −mω(s)2 − b′′ω(s)2u = 0 for all s = (s1, . . . , sn) ∈ Rn, then one of

the following holds:

(1) q ∈ C;
(2) c ∈ C;
(3) bb′ = 0.

Proof. Case-I: Suppose that C is an infinite field.

Let bb′, q, c /∈ Z(R), that is, bb′, q and c are not scalar matrices. By [3, Lemma

1], there exists an invertible matrix Q′ ∈ R such that ϕ(x) = Q′xQ′−1 is an inner

automorphism of R and ϕ(bb′), ϕ(q) and ϕ(c) have all non-zero entries. Clearly, R

satisfies

ϕ(ap)ω(s)2 + ϕ(ab′)ω(s)ϕ(q)ω(s) + ϕ(bp)ω(s)2ϕ(c) +

ϕ(bb′)ω(s)ϕ(q)ω(s)ϕ(c)− ϕ(m)ω(s)2 − ϕ(b′′)ω(s)2ϕ(u) = 0 (1)

for all s = (s1, . . . , sn) ∈ Rn.

Let eij be the matrix whose (i, j)-entry is 1 and the rest entries are zero. Since

ω(s1, . . . , sn) is not central, by [14] (see also [15]), there exist s1, . . . , sn ∈ Mt(C)
and γ ∈ C−{0} such that ω(s1, . . . , sn) = γeij , with i ̸= j. For ω(s1, . . . , sn) = γeij ,

(1) implies

ϕ(ab′)eijϕ(q)eij + ϕ(bb′)eijϕ(q)eijϕ(c) = 0. (2)

Left and right multiplying by eij , we obtain ϕ(bb′)jiϕ(q)jiϕ(c)ji = 0, a contradic-

tion. Thus we conclude that either bb′ or q or c are scalar matrices. If q ∈ C, then
the conclusion (1) is obtained. If c ∈ C, then the conclusion (2) is obtained. Let
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both q, c /∈ C. Then bb′ ∈ C. So we get from the GPI that R satisfies

apω(s)2 + ab′ω(s)qω(s) + bpω(s)2c+ ω(s)qω(s)bb′c−mω(s)2 − b′′ω(s)2u = 0

for all s = (s1, . . . , sn) ∈ Rn. Then by the similar argument above, we get either q

or bb′c ∈ C. Since q /∈ C, we have bb′c ∈ C. So either bb′ = 0 or c ∈ C (since bb′ ∈ C).
Since c /∈ C, we have bb′ = 0 which indicates the conclusion (3).

Case-II: Suppose that C is a finite field.

Let K be an infinite field which is an extension of the field C. Let R = Mt(K) ∼=
R ⊗C K. Now the multilinear polynomial ω(s1, . . . , sn) is central-valued on R if

and only if it is central valued on R. Let

P (s1, . . . , sn) = apω(s1, . . . , sn)
2 + ab′ω(s1, . . . , sn)qω(s1, . . . , sn) +

bpω(s1, . . . , sn)
2c+ bb′ω(s1, . . . , sn)qω(s1, . . . , sn)c−

mω(s1, . . . , sn)
2 − b′′ω(s1, . . . , sn)

2u. (3)

Since the generalized polynomial P (s1, . . . , sn) on R is a multi-homogeneous of

multi-degree (2, . . . , 2) in the indeterminates s1, . . . , sn, the complete linearization

of P (s1, . . . , sn) is a multilinear generalized polynomial Ψ(s1, . . . , sn, x1, . . . , xn) in

2n indeterminates. Moreover

Ψ(s1, . . . , sn, s1, . . . , sn) = 2nP (s1, . . . , sn).

It is clear that the multilinear polynomial Ψ(s1, . . . , sn, x1, . . . , xn) is a gener-

alized polynomial identity for both R and R. Since char(R) ̸= 2, we obtain

P (s1, . . . , sn) = 0 for all s1, . . . , sn ∈ R and then we get conclusions as desired

by Case-I. □

Corollary 2.4. Let R = Mt(C), t ≥ 2 be the ring of all matrices over the field C
with char (R) ̸= 2 and a1, a2, a3, a4, a5, a6, a7, a8, a9 ∈ R. If

a1r
2 + a2ra3r + a4r

2a5 + a6ra3ra5 − a7r
2 − a9r

2a8 = 0

for all r ∈ R, then one of the following holds:

(1) a3 ∈ C;
(2) a5 ∈ C;
(3) a6 = 0.

Lemma 2.5. Let R be a prime ring of char (R) ̸= 2, C the extended centroid of R

and ω(s1, . . . , sn) a non-central multilinear polynomial over C. If a, p, b, b′, b′′, q, c,m, u ∈
R such that R satisfies apω(s)2+ab′ω(s)qω(s)+bpω(s)2c+bb′ω(s)qω(s)c−mω(s)2−
b′′ω(s)2u = 0 for all s = (s1, . . . , sn) ∈ Rn, then one of the following holds:
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(1) q ∈ C;
(2) c ∈ C;
(3) bb′ = 0.

Proof. Let

χ(s1, . . . , sn) = apω(s1, . . . , sn)
2 + ab′ω(s1, . . . , sn)qω(s1, . . . , sn)

+bpω(s1, . . . , sn)
2c+ bb′ω(s1, . . . , sn)qω(s1, . . . , sn)c

−mω(s1, . . . , sn)
2 − b′′ω(s1, . . . , sn)

2u. (4)

Since R and Qm
r satisfy the same generalized polynomial identity (see [2]), Qm

r

satisfies χ(s1, . . . , sn) = 0. Suppose that χ(s1, . . . , sn) = 0 is a trivial GPI with co-

efficients in Qm
r . Then χ(s1, . . . , sn) is the zero element in T = Qm

r ∗C C{s1, . . . , sn},
where T = Qm

r ∗C C{s1, s2, . . . , sn}, the free product of Qm
r and C{s1, . . . , sn}, the

free C-algebra in noncommuting indeterminates s1, s2, . . . , sn.

Here we suppose both bb′ ̸= 0 and c /∈ C and prove that, under this assumption,

q ∈ C follows.

Since (4) is a trivial generalized polynomial identity for Qm
r , {c, u, 1} is linearly

C-dependent, i.e., α1c+ α2u+ α3 = 0. Since c /∈ C, α2 ̸= 0 and hence u = β1c+ β2

for some β1, β2 ∈ C. Hence by (4),

a

(
pω(s)2 + b′ω(s)qω(s)

)
+ b

(
pω(s)2 + b′ω(s)qω(s)

)
c = mω(s)2 + ω(s)2(β1c+ β2)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. Since {c, 1} is linearly C-independent, above

relation yields (
bpω(s)2 + bb′ω(s)qω(s)− β1ω(s)

2
)
c = 0 ∈ T (5)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. Now (5) can be written as(

(bp− β1)ω(s) + bb′ω(s)q

)
ω(s)c = 0 ∈ T

for all s = (s1, . . . , sn) ∈ (Qm
r )n, that is,

(bp− β1)ω(s) + bb′ω(s)q = 0 ∈ T .

This implies q ∈ C, otherwise the contradiction bb′ = 0 follows.

Now let (4) be a non-trivial GPI forQm
r . In case C is infinite, we have χ(s1, . . . , sn)

= 0 for all s1, . . . , sn ∈ Qm
r ⊗C C, where C is the algebraic closure of C. Since both

Qm
r and Qm

r ⊗C C are prime and centrally closed [8, Theorems 2.5 and 3.5], we may

replace R by Qm
r or Qm

r ⊗C C according to C is finite or infinite. Then R is centrally
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closed over C and χ(s1, . . . , sn) = 0 for all s1, . . . , sn ∈ R. By Martindale’s theo-

rem [17], R is then a primitive ring with non-zero socle soc(R) and with C as its

associated division ring. Then, by Jacobson’s theorem [11, p.75], R is isomorphic

to a dense ring of linear transformations of a vector space V over C. We have the

following cases.

Case-I: If V is finite dimensional over C, that is, dimCV = m, then by density

of R, we have R ∼= Mm(C). Since ω(s1, . . . , sn) is not central valued on R, R must

be noncommutative and so m ≥ 2. In this case, by Proposition 2.3, we get one of

the following:

(1) q ∈ C;
(2) c ∈ C;
(3) bb′ = 0.

Case-II: Suppose that V is infinite dimensional over C. Then by [22, Lemma

2], the set ω(R) is dense on R. Then by hypothesis, R satisfies

apr2 + ab′rqr + bpr2c+ bb′rqrc = mr2 + b′′r2u. (6)

If any one of the following holds

(1) q ∈ C;
(2) c ∈ C;
(3) bb′ = 0,

then we get our conclusions. So on contrary, we assume that the following holds

simultaneously:

(1) there exists h1 ∈ soc(R) such that [q, h1] ̸= 0;

(2) there exists h2 ∈ soc(R) such that [c, h2] ̸= 0;

(3) there exists h3 ∈ soc(R) such that bb′h3 ̸= 0.

By Martindale’s theorem [17, Theorem 3], for any e2 = e ∈ soc(R), we have

eRe ∼= Mt(C) with t =dimCV e. By Litoff’s theorem [9], there exists an idempotent

e ∈ soc(R) such that h1, h2, h3, , qh1, h1q, ch2, h2c, bb
′h3, h3bb

′ ∈ eRe. Since R

satisfies generalized identity (6), the subring eRe satisfies

e(ap)er2 + e(ab′)ereqer + e(bp)er2ece+ e(bb′)ereqerece = emer2 + eb′′er2eue.

Then by Corollary 2.4, any one of the following holds:

(1) eqe ∈ eC which contradicts existence of h1;

(2) ece ∈ eC which contradicts existence of h2;

(3) ebb′e = 0 which contradicts existence of h3. □
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In the same manner, we can prove the following lemmas.

Lemma 2.6. Let char (R)̸= 2. If a1, a2, a3, a4, a5, a6, a7 ∈ R such that

a1ω(s)
2 + a2ω(s)a3ω(s) + ω(s)2a4 + a5ω(s)

2a7 = 0

for all s = (s1, . . . , sn) ∈ Rn, then either a3 or a2 is central.

In the subsequent discussion, we presume that for all x ∈ R, H1(x) = ax+ bxc,

H2(x) = px+ b′xq and H3(x) = mx+ b′′xu where a, b, b′, b′′, c, p, q,m, u ∈ Qm
r and

R satisfies

H1

(
H2(ω(s))ω(s)

)
= H3(ω(s)

2)

for all s = (s1, . . . , sn) ∈ Rn which provides

apω(s)2 + ab′ω(s)qω(s) + bpω(s)2c+ bb′ω(s)qω(s)c

−mω(s)2 − b′′ω(s)2u = 0 (7)

where a, b, b′, b′′, c, p, q,m, u ∈ Qm
r . Following these we shall establish the subse-

quent lemmas.

Lemma 2.7. If q ∈ C, then for all x ∈ R, one of the following holds:

(1) H1(x) = (a + bc)x, H2(x) = (p + b′q)x and H3(x) = (m + b′′u)x with

(a+ bc)(p+ b′q) = m+ b′′u;

(2) H1(x) = ax + bxc, H2(x) = (p + b′q)x and H3(x) = mx + xb′′u with

H1(p+ b′q) = m+ b′′u, a(p+ b′q)−m ∈ C, b(p+ b′q) ∈ C;
(3) ω(s1, . . . , sn)

2 is central valued on R and H1(x) = ax + bxc, H2(x) =

(p+ b′q)x and H3(x) = mx+ b′′xu with H1(p+ b′q) = m+ b′′u;

(4) H1(x) = ax + bxc, H2(x) = (p + b′q)x and H3(x) = (m + b′′u)x with

b(p+ b′q) = 0, a(p+ b′q) = m+ b′′u;

(5) R satisfies s4.

Proof. In this case, q ∈ C indicates H2(x) = (p+ b′q)x. Hence (7) turns into

(ap−m+ ab′q)ω(s)2 + (bp+ bb′q)ω(s)2c− b′′ω(s)2u = 0. (8)

Then based on Lemma 2.2, unless R satisfies s4, we derive one of the following:

(1) c, b′′, b′′u, (ap − m + ab′q) + (bp + bb′q)c ∈ C and ap − m + ab′q + (bp +

bb′q)c− b′′u = 0. Thus H1(x) = (a+ bc)x, H2(x) = (p+ b′q)x and H3(x) =

(m + b′′u)x for all x ∈ R with (a + bc)(p + b′q) = m + b′′u. Hence we get

the conclusion (1).
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(2) bp+ bb′q, u, (bp+ bb′q)c, ap−m+ab′q− b′′u ∈ C with ap−m+ab′q− b′′u+

(bp + bb′q)c = 0. This implies bp + bb′q = 0 or c ∈ C. If c ∈ C, then the

conclusion (1) holds. If bp + bb′q = 0, then H1(x) = ax + bxc,H2(x) =

(p + b′q)x,H3(x) = (m + b′′u)x for all x ∈ R with a(p + b′q) = m + b′′u,

b(p+ b′q) = 0. This provides the conclusion (4).

(3) b′′, bp+ bb′q, ap−m+ ab′q ∈ C with ap−m+ ab′q+ (bp+ bb′q)c− b′′u = 0.

Thus H1(x) = ax+ bxc, H2(x) = (p+ b′q)x and H3(x) = mx+xb′′u for all

x ∈ R with a(p+ b′q) + b(p+ b′q)c = m+ b′′u, i.e., H1(p+ b′q) = m+ b′′u

with a(p+ b′q)−m, b(p+ b′q) ∈ C. Then we arrive at the conclusion (2).

(4) c, u ∈ C with ap − m + ab′q + (bp + bb′q)c − b′′u = 0. Thus, H1(x) =

(a+ bc)x, H2(x) = (p+ b′q)x and H3(x) = (m+ b′′u)x for all x ∈ R with

(a+ bc)(p+ b′q) = m+ b′′u. This yields the conclusion (1).

(5) There exist non-zero α, λ, µ ∈ C such that b(p+ b′q)− αb′′ = λ, u− αc = µ

and λc ∈ C. Since λ ̸= 0, c ∈ C and hence u ∈ C. Then as above the

conclusion (1) holds.

(6) ω(R)2 ∈ C and ap −m + ab′q + (bp + bb′q)c − b′′u = 0. This provides the

conclusion (3). □

Lemma 2.8. If c ∈ C, then for all x ∈ R, one of the following holds:

(1) H1(x) = (a + bc)x, H2(x) = (p + b′q)x and H3(x) = (m + b′′u)x with

(a+ bc)(p+ b′q) = m+ b′′u;

(2) H1(x) = (a + bc)x, H2(x) = px + b′xq and H3(x) = (m + b′′u)x with

(a+ bc)b′ = 0, (a+ bc)p = m+ b′′u;

(3) ω(s1, . . . , sn)
2 is central valued on R and H1(x) = (a + bc)x, H2(x) =

px+ b′xq and H3(x) = mx+ b′′xu with (a+ bc)b′ = 0, (a+ bc)p = m+ b′′u;

(4) R satisfies s4.

Proof. Since c ∈ C, we have H1(x) = (a + bc)x for all x ∈ R. Consequently (7)

turns into

(ap−m+ bpc)ω(s)2 + (ab′ + bb′c)ω(s)qω(s)− b′′ω(s)2u = 0. (9)

Then by [20, Lemma 3.3], we get either q ∈ C or (a+ bc)b′ ∈ C. If q ∈ C, then the

conclusions (1) and (4) follow by Lemma 2.7. If (a+ bc)b′ ∈ C, then (9) reduces to

(ap−m+ bpc)ω(s)2 + ω(s)(a+ bc)b′qω(s)− b′′ω(s)2u = 0. (10)

Again this implies (a+bc)b′q ∈ C. This implies (a+bc)b′ = 0 or q ∈ C. If q ∈ C, then
the conclusions (1) and (4) follow by Lemma 2.7. Thus assume that (a+ bc)b′ = 0.
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Hence from above

{ap−m+ bpc}ω(s)2 − b′′ω(s)2u = 0. (11)

Based on Lemma 2.1 for all x ∈ R, one of the following holds:

• u ∈ C with ap−m+ bpc− b′′u = 0, i.e., (a+ bc)p = m+ b′′u. Thus H1(x) =

(a+bc)x, H2(x) = px+b′xq and H3(x) = (m+b′′u)x; which provides the conclusion

(2).

• ap − m + bpc = b′′ = 0. Thus H1(x) = (a + bc)x, H2(x) = px + b′xq and

H3(x) = mx with (a+ bc)p = m; which gives the conclusion (2).

• ω(R)2 ∈ C with ap −m + bpc − b′′u = 0. Thus H1(x) = (a + bc)x, H2(x) =

px+ b′xq and H3(x) = mx+ b′′xu; which yields the conclusion (3). □

Lemma 2.9. If bb′ = 0, then for all x ∈ R, one of the following holds:

(1) H1(x) = (a + bc)x, H2(x) = (p + b′q)x and H3(x) = (m + b′′u)x with

(a+ bc)(p+ b′q) = m+ b′′u;

(2) H1(x) = ax + bxc, H2(x) = (p + b′q)x and H3(x) = mx + xb′′u with

H1(p+ b′q) = m+ b′′u, a(p+ b′q)−m ∈ C, b(p+ b′q) ∈ C;
(3) H1(x) = ax+bxc, H2(x) = (p+b′q)x and H3(x) = (m+b′′u)x with bp = 0,

a(p+ b′q) = m+ b′′u;

(4) H1(x) = (a + bc)x, H2(x) = px + b′xq and H3(x) = (m + b′′u)x with

(a+ bc)b′ = 0, (a+ bc)p = m+ b′′u;

(5) H1(x) = ax + bxc, H2(x) = px + b′xq and H3(x) = (m + b′′u)x with

b′′u+m = ap, bp = 0 = ab′;

(6) H1(x) = ax + bxc, H2(x) = px + b′xq and H3(x) = mx + xb′′u with

bp,m− ap ∈ C, ab′ = 0 and H1(p) = m+ b′′u;

(7) ω(s1, . . . , sn)
2 is central valued on R and H1(x) = ax + bxc, H2(x) =

(p+ b′q)x and H3(x) = mx+ b′′xu with H1(p+ b′q) = m+ b′′u;

(8) ω(s1, . . . , sn)
2 is central valued on R and H1(x) = (a + bc)x, H2(x) =

px+ b′xq and H3(x) = mx+ b′′xu with (a+ bc)b′ = 0, (a+ bc)p = m+ b′′u;

(9) ω(s1, . . . , sn)
2 is central valued on R and H1(x) = ax + bxc, H2(x) =

px+ b′xq and H3(x) = mx+ b′′xu with ap+ bpc = b′′u+m, ab′ = 0;

(10) R satisfies s4.

Proof. Since bb′ = 0, (7) shifted to

(ap−m)ω(s)2 + ab′ω(s)qω(s) + bpω(s)2c− b′′ω(s)2u = 0. (12)

Then applying Lemma 2.6, we get either ab′ ∈ C or q ∈ C. If q ∈ C, then we derive

the conclusions (1), (2), (3), (7) and (10) from Lemma 2.7. If ab′ ∈ C, then from
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(12), we get

(ap−m)ω(s)2 + ω(s)ab′qω(s) + bpω(s)2c− b′′ω(s)2u = 0. (13)

Then from [7, Proposition 2.7], we get ab′q ∈ C. Since q /∈ C, ab′ = 0. Then from

(13),

bpω(s)2c− b′′ω(s)2u = (m− ap)ω(s)2. (14)

If c ∈ C, then we derive the conclusions (1), (4), (8), (10) by using Lemma 2.8.

Thus assume that c, q /∈ C. Hence by Lemma 2.2, for all x ∈ R, we derive one of

the following:

(1) bp, u, bpc, b′′u+m− ap ∈ C with bpc− b′′u−m+ ap = 0. Since bp ∈ C and

c /∈ C, we have bp = 0. Thus H1(x) = ax + bxc, H2(x) = px + b′xq and

H3(x) = (m+ b′′u)x with b′′u+m = ap, bp = 0 = ab′. Hence we conclude

(5).

(2) bp, b′′,m − ap ∈ C with bpc − b′′u −m + ap = 0. Thus H1(x) = ax + bxc,

H2(x) = px+b′xq and H3(x) = mx+xb′′u with bpc+ap = b′′u+m, bp ∈ C,
m− ap ∈ C, ab′ = bb′ = 0. This provides the conclusion (6).

(3) there exist 0 ̸= α, λ1, λ2 ∈ C such that bp − αb′′ = λ1, u − αc = λ2 and

λ1c ∈ C which implies c ∈ C, a contradiction.

(4) ω(R)2 ∈ C with ap+ bpc = m+ b′′u and ab′ = 0. So we conclude (9). □

Lemma 2.10. Let R be a prime ring of characteristic different from 2 and ω(s1, . . . , sn)

be a noncentral multilinear polynomial over C. Suppose that H1, H2 and H3

are three inner X-generalized derivations on R such that H1(H2(ω(s))ω(s)) =

H3(ω(s)
2) for all s = (s1, . . . , sn) ∈ Rn. Then for all x ∈ R, one of the following

holds:

(1) there exist a, b, c, p,m, u ∈ Qm
r such that H1(x) = ax + bxc, H2(x) = px

and H3(x) = mx+ xu with H1(p) = m+ u, ap−m, bp ∈ C;
(2) there exist a, b, c, p, q, b′,m ∈ Qm

r such that H1(x) = ax + bxc, H2(x) =

px+ b′xq and H3(x) = mx with H1(p) = m, bp = bb′ = H1(b
′) = 0;

(3) there exist a, b, c, p, q, b′,m, u ∈ Qm
r such that H1(x) = ax + bxc, H2(x) =

px + b′xq and H3(x) = mx + xu with H1(p) = m + u, bp, ap − m ∈ C,
ab′ = bb′ = H1(b

′) = 0;

(4) R satisfies s4;

(5) ω(s1, . . . , sn)
2 is central valued on R and one of the following holds:

(a) there exist a, b, c, p,m, b′′, u ∈ Qm
r such that H1(x) = ax+bxc, H2(x) =

px and H3(x) = mx+ b′′xu with H1(p) = m+ b′′u;
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(b) there exist a, b, c, p, q, b′,m, b′′, u ∈ Qm
r such that H1(x) = ax + bxc,

H2(x) = px + b′xq and H3(x) = mx + b′′xu with H1(p) = m + b′′u,

ab′ = 0 = bb′.

Proof. Let H1(x) = ax+ bxc, H2(x) = px+ b′xq and H3(x) = mx+ b′′xu for all

x ∈ R, where a, b, b′, b′′, c, p, q,m, u ∈ Qm
r . Then by hypothesis, R satisfies

a
(
pω(s)2 + b′ω(s)qω(s)

)
+ b

(
pω(s)2 + b′ω(s)qω(s)

)
c

= mω(s)2 + b′′ω(s)2u, (15)

that is,

apω(s)2 + ab′ω(s)qω(s) + bpω(s)2c+ bb′ω(s)qω(s)c = mω(s)2 + b′′ω(s)2u (16)

for all s = (s1, . . . , sn) ∈ Rn and so s1, . . . , sn ∈ Qm
r (see [2]).

By Lemma 2.5, we get one of the following:

(1) q ∈ C;
(2) c ∈ C;
(3) bb′ = 0.

If q ∈ C, then by Lemma 2.7, we obtain the conclusions (1), (4) and (5(a)). If

c ∈ C, then by Lemma 2.8, we have the particular case of our conclusions (1), (2)

and (5(b)). If bb′ = 0, then by Lemma 2.9, we have the conclusions (3), (4) and

(5(b)). □

3. The main result

Let d and δ be two derivations on R. We denote by ωd(s1, . . . , sn) the polynomi-

als obtained from ω(s1, . . . , sn) by replacing each coefficients ασ with d(ασ). Then

we have

d(ω(s1, . . . , sn)) = ωd(s1, . . . , sn) +
∑
i

ω(s1, . . . , d(si), . . . , sn)

and

dδ(ω(s1, . . . , sn)) = ωdδ(s1, . . . , sn) +
∑
i

ωd(s1, . . . , δ(si), . . . , sn)

+
∑
i

ωδ(s1, . . . , d(si), . . . , sn) +
∑
i

ω(s1, . . . , dδ(si), . . . , sn)

+
∑
i̸=j

ω(s1, . . . , d(si), . . . , δ(sj), . . . , sn).

Since H1,H2 and H3 are X-generalized derivations of R, there exist derivations d,

g and h of R and a, b, b′, b′′, p,m ∈ Qm
r such that H1(x) = ax + bd(x), H2(x) =

px + b′g(x) and H3(x) = mx + b′′h(x). By hypothesis, we have a
(
pω(s)2 +
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b′g(ω(s))ω(s)
)
+ bd

(
pω(s)2 + b′g(ω(s))ω(s)

)
= mω(s)2 + b′′h(ω(s)2) for all s =

(s1, . . . , sn) ∈ Rn. Since I, R and Qm
r satisfy the same GPIs (see [2]) as well as

the same differential identities (see [14])

a
(
pω(s)2 + b′g(ω(s))ω(s)

)
+ bd

(
pω(s)2 + b′g(ω(s))ω(s)

)
= mω(s)2 + b′′h(ω(s)2) (17)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. If we suppose that d, g, h are all inner derivations

of R, then there are elements q1, q2, q3 ∈ Qm
r such that d(x) = [q1, x], g(x) = [q2, x]

and h(x) = [q3, x] for any x ∈ R. Hence, H1, H2 and H3 are all inner X-generalized

derivations, then by Lemma 2.10, we get the required conclusions. Thus, to prove

our Theorem 1.1, in the sequel we will always assume that d, g and h are not

simultaneously inner derivations. Therefore, we have the following lemmas.

Lemma 3.1. The derivations d and g cannot be simultaneously inner.

Proof. If we assume on the contrary that both d and g are inner derivations of R,

then h must be not inner. Let d(x) = [q, x] and g(x) = [k′, x] for all x ∈ R. Then

(17) reduces to

a
(
pω(s)2 + b′[k′, ω(s)]ω(s)

)
+ b

[
q, pω(s)2 + b′[k′, ω(s)]ω(s)

]
= mω(s)2 + b′′h(ω(s)2) (18)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. Since h is not an inner derivation on Qm

r , by

using Kharchenko’s theorem [12, Theorem 2], we can replace h(ω(s1, . . . , sn)) with

ωh(s1, . . . , sn)+
∑
i

ω(s1, . . . , zi, . . . , sn), where zi = h(si) and then Qm
r satisfies the

blended component

b′′
∑
i

ω(s1, . . . , zi, . . . , sn)ω(s1, . . . , sn)

+b′′ω(s1, . . . , sn)
∑
i

ω(s1, . . . , zi, . . . , sn) = 0. (19)

In particular, for z1 = s1 and zi = 0 for all i ≥ 2, Qm
r satisfies

2b′′ω(s1, . . . , sn)
2 = 0. (20)

Since char(R) ̸= 2, this implies b′′ω(s1, . . . , sn)
2 = 0 and hence b′′ = 0. Then H3

becomes inner and so all X-generalized derivations are inner, a contradiction. □

Lemma 3.2. If d, h are both inner derivations, then one of conclusions (1), (5)

and (6(a)) of Theorem 1.1 holds.
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Proof. Since d is inner, and by Lemma 3.1, we may assume that g is not inner.

Let d(x) = [q, x] and h(x) = [k′, x] for all x ∈ R. Then (17) reduces to

a
(
pω(s)2 + b′g(ω(s))ω(s)

)
+ b

[
q, pω(s)2 + b′g(ω(s))ω(s)

]
= mω(s)2 + b′′[k′, ω(s)2] (21)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. Since g is not an inner derivation on Qm

r , by

using Kharchenko’s theorem [12, Theorem 2], we can replace g(ω(s1, . . . , sn)) with

ωg(s1, . . . , sn) +
∑
i

ω(s1, . . . , yi, . . . , sn), where yi = g(si) in the equation (21) and

then Qm
r satisfies the blended component

ab′
∑
i

ω(s1, . . . , yi, . . . , sn)ω(s1, . . . , sn)

+b
[
q, b′

∑
i

ω(s1, . . . , yi, . . . , sn)ω(s1, . . . , sn)
]
= 0. (22)

In particular, above equation yields

ab′ω(s)2 + b
[
q, b′ω(s)2

]
= 0, (23)

that is,

(ab′ + bqb′)ω(s)2 − bb′ω(s)2q = 0 (24)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. By Lemma 2.1, one of the following holds:

Case 1: q ∈ C and ab′ = 0.

Therefore H1(x) = ax and H1(b
′) = 0. Thus (21) reduces to

apω(s)2 = mω(s)2 + b′′[k′, ω(s)2], (25)

that is,

(ap−m− b′′k′)ω(s)2 + b′′ω(s)2k′ = 0 (26)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. Then based on Lemma 2.1, for all x ∈ R, one of

the following holds:

(1) k′ ∈ C and ap−m = 0. Thus in this case H1(x) = ax, H2(x) = px+ b′g(x)

and H3(x) = mx with H1(p) = m and H1(b
′) = 0, which provides a specific

case of the conclusion (1) of Theorem 1.1.

(2) b′′ = 0 = ap − m. This gives H1(x) = ax, H2(x) = px + b′g(x) and

H3(x) = mx with H1(p) = m and H1(b
′) = 0 and as a result, we again

obtain a specific case of the conclusion (1) of Theorem 1.1.

(3) ω(R)2 ∈ C and ap = m. Thus H1(x) = ax, H2(x) = px + b′g(x) and

H3(x) = mx+ b′′[k′, x], H1(p) = m and H1(b
′) = 0, that provides a specific

case of the conclusion (6(a)) of Theorem 1.1.
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Case 2: ab′ + bqb′ = bb′ = 0.

In this case if q ∈ C, then from above ab′ = 0 and hence conclusion follows by

Case-1. Thus we assume that q /∈ C. Then from (21)

apω(s)2 + b[q, pω(s)2] = mω(s)2 + b′′[k′, ω(s)2], (27)

that is,

(ap+ bqp−m− b′′k′)ω(s)2 − bpω(s)2q + b′′ω(s)2k′ = 0 (28)

for all s = (s1, . . . , sn) ∈ (Qm
r )n.

Since q /∈ C, by applying Lemma 2.2, for all x ∈ R, one of the following holds:

(i) bp, k′, bpq, ap+bqp−m ∈ C with ap+b[q, p]−m = 0. Since q /∈ C, bp = 0. Thus

H1(x) = ax+b[q, x], H2(x) = px+b′g(x), H3(x) = mx with bp = ap+bqp−m = 0,

bb′ = ab′ + bqb′ = 0, i.e., H1(p) = m, H1(b
′) = 0, bb′ = bp = 0. This gives a specific

case of the conclusion (1) of Theorem 1.1.

(ii) b′′, bp, ap+bqp−m−b′′k′ ∈ C with ap+b[q, p] = m. Thus H1(x) = ax+b[q, x],

H2(x) = px+ b′g(x), H3(x) = mx+ [b′′k′, x] with bp, ap+ bqp−m− b′′k′ ∈ C with

H1(p) = m, H1(b
′) = 0, bb′ = 0, and once again we get the conclusion (1).

(iii) bp − αb′′ = λ ∈ C, k′ − αq = µ ∈ C, λq ∈ C for some 0 ̸= α, λ, µ ∈ C. This

implies q ∈ C, a contradiction.

(iv) ω(R)2 ∈ C with H1(p) = m. Thus H1(x) = ax+b[q, x], H2(x) = px+b′g(x),

H3(x) = mx + b′′[k′, x] with H1(p) = m, H1(b
′) = 0, bb′ = 0; which gives the

conclusion (6(a)) of Theorem 1.1.

(v) R satisfies s4 (the conclusion (5) of Theorem 1.1).

Case 3: ω(R)2 ∈ C and ab′ + b[q, b′] = 0.

Thus (22) gives

bb′
[
q,
∑
i

ω(s1, . . . , yi, . . . , sn)ω(s1, . . . , sn)
]
= 0. (29)

Since q /∈ C, it yields bb′ = 0. Hence (21) reduces to

(ap+ b[q, p]−m)ω(s)2 = 0 (30)

which implies H1(p) = m. This gives the conclusion (6(a)). □

Lemma 3.3. If g, h are inner, then we obtain some specific case of the conclusions

(3) and (6(c)) of Theorem 1.1.
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Proof. Since g is inner, and by Lemma 3.1, we assume that d is not inner. Let

g(x) = [k, x] and h(x) = [q, x] for all x ∈ R. Then (17) reduces to

a
(
pω(s)2 + b′[k, ω(s)]ω(s)

)
+ bd

(
pω(s)2 + b′[k, ω(s)]ω(s)

)
= mω(s)2 + b′′[q, ω(s)2] (31)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. In this case d is not an inner derivation on Qm

r .

By using Kharchenko’s theorem [12, Theorem 2], we can replace d(ω(s1, . . . , sn))

with ωd(s1, . . . , sn)+
∑
i

ω(s1, . . . , xi, . . . , sn), where xi = d(si) in equation (31) and

then Qm
r satisfies the blended component

b
(
pω(s1, . . . , sn)

∑
i

ω(s1, . . . , xi, . . . , sn) + p
∑
i

ω(s1, . . . , xi, . . . , sn)ω(s1, . . . , sn)

+b′
(
kω(s1, . . . , sn)

∑
i

ω(s1, . . . , xi, . . . , sn) + k
∑
i

ω(s1, . . . , xi, . . . , sn)ω(s1, . . . , sn)

−ω(s1, . . . , sn)k
∑
i

ω(s1, . . . , xi, . . . , sn)

−
∑
i

ω(s1, . . . , xi, . . . , sn)kω(s1, . . . , sn)
))

= 0. (32)

In particular, for x1 = s1 and x2 = · · · = xn = 0, Qm
r satisfies

(bp+ bb′k)ω(s)2 − bb′ω(s)kω(s) = 0 (33)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. Then from [7, Proposition 2.5], either k ∈ C or

bb′ = 0. In any case we have from (33) that bpω(s)2 = 0 implying bp = 0.

Case 1: Let k ∈ C and bp = 0.

Then g(x) = 0. Thus (31) gives

(ap+ bd(p)−m− b′′q)ω(s)2 + b′′ω(s)2q = 0 (34)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. By Lemma 2.1, for all x ∈ R, one of the following

holds:

(1) ap + bd(p) = m and q ∈ C. In this case H1(x) = ax + bd(x),H2(x) =

px,H3(x) = mx with H1(p) = m, bp = 0, which is a specific case of the

conclusion (3) of Theorem 1.1.

(2) ap + bd(p) − m = b′′ = 0. In this case H1(x) = ax + bd(x),H2(x) =

px,H3(x) = mx with H1(p) = m, bp = 0. This gives again a specific case

of the conclusion (3) of Theorem 1.1.

(3) ap + bd(p) = m and ω(s1, . . . , sn)
2 is central valued on R. In this case

H1(x) = ax + bd(x),H2(x) = px,H3(x) = mx + b′′[q, x] with H1(p) = m,

bp = 0. This is a specific case of the conclusion (6(c)) of Theorem 1.1.

Case 2: Let bb′ = 0 and bp = 0.
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From (31),

a
(
pω(s)2 + b′[k, ω(s)]ω(s)

)
+ bd(p)ω(s)2 + bd(b′)[k, ω(s)]ω(s)

= mω(s)2 + b′′[q, ω(s)2] (35)

i.e.,

(H1(p) +H1(b
′)k −m− b′′q)ω(s)2

−H1(b
′)ω(s)kω(s) + b′′ω(s)2q = 0. (36)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. By Lemma 2.6, H1(b

′) ∈ C (for k /∈ C). Then we

have

(H1(p) +H1(b
′)k −m− b′′q)ω(s)2

−ω(s)H1(b
′)kω(s) + b′′ω(s)2q = 0 (37)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. By [7, Proposition 2.7], H1(b

′)k ∈ C. Since k /∈ C,
H1(b

′) = 0. Thus from above

(H1(p)−m− b′′q)ω(s)2 + b′′ω(s)2q = 0 (38)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. This is the same as (34). Hence by the same

argument, for all x ∈ R, we have the following conclusions:

(i) H1(x) = ax + bd(x),H2(x) = px + b′[k, x],H3(x) = mx with H1(p) = m,

bp = 0 = bb′ = H1(b
′). This is a specific case of the conclusion (3).

(ii) H1(x) = ax + bd(x),H2(x) = px + b′[k, x],H3(x) = mx with H1(p) = m,

bp = 0 = bb′ = H1(b
′) which is the same as above.

(iii) H1(x) = ax + bd(x),H2(x) = px + b′[k, x],H3(x) = mx + b′′[q, x] with

ω(R)2 ∈ C, H1(p) = m, bp = 0 = bb′ = H1(b
′). This is a special case of the

conclusion (6(c)). □

Lemma 3.4. If d is inner, then one of the conclusions (1), (5) and (6(a)) of

Theorem 1.1 holds.

Proof. Let d(x) = [q, x] for all x ∈ R. Then (17) reduces to

a
(
pω(s)2 + b′g(ω(s))ω(s)

)
+ b

[
q, (pω(s)2 + b′g(ω(s))ω(s))

]
= mω(s)2 + b′′h(ω(s)2) (39)

for all s = (s1, . . . , sn) ∈ (Qm
r )n.
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By Lemma 3.1, we may assume that g is not inner. Moreover, if h is an inner

derivation of R, then the required conclusions follows from Lemma 3.2. Thus, we

now suppose that h is not inner and prove that a contradiction follows.

Let h and g be linearly C-dependent.

Then for some α1, α2 ∈ C, α1h(x) + α2g(x) = [k, x]. Since both of h and g

are outer, α1, α2 are non-zero. Then h(x) = α′
1g(x) + [k′, x] for all x ∈ R where

α′
1 = −α−1

1 α2 and k′ = α−1
1 k, then (39) becomes

a
(
pω(s)2 + b′g(ω(s))ω(s)

)
+ b

[
q, (pω(s)2 + b′g(ω(s))ω(s))

]
= mω(s)2 + α′

1b
′′g(ω(s)2) + b′′[k′, ω(s)2] (40)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. By using Kharchenko’s theorem [12, Theorem 2],

we can replace g(ω(s1, . . . , sn)) with ωg(s1, . . . , sn)+
∑
i

ω(s1, . . . , yi, . . . , sn), where

yi = g(si) and then Qm
r satisfies the blended component

ab′
∑
i

ω(s1, . . . , yi, . . . , sn)ω(s1, . . . , sn)

+b[q, b′
∑
i

ω(s1, . . . , yi, . . . , sn)ω(s1, . . . , sn)]

= α′
1b

′′
(
ω(s1, . . . , sn)

∑
i

ω(s1, . . . , yi, . . . , sn)

+
∑
i

ω(s1, . . . , yi, . . . , sn)ω(s1, . . . , sn)
)
. (41)

In particular, for y1 = s1 and yi = 0 for all i ≥ 2, Qm
r satisfies

ab′ω(s1, . . . , sn)
2 + b[q, b′ω(s1, . . . , sn)

2] = 2α′
1b

′′ω(s1, . . . , sn)
2, (42)

that is,

(ab′ + bqb′ − 2α′
1b

′′)ω(s1, . . . , sn)
2 − bb′ω(s1, . . . , sn)

2q = 0. (43)

By Lemma 2.1, ab′ + b[q, b′]− 2α′
1b

′′ = 0 and either q ∈ C or bb′ = 0 or ω(R)2 ∈ C.
In any of these cases, (41) reduces to

α′
1b

′′[
∑
i

ω(s1, . . . , yi, . . . , sn), ω(s1, . . . , sn)] = 0. (44)

Then replacing yi by [A′, xi] for some A′ /∈ C, we get

α′
1b

′′[A′, ω(s1, . . . , sn)]2 = 0 (45)
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which gives α′
1 = 0 or b′′ = 0. Thus H3 and H1 both are inner, a contradiction.

Let g and h be linearly C-independent.

By applying Kharchenko’s theorem [12, Theorem 2] to (39), we can replace

g(ω(s1, . . . , sn)) with ωg(s1, . . . , sn) +
∑
i

ω(s1, . . . , yi, . . . , sn) and h(ω(s1, . . . , sn))

with ωh(s1, . . . , sn) +
∑
i

ω(s1, . . . , zi, . . . , sn), where yi = g(si) and zi = h(si) in

(39), and then Qm
r satisfies blended component

b′′
{∑

i

ω(s1, . . . , zi, . . . , sn)ω(s1, . . . , sn) + ω(s1, . . . , sn)
∑
i

ω(s1, . . . , zi, . . . , sn)

}
= 0.

In particular, for z1 = s1 and z2 = · · · = zn = 0, Qm
r satisfies 2b′′ω(s1, . . . , sn)

2 =

0. Since char (R) ̸= 2, this implies that b′′ = 0, i.e., H3 and H1 are inner, a

contradiction. □

Lemma 3.5. If g is inner, then we obtain some special cases of the conclusions

(3), (4), (6(c)) and (6(d)) of Theorem 1.1.

Proof. Let g(x) = [k, x] for all x ∈ R. Then (17) reduces to

a
(
pω(s)2 + b′[k, ω(s)]ω(s)

)
+ bd

(
pω(s)2 + b′[k, ω(s)]ω(s)

)
= mω(s)2 + b′′h(ω(s)2) (46)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. If h is inner, according to Lemma 3.3, it follows

that some specific cases of the conclusions (3) and (6(c)) hold. From this last fact

and by Lemma 3.1, we now assume that both d and h are not inner derivations.

Let d and h be linearly C-dependent.

There exist some α1, α2 ∈ C such that α1d(x) +α2h(x) = [q, x]. Since both of h

and d are outer, α1, α2 are non-zero. Thus we can write h(x) = α′
1d(x) + [q′, x] for

all x ∈ R. By (46),

a
(
pω(s)2 + b′[k, ω(s)]ω(s)

)
+ bd

(
pω(s)2 + b′[k, ω(s)]ω(s)

)
= mω(s)2 + b′′α′

1d(ω(s)
2) + b′′[q′, ω(s)2] (47)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. By using Kharchenko’s theorem [12, Theorem 2],

we can replace d(ω(s1, . . . , sn)) with ωd(s1, . . . , sn)+
∑
i

ω(s1, . . . , zi, . . . , sn), where

zi = d(si) and then Qm
r satisfies the blended component

bp(
∑
i

ω(s1, . . . , zi, . . . , sn)ω(s1, . . . , sn) + ω(s1, . . . , sn)
∑
i

ω(s1, . . . , zi, . . . , sn))

+bb′[k,
∑
i

ω(s1, . . . , zi, . . . , sn)]ω(s1, . . . , sn) + bb′[k, ω(s1, . . . , sn)]
∑
i

ω(s1, . . . , zi, . . . , sn)

= b′′α′
1(
∑
i

ω(s1, . . . , zi, . . . , sn)ω(s1, . . . , sn) + ω(s1, . . . , sn)
∑
i

ω(s1, . . . , zi, . . . , sn)).
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In particular, for z1 = s1 and zi = 0 for all i we get

bpω(s1, . . . , sn)
2 + bb′[k, ω(s1, . . . , sn)]ω(s1, . . . , sn) = b′′α′

1ω(s1, . . . , sn)
2, (48)

that is,

(bp+ bb′k − α′
1b

′′)ω(s1, . . . , sn)
2 − bb′ω(s1, . . . , sn)kω(s1, . . . , sn) = 0. (49)

By [7, Proposition 2.5], bb′ = 0 or k ∈ C. In any case, we have from (49), (bp −
α′
1b

′′)ω(s1, . . . , sn)
2 = 0 implying bp = α′

1b
′′. Thus we consider the following cases:

Case-1. Let k ∈ C and bp = α′
1b

′′.

Thus by (47),

(H1(p)−m− b′′q′)ω(s)2 + b′′ω(s)2q′ = 0. (50)

Since H3 is not inner, b′′ ̸= 0.

By Lemma 2.1, H1(p) = m and either q′ ∈ C or ω(R)2 ∈ C. Thus H1(x) =

ax + bd(x), H2(x) = px, H3(x) = mx + α′
1b

′′d(x) + b′′[q′, x], with H1(p) = m,

bp = α′
1b

′′ and either q′ ∈ C or ω(R)2 ∈ C, which provides some specific cases of

the conclusions (3) and (6(c)) of Theorem 1.1 (in the reduced case when b′ = 0).

Case-2. Let bb′ = 0 and bp = α′
1b

′′.

Thus (47) reduces to

apω(s)2 + ab′[k, ω(s)]ω(s) + bd(p)ω(s)2 + bd(b′)[k, ω(s)]ω(s)

= mω(s)2 + b′′[q′, ω(s)2], (51)

i.e.,

(H1(p)−m+H1(b
′)k − b′′q′)ω(s)2 −H1(b

′)ω(s)kω(s) + b′′ω(s)2q′ = 0 (52)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. By [7, Proposition 2.5], either H1(b

′) = 0 or k ∈ C.
Since we have already discussed the case k ∈ C, we now consider H1(b

′) = 0. Thus,

the relation (52) reduces to (50) and, by the same above argument, it follows that

H1(x) = ax+ bd(x), H2(x) = px+ b′[k, x], H3(x) = mx+α′
1b

′′d(x)+ b′′[q′, x], with

H1(p) = m, bp = α′
1b

′′, bb′ = H1(b
′) = 0 and either q′ ∈ C or ω(R)2 ∈ C. Hence we

get some special cases of the conclusions (4) and (6(d)) of Theorem 1.1.

Let d and h be linearly C-independent.

By applying Kharchenko’s theorem [12, Theorem 2] to (46), we can replace

d(ω(s1, . . . , sn)) with ωd(s1, . . . , sn) +
∑
i

ω(s1, . . . , xi, . . . , sn) and h(ω(s1, . . . , sn))

with ωh(s1, . . . , sn) +
∑
i

ω(s1, . . . , zi, . . . , sn), where xi = d(si) and zi = h(si) in
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(46) and the Qm
r satisfies the blended component

b′′
∑
i

ω(s1, . . . , zi, . . . , sn)ω(s1, . . . , sn)

+b′′ω(s1, . . . , sn)
∑
i

ω(s1, . . . , zi, . . . , sn) = 0. (53)

In particular, for z1 = s1 and z2 = · · · = zn = 0, Qm
r satisfies 2b′′ω(s1, . . . , sn)

2 = 0

implying b′′ = 0, i.e., H3 is inner, a contradiction. □

Remark 3.6. In the light of Lemmas 3.4 and 3.5, in the rest of this section we will

suppose that both d and g are not inner derivations of R.

Lemma 3.7. If h is inner, then some particular cases of the conclusions (3), (4),

(6(c)) and (6(d)) of Theorem 1.1 hold.

Proof. Let h(x) = [k, x] for all x ∈ R. Then (17) reduces to

a
(
pω(s)2 + b′g(ω(s))ω(s)

)
+ bd

(
pω(s)2 + b′g(ω(s))ω(s)

)
= mω(s)2 + b′′[k, ω(s)2]ω(s) (54)

for all s = (s1, . . . , sn) ∈ (Qm
r )n.

Let d and g be linearly C-dependent.

Then for some α1, α2 ∈ C, α1g(x) + α2d(x) = [q, x]. Since both of g and d

are outer, α1, α2 are non-zero. Then g(x) = α′
1d(x) + [k′, x] for all x ∈ R where

α′
1 = −α−1

1 α2 and k′ = α−1
1 q. Then (54) becomes

a
(
pω(s)2 + b′(α′

1d(ω(s)) + [k′, ω(s)])ω(s)
)
+ bd

(
pω(s)2 +

b′(α′
1d(ω(s)) + [k′, ω(s)])ω(s)

)
= mω(s)2 + b′′[k, ω(s)2]. (55)

By using Kharchenko’s theorem [12, Theorem 2], we can replace d(ω(s1, . . . , sn))

with ωd(s1, . . . , sn)+
∑
i

ω(s1, . . . , xi, . . . , sn), where xi = d(si) and d2(ω(s1, . . . , sn))

with

ωd2

(s1, . . . , sn) + 2
∑
i

ωd(s1, . . . , yi, . . . , sn)

+
∑
i

ω(s1, . . . , ci, . . . , sn) +
∑
i̸=j

ω(s1, . . . , yi, . . . , yj , . . . , sn)

where ci = d2(si) to (55) and then Qm
r satisfies the blended component

bb′α′
1

∑
i

ω(s1, . . . , ci, . . . , sn)ω(s1, . . . , sn) = 0. (56)

In particular, for c1 = s1 and c2 = · · · = cn = 0, Qm
r satisfies

bb′α′
1ω(s1, . . . , sn)

2 = 0,
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which implies bb′ = 0 (since α′
1 ̸= 0). Then from (55), we get

a
(
pω(s)2 + b′

(
α′
1d(ω(s)) + [k′, ω(s)]

)
ω(s)

)
+ bd(pω(s)2)

+bd(b′)
(
α′
1d(ω(s)) + [k′, ω(s)]

)
ω(s) = mω(s)2 + b′′[k, ω(s)2]. (57)

By using Kharchenko’s theorem [12, Theorem 2], we can replace d(ω(s1, . . . , sn))

with ωd(s1, . . . , sn) +
∑
i

ω(s1, . . . , xi, . . . , sn), where xi = d(si) to (57) and then

Qm
r satisfies the blended component

ab′α′
1

∑
i

ω(s1, . . . , xi, . . . , sn)ω(s1, . . . , sn)

+bp
(
ω(s1, . . . , sn)

∑
i

ω(s1, . . . , xi, . . . , sn) +
∑
i

ω(s1, . . . , xi, . . . , sn)ω(s1, . . . , sn)
)

+bd(b′)α′
1

∑
i

ω(s1, . . . , xi, . . . , sn)ω(s1, . . . , sn) = 0. (58)

In particular for x1 = s1 and x2 = · · · = xn = 0, Qm
r satisfies(

ab′α′
1 + 2bp+ bd(b′)α′

1

)
ω(s1, . . . , sn)

2 = 0,

which implies ab′α′
1 + 2bp+ bd(b′)α′

1 = 0. Then from (57)

a
(
pω(s)2 + b′[k′, ω(s)]ω(s)

)
+ bd(b′)

(
[k′, ω(s)]ω(s)

)
− bpd(ω(s))ω(s)

+bpω(s)d(ω(s)) + bd(p)ω(s)2 = mω(s)2 + b′′[k, ω(s)2]. (59)

By using Kharchenko’s theorem [12, Theorem 2], we can replace d(ω(s1, . . . , sn))

with ωd(s1, . . . , sn) +
∑
i

ω(s1, . . . , xi, . . . , sn), where xi = d(si) to (59) and then

Qm
r satisfies the blended component

−bp
∑
i

ω(s1, . . . , xi, . . . , sn)ω(s1, . . . , sn)

+bpω(s1, . . . , sn)
∑
i

ω(s1, . . . , xi, . . . , sn) = 0. (60)

Replacing xi by [A′, si] for some A′ /∈ C in above relation, we get

bp
[
[A′, ω(s1, . . . , sn)], ω(s1, . . . , sn)

]
= 0,

which implies bp = 0 (since A′ /∈ C). So we have now bp = 0 and bb′ = 0 with

ab′ + bd(b′) = 0 (since α′
1 ̸= 0), i.e., H1(b

′) = 0. Then (59) reduces to

apω(s)2 − ab′ω(s)k′ω(s)− bd(b′)ω(s)k′ω(s)

−bd(p)ω(s)2 −mω(s)2 − b′′kω(s)2 + b′′ω(s)2k = 0, (61)

i.e.,

(ap+ bd(p)−m− b′′k)ω(s)2 + b′′ω(s)2k = 0. (62)
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By Lemma 2.1, H1(p) = m and either k ∈ C or b′′ = 0 or ω(R)2 ∈ C. Thus we have
H1(x) = ax + bd(x), H2(x) = px + α′

1b
′d(x) + b′[k′, x] and H3(x) = mx + b′′[k, x]

for all x ∈ R with bp = bb′ = H1(b
′) = 0, H1(p) = m and either k ∈ C or b′′ = 0 or

ω(R)2 ∈ C. Thus, some particular cases of the conclusions (4) and (6(d)) follow.

Let d and g be linearly C-independent.

By applying Kharchenko’s theorem [12, Theorem 2] to (54), we can replace

d(ω(s1, . . . , sn)) with ωd(s1, . . . , sn)+
∑
i

ω(s1, . . . , xi, . . . , sn), g(ω(s1, . . . , sn)) with

ωg(s1, . . . , sn) +
∑
i

ω(s1, . . . , yi, . . . , sn) and

dg(ω(s1, . . . , sn)) = ωdg(s1, . . . , sn) +
∑
i

ωd(s1, . . . , yi, . . . , sn)

+
∑
i

ωg(s1, . . . , xi, . . . , sn) +
∑
i

ω(s1, . . . , zi, . . . , sn)

+
∑
i̸=j

ω(s1, . . . , xi, . . . , yj , . . . , sn),

where xi = d(si), yi = g(si) and zi = dg(si) in (54) and Qm
r satisfies the blended

component

bb′
∑
i

ω(s1, . . . , zi, . . . , sn)ω(s1, . . . , sn) = 0. (63)

In particular for z1 = s1 and z2 = · · · = zn = 0, Qm
r satisfies

bb′ω(s1, . . . , sn)
2 = 0,

which implies bb′ = 0. Then from (54)

a(pω(s)2 + b′g(ω(s))ω(s)) + bd(pω(s)2) + bd(b′)g(ω(s))ω(s)

= mω(s)2 + b′′[k, ω(s)2] (64)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. By applying Kharchenko’s theorem [12, Theorem

2] to (64), replacing d(ω(s1, . . . , sn)) with ωd(s1, . . . , sn) +
∑
i

ω(s1, . . . , xi, . . . , sn)

and g(ω(s1, . . . , sn)) with ωg(s1, . . . , sn) +
∑
i

ω(s1, . . . , yi, . . . , sn), Qm
r satisfies the

blended components

bp
(
ω(s1, . . . , sn)

∑
i

ω(s1, . . . , xi, . . . , sn)

+
∑
i

ω(s1, . . . , xi, . . . , sn)ω(s1, . . . , sn)
)
= 0 (65)

and

(ab′ + bd(b′))
∑
i

ω(s1, . . . , yi, . . . , sn)ω(s1, . . . , sn) = 0. (66)
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Then in particular for x1 = s1, x2 = · · · = xn = 0 and for y1 = s1 and y2 = · · · =
yn = 0, Qm

r satisfies

bpω(s1, . . . , sn)
2 = 0

and

(ab′ + bd(b′))ω(s1, . . . , sn)
2 = 0,

i.e., bp = 0 and ab′ + bd(b′) = 0, i.e., H1(b
′) = 0. Using these facts, relation (64)

reduces to (62) and, by the same above argument, we have the following conclusions:

H1(x) = ax+bd(x), H2(x) = px+b′g(x) and H3(x) = mx+b′′[k, x] for all x ∈ R

with bp = bb′ = H1(b
′) = 0, H1(p) = m and either k ∈ C or b′′ = 0 or ω(R)2 ∈ C.

Thus we obtain some specific case of the conclusions (3) and (6(c)) of Theorem 1.1

(reduced to the case when λ = 0). □

Proof of Theorem 1.1. The results contained in all previous Lemmas, allow us to

have to discuss only the case when no one between d, g and h is an inner derivation

of R. Under this final assumption, we will prove that one of the conclusions (3),

(4), (6(c)) and (6(d)) of Theorem 1.1 holds. To do this, we will divide the argument

into two main cases, as follows:

Case-1. d, g and h are linearly C-dependent.

In this case, there exist some α1, α2, α3 ∈ C, q ∈ Qm
r such that α1d(x)+α2g(x)+

α3h(x) = [q, x] for all x ∈ Qm
r . Since d is not inner, (α2, α3) ̸= (0, 0).

Without loss of generality, we may assume α3 ̸= 0. Thus h(x) = α′
1d(x) +

α′
2g(x) + [q′, x] for all x ∈ Qm

r , where α′
1 = −α1α

−1
3 , α′

2 = −α2α
−1
3 and q′ = α−1

3 q.

By (17),

a
(
pω(s)2 + b′g(ω(s))ω(s)

)
+ bd

(
pω(s)2 + b′g(ω(s))ω(s)

)
= mω(s)2 + α′

1b
′′d(ω(s)2) + α′

2b
′′g(ω(s)2) + b′′[q′, ω(s)2] (67)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. Then we have the following cases.

Sub-case-i. Let g and d be C-dependent modulo inner derivations of Qm
r . Then

β1g(x)+β2d(x) = [t, x] for some t ∈ Qm
r , β1, β2 ∈ C. Since d and g are outer, β1 and

β2 both are non-zero. Thus g(x) = β′
2d(x) + [t′, x], where β′

2 = −β2β
−1
1 , t′ = β−1

1 t.
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Then (67) reduces to

apω(s)2 + ab′{β′
2d(ω(s))ω(s) + [t′, ω(s)]ω(s)}

+bd
(
pω(s)2 + b′β′

2d(ω(s))ω(s) + b′[t′, ω(s)]ω(s)
)

= mω(s)2 + b′′{α′
1d(ω(s)

2) + α′
2β

′
2d(ω(s)

2)

+α′
2[t

′, ω(s)2] + [q′, ω(s)2]} (68)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. Applying Kharchenko’s theorem [12, Theorem 2],

using the value of d2(ω(s1, . . . , sn)), we have as before that Qm
r satisfies the blended

component

bb′β′
2

∑
i

ω(s1, . . . , wi, . . . , sn)ω(s1, . . . , sn) = 0,

where wi = d2(si). In particular, for w1 = s1 and w2 = · · · = wn = 0, Qm
r satisfies

bb′β′
2ω(s1, . . . , sn)

2 = 0, then bb′ = 0. Then from (68), applying Kharchenko’s

theorem [12, Theorem 2], using the value of d(ω(s1, . . . , sn)), we have as before

that Qm
r satisfies

(ab′β′
2 + 2bp+ bβ′

2d(b
′)− 2α′

1b
′′ − 2α′

2β
′
2b

′′)ω(s)2 = 0 (69)

for all s = (s1, . . . , sn) ∈ (Qm
r )n implying

ab′β′
2 + 2bp+ bβ′

2d(b
′)− 2α′

1b
′′ − 2α′

2β
′
2b

′′ = 0. (70)

By using bb′ = 0 and (70), (68) reduces to

apω(s)2 + ab′[t′, ω(s)]ω(s)

+bd(p)ω(s)2 + bpω(s)d(ω(s))− bpd(ω(s))ω(s) + bd(b′)[t′, ω(s)]ω(s)

= mω(s)2 + b′′α′
1ω(s)d(ω(s))− b′′α′

1d(ω(s))ω(s)

+b′′α′
2β

′
2ω(s)d(ω(s))− b′′α′

2β
′
2d(ω(s))ω(s)

+b′′{α′
2[t

′, ω(s)2] + [q′, ω(s)2]} (71)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. Again applying Kharchenko’s theorem [12, Theo-

rem 2], using the value of d(ω(s1, . . . , sn)), we have as before that Qm
r satisfies

(bp− b′′α′
1 − b′′α′

2β
′
2)[

∑
i

ω(s1, . . . , yi, . . . , sn), ω(s1, . . . , sn)] = 0. (72)

Replacing yi with [A, si] for some A /∈ C, we have

(bp− b′′α′
1 − b′′α′

2β
′
2)[A,ω(s1, . . . , sn)]2 = 0 (73)
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which implies bp − b′′α′
1 − b′′α′

2β
′
2 = 0. Thus by (70), we have ab′ + bd(b′) = 0.

Therefore, (71) reduces to

apω(s)2 + bd(p)ω(s)2 = mω(s)2 + b′′{α′
2[t

′, ω(s)2] + [q′, ω(s)2]}, (74)

that is,

{H1(p)−m− b′′(α′
2t

′ + q′)}ω(s)2 + b′′ω(s)2(α′
2t

′ + q′) = 0 (75)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. Since b′′ ̸= 0, by Lemma 2.1, one of the following

holds:

(1) α′
2t

′ + q′ ∈ C and H1(p) − m = 0. Thus H1(x) = ax + bd(x), H2(x) =

px + b′(β2d(x) + [t′, x]) and H3(x) = mx + λb′′d(x) for all x ∈ R with

bb′ = 0 = bp−λb′′ = H1(b
′) and H1(p) = m, where λ = α′

1+α′
2β

′
2 ∈ C. We

get the conclusion (4) of Theorem 1.1.

(2) ω(s1, . . . , sn)
2 is central valued on R and H1(p) − m = 0. Thus H1(x) =

ax+ bd(x), H2(x) = px+ b′(β2d(x)+ [t′, x]) and H3(x) = mx+ b′′(λd(x)+

[c, x]) for all x ∈ R with bb′ = 0 = bp − λb′′ = H1(b
′) and H1(p) = m. In

this case we have the conclusion (6(d)).

Sub-case-ii. Let g and d be C-independent modulo inner derivations of Qm
r . By

Kharchenko’s theorem [12, Theorem 2] to (67), Qm
r satisfies the blended component

bb′
∑
i

ω(s1, . . . , zi, . . . , sn)ω(s1, . . . , sn) = 0

where zi = dg(si). In particular, for z1 = s1 and z2 = · · · = zn = 0, we have that

Qm
r satisfies bb′ω(s1, . . . , sn)

2 = 0 which implies bb′ = 0.

Then by similar argument above, applying Kharchenko’s theorem [12, Theorem

2] in (67), we can replace d(si) with xi and g(si) with yi and then Qm
r satisfies

blended components

(ab′ + bd(b′)− α′
2b

′′)
∑
i

ω(s1, . . . , yi, . . . , sn)ω(s1, . . . , sn)

= α′
2b

′′ω(s1, . . . , sn)
∑
i

ω(s1, . . . , yi, . . . , sn) = 0. (76)

Above relation yields ab′ + bd(b′) = 2α′
2b

′′. Then (76) reduces to

α′
2b

′′
(∑

i

ω(s1, . . . , yi, . . . , sn)ω(s1, . . . , sn)− ω(s1, . . . , sn)
∑
i

ω(s1, . . . , yi, . . . , sn)
)
= 0.

Now replacing yi by [A′, si] for some A′ /∈ C, we get

α′
2b

′′
[
[A′, ω(s1, . . . , sn)], ω(s1, . . . , sn)

]
= 0

which gives α′
2b

′′ = 0, i.e., α′
2 = 0, since b′′ ̸= 0. Therefore, ab′ + bd(b′) = 0. Hence

h(x) = α′
1d(x) + [q′, x] for all x ∈ R.
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Thus (67) reduces to

apω(s)2 + bd(p)ω(s)2 + bpd(ω(s)2)

= mω(s)2 + α′
1b

′′d(ω(s)2) + b′′[q′, ω(s)2] (77)

for all s = (s1, . . . , sn) ∈ (Qm
r )n. Again applying Kharchenko’s theorem [12, Theo-

rem 2], we can prove that bp = α′
1b

′′. Thus (77) reduces to (50) and, by the same

above argument, it follows that H1(x) = ax + bd(x), H2(x) = px + b′g(x) and

H3(x) = mx+ α′
1b

′′d(x) + b′′[q′, x] for all x ∈ R, with bb′ = 0 = H1(b
′), bp = α′

1b
′′,

H1(p) = m and either q′ ∈ C or ω(R)2 ∈ C. Thus one of the conclusions (3) and

(6(c)) holds.

Case-2. d, g and h are linearly C-independent.

Substituting the values of d(ω(s1, . . . , sn)), g(ω(s1, . . . , sn)), h(ω(s1, . . . , sn)),

dg(ω(s1, . . . , sn)) in (17) and then using Kharchenko’s theorem [12, Theorem 2] to

(17), Qm
r satisfies the blended component

b′′{
∑
i

ω(s1, . . . , zi, . . . , sn)ω(s1, . . . , sn) + ω(s1, . . . , sn)
∑
i

ω(s1, . . . , zi, . . . , sn)} = 0

where zi = h(si). Again this implies b′′ = 0, a contradiction.

Thus the proof of the Theorem is now complete. □

Acknowledgement. The authors are grateful to the referee for her/his suggestions

and corrections, which were essential in improving the present work and enhancing

its clarity. This research is partially supported by Science and Engineering Research

Board (SERB), India (Grant No. MTR/2022/000568). The work of the second

author is partially supported by the ’Gruppo Nazionale per le Strutture Algebriche,

Geometriche e loro Applicazioni’ (GNSAGA-INdAM). The fourth author expresses

her thanks to the University Grants Commission, New Delhi for SRF awarded to

her (Grant No. 1261 dated 16.12.2019.)

Disclosure statement. The authors report that there are no competing interests

to declare.

References

[1] N. Bera and B. Dhara, b-generalized skew derivations acting on multilinear

polynomials in prime rings, Comm. Algebra, 53(2) (2025), 761-780.

[2] C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer.

Math. Soc., 103(3) (1988), 723-728.



48 B. DHARA, V. DE FILIPPIS, S. KAR AND M. BERA

[3] V. De Filippis and O. M. Di Vincenzo, Vanishing derivations and centralizers

of generalized derivations on multilinear polynomials, Comm. Algebra, 40(6)

(2012), 1918-1932.

[4] B. Dhara, b-Generalized derivations on multilinear polynomials in prime rings,

Bull. Korean Math. Soc., 55(2) (2018), 573-586.

[5] B. Dhara, Generalized derivations acting on multilinear polynomials in prime

rings, Czechoslovak Math. J., 68(1) (2018), 95-119.
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