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ABSTRACT. Let fR be a prime ring of characteristic different from 2, Q7" be its
maximal right ring of quotients, C be its extended centroid and w(s1,...,sn)
be a noncentral multilinear polynomial over C. Suppose that Hi, H2 and Hs3

are three X-generalized derivations on R. If
Hi (Hg(w(sl, coysn))w(st, ey sn)) =H3(w(s1,...,5n)%)

for all s1,...,sn € R, then we detail all potential configurations of the maps
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1. Introduction

Across this entire work, unless stated differently, we consider R as an associative
prime ring with center Z(R). Let Q" be the maximal right ring of quotients of
R. The center of Q" is called the extended centroid of 28 and denoted by C. An
additive map ¢ : B — R satistying ((uv) = ((u)v +ul(v), for all u,v € R, is called
a derivation of R. An additive map F : ;R — R satisfying the condition F(uv) =
F(u)v+ul(v), for all u,v € R, where ¢ : R — R is a derivation of R, is called a gen-

eralized derivation of R. Let w(si,...,5,) = 8152...8n + D  QuSg(1) -+ So(n)s
I#0€S,

where a, € C and w(s1,...,S,) is a noncentral multilinear polynomial over C in n

noncommuting variables, and let S = {w(s1,...,8,)|51,--., 5, € R}.

Let us consider the set P(H1, Ha, Hs, S) = {H1(Ha(s)s) — Hs(s?)|s € S} where
Hi,Ho,Hs : R — R are three additive maps. Many authors extensively exam-
ined the set P(H1,Hz,Hs,S). In [6], Dhara and Argac assessed the scenario
B(H1,H2,0,5) = 0 where H; and Hs are two generalized derivations and then
they acquired all potential versions of the maps H; and Ho.

In [20], Tiwari evaluated the configuration R3(H1, Ho, Hs, S) = 0, where H1, Ho

and Hgs are three generalized derivations on fR.
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In this current study, we generalize Tiwari’s result [20] to X-generalized deriva-
tions in prime rings. In [13], Kosan and Lee put forward the framework of X-
generalized derivations on . An additive map Fp : B8 — Q" is called an X-
generalized derivation of R if Fy(uv) = Fp(u)v 4+ bud(v) holds for all u,v € R,
where b € Q" and d : R — Q! is an additive map. In [13, Theorem 2.3], the
authors proved that if R is a prime ring and b # 0, then the associated map d
must be a derivation of 2R and the form of the map Fp, will be Fp(u) = au + bd(u)
for all w € R. For some a,b,c € Q™ the map Fp(u) = au + buc is an example
of an X-generalized derivation of R, which is also called as an inner X-generalized
derivation of fR.

Recently in some papers ([4], [7], [10], [16], [18], [19], [21]), this type of X-
generalized derivations were studied. In the present paper, our goal is to study the
condition

m(HhHZuH& S) =0
where Hq, Ho and Hj3 are three X-generalized derivations on P3. With greater

specificity, we prove the following theorem:

Theorem 1.1. Let R be a prime ring of characteristic different from 2, Q" be the
mazimal right ring of quotients of R and w(s,...,s,) be a noncentral multilinear
polynomial over C = Z(QM). Suppose that H1, Ho and Hs are three X -generalized
derivations of R such that

H, (Hg(w(s))w(s)) =M, (w(s)2)
for all s = (s1,...,8,) € R™. Then for all x € R, one of the following holds:

(1) there exist a,b,c,p,b',m,u € Q" and a derivation g such that Hi(x) =
ax +bxe, Ho(z) = pxr + 0 g(x) and Hs(x) = ma + zu with H1(p) = m+ u,
Hi (V) =0bV =0, ap—m,bp €C;

(2) there exist a,b,c,p,q,b',m € Q" such that Hi(x) = ax + bxe, Ha(z) =
pr + b'xzq and Hz(x) = ma with Hi(p) = m, bp = bb' = H1 (V') = 0;

(3) there exist a,b,p,b',m,b" € Q™ X € C and derivations d and g such that
Hi(z) = ax + bd(x), Ha(z) = px+Vg(x) and Hs(z) = ma + \b"d(x) with
Hi(p) =m, bp = Ab", bb' = H1 (V') = 0;

(4) there exist a,b,p,b/,m, b’ t' € Q™ and deriation d such that Hi(xz) =
ax +bd(z), Ha(x) = px+ ub'd(x) + V[, ] and Hz(x) = mz+ X" d(x) with
Hi(p) =m, bp = Ab", bb' = Hi (V') = 0;

(5) R satisfies s4;

(6) w(sy,...,sn)% is central valued on R and one of the following holds:
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(a) there exista,b,c,p,m,b"”,u € QT and a derivation g such that Hi(x) =
ax + bzc, Ho(x) = px + b g(x) and Hs(r) = mx + b'zu for allz € R
with H (p) = m + b'u, Hy(t') = b = 0;

(b) there exist a,b,c,p,q,b',m,b",u € QM such that Hi(x) = ax + bxc,
Ho(z) = pr + Vxq and Hs(x) = ma + b zu with Hi(p) = m + b"u,
ab! =0 = by';

(c) there exist a,b,p,b',m,b" q € Q", X\ € C and derivations d and g
such that Hi(z) = ax + bd(x), Ha(x) = pr + Vg(x) and Hz(z) =
mx + A"d(x) + b [q, 2] with H1(p) = m, bp = X0, bb/ = H, (V') = 0;

(d) there exista,b,c,p,b’',m, " t' € Q™ and derivation d such that H,(x) =
az+bd(x), Ha(z) = pr+pbd(z)+b'[t, z] and Hz(x) = mz+Ab"d(x)+
V' [e, ] with Hi(p) = m, bp = N, bb' = H,(b') = 0.

2. The case of inner X-generalized derivations

Let’s begin with some important lemmas. Suppose that R is a noncommutative

prime ring with extended centroid C, w(si,...,S,) a noncentral multilinear poly-
nomial over C and {(s1,..., s,) be any polynomial over C, which is not an identity
for fR.

Lemma 2.1. Let char (R) # 2, u,v,v’ € R. If
ué(s) +v€(s)v =0

for all s = (s1,...,8,) € R™, then one of the following holds:
(1) v €C and u+vv' =0;
(2) v=0=u;

(3) u+vv' =0 and &(s1,-..,Sn) is central valued on fR.

Proof. By [5, Lemma 2.9], one of the following holds:

(1) v € C and u+ vv’ = 0, as desired.

(2) u,v € C and v+ vv’ = 0. In this case vv’ € C. Since v € C, this implies
either v = 0 or v/ € C. If v = 0, we have the conclusion (2) and if v' € C, we have
the conclusion (1).

(3) u+vv' =0 and &(s1, ..., S,) is central valued on R, as desired. O

Lemma 2.2. [1, Lemma 2.4] Let char (R) # 2 and assume that R does not embed
in My(E), the algebra of 2 x 2 matrices over some fields E. If a,b,p,q,u,v € R
such that

aw(s)?b + pw(s)?q = uw(s)* + w(s)?v
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for all s = (s1,...,8n) € R", then one of the following holds:

(1) b,p,ab—u,pqg —v € C with ab+ pq = u+ v;

(2) a,q,ab —v,pq — u € C with ab+ pqg = u + v;

(3) b,q,v € C with ab+ pg =u+ v;

(4) a,p,u € C with ab+ pg = u + v;

(5) there exist 0 # a, A\, u € C such that a+ap = X\, q—ab = p and \b—v, up—
u € C with ab+ pg = u + v;

2

(6) ab+pg=u-+v and w(s1,...,sn)" is central valued on R.

Proposition 2.3. Suppose that R = M;(C) is the ring of all t X t matrices over the
field C with t > 2. Let a,p,b,b' ", q,c,m,u € R and w(sy,...,s,) be a noncentral
multilinear polynomial over C. If R satisfies apw(s)? + ab'w(s)qw(s) + bpw(s)?c +
b'w(s)qw(s)e — mw(s)? — b'w(s)?u =0 for all s = (s1,...,5,) € R", then one of
the following holds:

(1) g €C;

(2) ceC;

(3) b =0.

Proof. Case-1: Suppose that C is an infinite field.

Let bV, q,c ¢ Z(R), that is, bb’, ¢ and ¢ are not scalar matrices. By [3, Lemma
1], there exists an invertible matrix Q' € R such that ¢(z) = Q'zQ’~! is an inner
automorphism of R and ¢(bb'), ¢(q) and ¢(c) have all non-zero entries. Clearly, R

satisfies

¢(ap)w(s)? + ¢(ab)w(s)d(g)w(s) + d(bp)w(s)*p(c) +
P )w(s)d(q)w(s)d(c) — d(m)w(s)? — (b )w(s)*p(u) = 0 (1)

for all s = (s1,...,8,) € R".

Let e;; be the matrix whose (i, j)-entry is 1 and the rest entries are zero. Since
w(s1,...,8,) is not central, by [14] (see also [15]), there exist s1,...,s, € M¢(C)
and v € C—{0} such that w(s1,...,S,) = ve;;, with i # j. Forw(sy,...,s,) = vei;,
(1) implies

p(ab)eijp(q)eij + p(bb)eijp(q)eijd(c) = 0. (2)

Left and right multiplying by e;;, we obtain ¢(bb’);;¢(q);i¢(c);; = 0, a contradic-
tion. Thus we conclude that either bb’ or ¢ or ¢ are scalar matrices. If ¢ € C, then

the conclusion (1) is obtained. If ¢ € C, then the conclusion (2) is obtained. Let
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both ¢, ¢ ¢ C. Then bl € C. So we get from the GPI that PR satisfies
apw(s)? 4 ab'w(s)qw(s) + bpw(s)?c 4+ w(s)qu(s)bb'c — mw(s)? — b"w(s)*u = 0

for all s = (s1,...,8,) € R™. Then by the similar argument above, we get either ¢
or bb'c € C. Since ¢ ¢ C, we have bb'c € C. So either bb' = 0 or ¢ € C (since bb’ € C).

Since ¢ ¢ C, we have bb’ = 0 which indicates the conclusion (3).
Case-II: Suppose that C is a finite field.

Let K be an infinite field which is an extension of the field C. Let R = M;(K) =
R ®c K. Now the multilinear polynomial w(sy,...,s,) is central-valued on R if

and only if it is central valued on R. Let
P(s1,...,8,) = apw(si,...,8,)% +ab'w(sy,...,50)qw(s1,...,8,) +
bpw (51, ..., 80)2c+bVw(s1,. .., 80)qw(s1,...,8,)c —
mw(st,...,8,)% —b"w(sy,. .., sn)%u. (3)
Since the generalized polynomial P(sy,...,s,) on R is a multi-homogeneous of
multi-degree (2,...,2) in the indeterminates sy, ..., s,, the complete linearization

of P(s1,...,8y) is a multilinear generalized polynomial U(sy,...,Sp,Z1,...,%y,) in

2n indeterminates. Moreover
n
U(S1,.-es8n,81,---,8n) = 2"P(81,...,8n).

It is clear that the multilinear polynomial ¥(sq,...,Ssp,21,...,2,) is a gener-
alized polynomial identity for both % and M. Since char(R) # 2, we obtain
P(s1,...,8,) = 0 for all s1,...,5, € R and then we get conclusions as desired
by Case-I. (I

Corollary 2.4. Let R = M;(C), t > 2 be the ring of all matrices over the field C
with char (R) # 2 and a1, as, a3, aq, as, ag, ay, as,ag € R. If
a1r2 + asrasr + a47”2a5 + agrazras — a7r2 — a97‘2ag =0

for all v € R, then one of the following holds:

(1) az €C;

(2) a5 €C;

(3) ag = 0.
Lemma 2.5. Let R be a prime ring of char (R) # 2, C the extended centroid of R
andw(s1, ..., Sn) a non-central multilinear polynomial over C. Ifa,p,b,b',b",q,c,m,u €
R such that R satisfies apw(s)?+ab'w(s)qw(s)+bpw(s)2c+bb w(s)qw(s)c—mw(s)?—
V'w(s)?u =0 for all s = (s1,...,8,) € R", then one of the following holds:
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(1) geC;
(2) cec;
(3) b’ = 0.

Proof. Let

X(81,- -+, 80) = apw(sy,...,8,)% +abw(sy,. .., 8,)qw(s1,...,8n)
+bpw (81, ..., 8n)2c+ bV w(s1, ..., 80)qw(s1,. .., 8n)C
—mw (81, .., 80)% = b"w(s1,. .., 80)%u. (4)

Since R and Q" satisfy the same generalized polynomial identity (see [2]), O
satisfies x(s1,...,8,) = 0. Suppose that x(s1,...,$,) = 0is a trivial GPI with co-

efficients in Q7. Then x(s1, ..., Sp) is the zero element in T = Q" xcC{s1,...,Sn},
where 7 = Q™ x¢ C{s1, S2, ..., Sn}, the free product of Q™ and C{sy,...,s,}, the
free C-algebra in noncommuting indeterminates si, so, ..., Sy.

Here we suppose both bb' # 0 and ¢ ¢ C and prove that, under this assumption,
q € C follows.

Since (4) is a trivial generalized polynomial identity for Q™ {c, u, 1} is linearly
C-dependent, i.e., ayc+ asu + ag = 0. Since ¢ ¢ C, as # 0 and hence u = S1¢c+ B2
for some (1, f2 € C. Hence by (4),

(10677 + Vo)) ) 4 b lo)? 4 Vs(5)a(5) ) = mls)? + (6 (v + o

for all s = (s1,...,8,) € (Q™)™. Since {c,1} is linearly C-independent, above

relation yields
(bpw(s)2 b w(s)qu(s) — ﬂlw(s)z)c —0eT (5)

for all s = (s1,...,8,) € (Q7)". Now (5) can be written as

((bp — Brw(s) + bb'w(s)q)w(s)c =0eT
for all s = (s1,...,8,) € (Q)", that is,
(bp — B1)w(s) + bb'w(s)g=0¢€ T.

This implies g € C, otherwise the contradiction bb’ = 0 follows.

Now let (4) be a non-trivial GPI for Q. In case C is infinite, we have x(s1,. .., $n)
=0 for all s1,...,8, € Q™ ®¢ C, where C is the algebraic closure of C. Since both
Q™ and Q™ ®¢ C are prime and centrally closed [8, Theorems 2.5 and 3.5], we may
replace R by Q7 or Q™ ®c C according to C is finite or infinite. Then R is centrally
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closed over C and x(s1,...,8,) = 0 for all s1,...,s, € R. By Martindale’s theo-
rem [17], R is then a primitive ring with non-zero socle soc(R) and with C as its
associated division ring. Then, by Jacobson’s theorem [11, p.75], R is isomorphic
to a dense ring of linear transformations of a vector space V over C. We have the
following cases.

Case-I: If V is finite dimensional over C, that is, dim¢V = m, then by density
of R, we have R = M,,(C). Since w(s1,...,sy) is not central valued on R, 2 must
be noncommutative and so m > 2. In this case, by Proposition 2.3, we get one of
the following:

(1) ¢€C;
(2) cec;
(3) b’ =0.

Case-II: Suppose that V is infinite dimensional over C. Then by [22, Lemma

2], the set w(fR) is dense on R. Then by hypothesis, R satisfies

apr? + ab'rqr + bpr?c + b'rgrc = mr? + b'r?u. (6)

If any one of the following holds
(1) ¢ €C;
(2) ce¢;
(3) B =0,
then we get our conclusions. So on contrary, we assume that the following holds

simultaneously:

(1) there exists hy € soc(R) such that [g, h1] # 0;
(2) there exists hy € soc(R) such that [c, ha] # 0;
(3) there exists hs € soc(R) such that bb'hz # 0.

By Martindale’s theorem [17, Theorem 3], for any e¢* = e € soc(R), we have
eRe =2 M(C) with t =dim¢Ve. By Litoft’s theorem [9], there exists an idempotent
e € soc(R) such that hy,ho, hs,,qhi, hiq, cha, hac,bb'hs, h3bb' € eRe. Since R
satisfies generalized identity (6), the subring eRe satisfies

e(ap)er? + e(ab’)ereger + e(bp)er?ece + e(bb Jereqerece = emer? + eb”er?eue.

Then by Corollary 2.4, any one of the following holds:

(1) ege € eC which contradicts existence of hy;
(2) ece € eC which contradicts existence of hg;

(3) ebb’e = 0 which contradicts existence of hs. 0



28 B. DHARA, V. DE FILIPPIS, S. KAR AND M. BERA

In the same manner, we can prove the following lemmas.
Lemma 2.6. Let char (R)# 2. If a1, a9, as, a4, as,a6,a7 € R such that
a1w(8)? + asw(s)azw(s) + w(s)?ay + asw(s)’ar = 0
for all s = (s1,...,8,) € R"™, then either ag or ay is central.

In the subsequent discussion, we presume that for all z € R, H;(z) = ax + bzxc,
Ho(z) = pr + V' zq and Hz(z) = ma + b’ xu where a,b,b', 0", ¢, p,q,m,u € Q™ and
R satisfies

#, (%2<w<s>>w<s>> — Hy(w(s)?)
for all s = (s1,...,8,) € R"™ which provides

apw(s)? + ab'w(s)qw(s) + bpw(s)?c + bb'w(s)qw(s)ec
—mw(s)? —b'w(s)?u=0 (7)

where a,b,b',b",¢,p,q,m,u € Q™. Following these we shall establish the subse-

quent lemmas.

Lemma 2.7. If g € C, then for all x € R, one of the following holds:

(1) Hi(z) = (a + be)z, Ha(z) = (p+ @)z and Hs(z) = (m + b'uw)z with
(a+bc)(p+bq) =m+b"u;

(2) Hi(z) = ax + bxe, Ha(z) = (p + V'q)x and Hs(z) = ma + zb'u with
Hilp+bVq) =m+b"u, a(p+bq) —meC, bp+q) €C;

(3) w(s1,...,8n)? is central valued on R and Hi(z) = ax + bzc, Hao(z) =
(p+Vq)x and Hs(x) = mx + b"zu with Hi(p + b'q) = m + b"u;

(4) Hi(z) = ax + bxc, Ha(z) = (p + b'q@)x and Hs(z) = (m + b'u)z with
bip+bq)=0, alp+bq) =m+b"u;

(5) R satisfies sq.

Proof. In this case, ¢ € C indicates Ha(z) = (p + b/q)z. Hence (7) turns into
(ap —m + ab'q)w(s)? + (bp + bb q)w(s)?c — b"w(s)?u = 0. (8)

Then based on Lemma 2.2, unless fR satisfies s4, we derive one of the following:
(1) ¢, b",b"u,(ap —m+ ab'q) + (bp + bb'q)c € C and ap — m + ab'q + (bp +
bb'q)c—b"u = 0. Thus Hi(z) = (a+bc)x, Ha(x) = (p+b'¢)x and Hs(z) =
(m + b"u)z for all x € R with (a + be)(p + b'q) = m + b"u. Hence we get

the conclusion (1).
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(2) bp+bbq,u, (bp+bV'q)c,ap—m+abq—b"u € C with ap—m+ab'q—b"u+
(bp + bb'q)c = 0. This implies bp + bb'g = 0 or ¢ € C. If ¢ € C, then the
conclusion (1) holds. If bp + bb'q = 0, then Hi(z) = ax + bxe, Ha(z) =
(p+bVq)x, Hs(z) = (m+ b"u)z for all x € R with a(p 4+ b'q) = m + by,
b(p + b'q) = 0. This provides the conclusion (4).

(3) V', bp+bb'q,ap—m+ab'q € C with ap —m+ ab’q+ (bp+ bb'q)c — b""u = 0.
Thus Hi(z) = ax + bxe, Ha(z) = (p+b'q)x and Hs(z) = max + xb"u for all
x € R with a(p+q) +blp+bq)c=m+b"u, ie, Hi(p+bq) =m+b'u
with a(p + b'q) — m,b(p + b'q) € C. Then we arrive at the conclusion (2).

(4) ¢,u € C with ap — m + ab'q + (bp + bb'q)c — b"u = 0. Thus, Hi(x) =
(a+be)x, Ho(z) = (p+b'q)x and Hs(z) = (m + b"u)z for all x € R with
(a+bc)(p+bq) = m+ b"u. This yields the conclusion (1).

(5) There exist non-zero a, A, u € C such that b(p +b'q) —ab” =M\ u—ac=p
and Ac € C. Since A # 0, ¢ € C and hence u € C. Then as above the
conclusion (1) holds.

(6) w(M)? € C and ap — m + ab'q + (bp + bb'q)c — b""u = 0. This provides the

conclusion (3). O

Lemma 2.8. If c € C, then for all x € R, one of the following holds:

(1) Hi(z) = (a + be)z, Ho(x) = (p+ b q)z and Hz(z) = (m + b"u)z with
(a+be)(p+bq) =m+b"u;

(2) Hi(z) = (a + bo)x, Ha(x) = px + bzq and Hs(z) = (m + b'w)z with
(a+bc)l/ =0, (a+bc)p=m+b"u;

(3) w(sy,...,sn)% is central valued on R and Hi(z) = (a + be)x, Ha(x) =
pr+bzq and Hz(x) = ma +b"zu with (a+be)t) =0, (a+bc)p = m~+b"u;

(4) R satisfies sq.

Proof. Since ¢ € C, we have H1(z) = (a + be)zx for all x € R. Consequently (7)

turns into
(ap — m + bpc)w(s)? + (ab’ + bV c)w(s)qw(s) — b"w(s)*u = 0. (9)

Then by [20, Lemma 3.3], we get either g € C or (a + be)b € C. If g € C, then the
conclusions (1) and (4) follow by Lemma 2.7. If (a + be)b’ € C, then (9) reduces to

(ap — m + bpe)w(s)? + w(s)(a + be)b qu(s) — b"w(s)?u = 0. (10)

Again this implies (a+bc)b'q € C. This implies (a+bc)b’ =0or g € C. If ¢ € C, then
the conclusions (1) and (4) follow by Lemma 2.7. Thus assume that (a + bc)b’ = 0.
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Hence from above
{ap — m + bpc}w(s)? — b"w(s)?u = 0. (11)

Based on Lemma 2.1 for all x € R, one of the following holds:

e u € C with ap — m + bpc — V"u =0, i.e., (a + bc)p = m + b"u. Thus H;(z) =
(a+bc)z, Ho(z) = pr+b'zq and Hz(z) = (m~+b"u)x; which provides the conclusion
(2).

e ap—m+bpc =0"=0. Thus Hi(z) = (a + be)x, Ha(x) = px + b'xq and
Hs(x) = ma with (a + be)p = m; which gives the conclusion (2).

e w(R)? € C with ap — m + bpc — b"u = 0. Thus H;(z) = (a + be)x, Ho(x) =
px + b'xq and Hz(x) = ma + b”zu; which yields the conclusion (3). O

Lemma 2.9. Ifbb' =0, then for all x € R, one of the following holds:

(1) Hi(z) = (a + be)z, Ha(z) = (p+ @)z and Hs(z) = (m + b'uw)z with
(a+bc)(p+bq) =m+b"u;

(2) Hi(z) = ax + bxe, Ha(x) = (p+ Vq)x and Hz(x) = mz + xb’u with
Hilp+bq)=m+b"u, alp+bq)—meC, bp+bq) €C;

(3) Hi(z) = ax+bdxe, Ha(z) = (p+Vq)x and Hz(x) = (m+b"w)x with bp =0,
alp+bq)=m+b"u;

(4) Hi(z) = (a + bo)x, Ha(x) = pr + Vzq and Hz(z) = (m + b'u)x with
(a+be)t) =0, (a+be)p=m+b"u;

(5) Hi(z) = ax + bxe, Ho(z) = px + Vg and Hs(zx) = (m + b u)z with
V'u+m=ap, bp=0=al';

(6) Hi(z) = azx + bxe, Ho(x) = pxr + Vxq and Hz(xr) = mx + xb’u with
bp,m —ap € C, ab =0 and H1(p) =m + b"u;

(7) w(s1,...,8n)? is central valued on R and Hi(z) = ax + bze, Hao(z) =
(p+b'q)x and Hs(xz) = mx + V" zu with Hi(p+b'q) = m + b"u;

(8) w(s1,...,8n)% is central valued on R and Hi(z) = (a + be)x, Ha(z) =
pr+bzq and Hs(x) = ma +b"zu with (a+be)t) =0, (a+bc)p = m~+b"u;

(9) w(s1,...,8n)? is central valued on R and Hi(z) = ax + bze, Ha(x) =
px + bxq and Hz(x) = mzx + b zu with ap + bpc = "u + m, ab’ = 0;

(10) R satisfies s4.

Proof. Since bb' = 0, (7) shifted to
(ap — m)w(s)? + ab'w(s)qw(s) + bpw(s)?c — b"w(s)?u = 0. (12)

Then applying Lemma 2.6, we get either ab’ € C or ¢ € C. If g € C, then we derive
the conclusions (1), (2), (3), (7) and (10) from Lemma 2.7. If ab’ € C, then from
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(12), we get
(ap — m)w(s)? + w(s)ab qu(s) + bpw(s)?ec — b"w(s)?u = 0. (13)

Then from [7, Proposition 2.7], we get ab’q € C. Since ¢ ¢ C, ab’ = 0. Then from
(13),

bpw(s)?c — b"w(s)*u = (m — ap)w(s)?. (14)

If ¢ € C, then we derive the conclusions (1), (4), (8), (10) by using Lemma 2.8.
Thus assume that ¢,q ¢ C. Hence by Lemma 2.2, for all € R, we derive one of

the following:

(1) bp,u,bpc,b"u+m —ap € C with bpc — b""u—m + ap = 0. Since bp € C and
¢ ¢ C, we have bp = 0. Thus Hi(x) = az + bxc, Ha(xz) = pzx + b'zq and
Hs(z) = (m + b"u)x with b"u +m = ap, bp = 0 = ab’. Hence we conclude
(5).

(2) bp, b, m — ap € C with bpc — b"u — m + ap = 0. Thus H,(z) = ax + bzxc,
Ho(x) = pr+bxq and Hs(z) = mz+zb”u with bpec+ap = b"'u+m, bp € C,
m —ap € C, ab' = bl = 0. This provides the conclusion (6).

(3) there exist 0 # a, A1, A2 € C such that bp — ab” = A, u — ac = A2 and
A1c € C which implies ¢ € C, a contradiction.

(4) w(M)? € C with ap + bpc = m + b"u and ab’ = 0. So we conclude (9). O

Lemma 2.10. LetfR be a prime ring of characteristic different from 2 and w(s1, ..., s,)
be a moncentral multilinear polynomial over C. Suppose that Hi, Ho and Hs
are three inner X-generalized derivations on R such that Hi(Ha(w(s))w(s)) =
Hz(w(s)?) for all s = (s1,...,5,) € R™. Then for all x € R, one of the following
holds:

(1) there exist a,b,c,p,m,u € Q" such that Hi(z) = ax + bxe, Ha(x) = px
and Hz(x) = mx + zu with H1(p) = m+wu, ap — m,bp € C;

(2) there exist a,b,c,p,q,b/,m € QM such that Hi(z) = azx + bxe, Ha(z) =
pr + b'xq and Hz(x) = ma with Hi(p) = m, bp = bb' = H1 (V') = 0;

(3) there exist a,b,c,p,q,b',m,u € QM such that Hi(x) = ax + bxe, Ha(z) =
pxr + b'xq and Hz(z) = ma + zu with Hi1(p) = m + u, bp,ap —m € C,
abl = bb = Hy (V) = 0;

(4) R satisfies s4;

(5) w(s1,...,8n)% is central valued on R and one of the following holds:
(a) there exist a,b,c,p,m,b" ,u € Q" such that Hi(x) = ax+bxe, Ha(x) =

px and Hz(xz) = mz + " zu with Hi(p) = m + b"u;
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(b) there exist a,b,c,p,q,b',m,b",u € Q" such that Hi(x) = ax + bxc,
Ho(z) = pr + Vxq and Hs(x) = ma + b'zu with Hi(p) = m + b"u,
abl =0 =0l

Proof. Let Hi(z) = ax + bxe, Ha(z) = px + V'xq and Hs(z) = ma + b"zu for all
x € R, where a,b,b',b",¢,p,q,m,u € Q™. Then by hypothesis, R satisfies

a(pw(s)2 + b’w(s)qw(s)) + b(pw(s)2 + b’w(s)qw(s))c
= mw(s)? + b"w(s)?u, (15)

that is,

apw(s)? + ab'w(s)qw(s) + bpw(s)?c + bb'w(s)qw(s)c = mw(s)? + b"w(s)?u (16)
for all s = (s1,...,8,) € R™ and s0 s1,...,8, € Q7 (see [2]).

By Lemma 2.5, we get one of the following:

(1) g€

(2) ceC;

(3) b = 0.
If ¢ € C, then by Lemma 2.7, we obtain the conclusions (1), (4) and (5(a)). If
¢ € C, then by Lemma 2.8, we have the particular case of our conclusions (1), (2)

and (5(b)). If b’ = 0, then by Lemma 2.9, we have the conclusions (3), (4) and
(5(b)). O

3. The main result

Let d and § be two derivations on }&. We denote by w(sy, ..., s,) the polynomi-
als obtained from w(s1,. .., s,) by replacing each coefficients o, with d(a,). Then

we have
dw(s1,. .. 80)) =w(s1,...,s0) + Zw(sl, cey d(Si)s oy Sn)
and
do(w(st,. .. 8n)) = wP(s1,...,8,) + de(sl, cey 0(8)y 0y Sn)
—I—Zw‘s(sl,...,d(si),...,sn) —|—Zw(sl,...,dé(si),...,sn)
+ Z W(Sl, N ,d(Si), ce ,(S(Sj), N 7571)-
i#£]
Since H1,Ho and Hg are X-generalized derivations of R, there exist derivations d,

g and h of R and a,b,b', 0", p,m € Q" such that Hi(x) = ax + bd(z), Ha(x) =
pr + Vg(x) and Hs(x) = mz + ’h(x). By hypothesis, we have a(pw(s)2 +
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b’g(w(s))w(s)) + bd(pw(s)2 + b’g(w(s))w(s)) = mw(s)? + b"h(w(s)?) for all s =
(81y...,8n) € R"™. Since I, B and Q" satisfy the same GPIs (see [2]) as well as

the same differential identities (see [14])

a(pw(s)? + ¥g(w(s))w(s)) + bd(pw(s)? + Vglw(s)w(s) )
= mw(s)? + b"h(w(s)?) (17)

for all s = (s1,...,8,) € (Q7)™. If we suppose that d, g, h are all inner derivations
of M, then there are elements q1, g2, g3 € Q" such that d(x) = [¢1, 2], g(x) = [g2, 2]
and h(x) = [g3, z] for any x € R. Hence, H1, Ho and Hs are all inner X-generalized
derivations, then by Lemma 2.10, we get the required conclusions. Thus, to prove
our Theorem 1.1, in the sequel we will always assume that d, g and h are not

simultaneously inner derivations. Therefore, we have the following lemmas.
Lemma 3.1. The derivations d and g cannot be simultaneously inner.

Proof. If we assume on the contrary that both d and g are inner derivations of R,
then h must be not inner. Let d(z) = [¢,z] and g(x) = [k, 2] for all z € R. Then
(17) reduces to

a(pw(s)2 ¥ b’[k’,w(s)}w(s)) + b[q, pw(s)? + V[K, w(s)]w(s)]

= mw(s)? 4+ " h(w(s)?) (18)
for all s = (s1,...,8,) € (Q™)™. Since h is not an inner derivation on Q7 by
using Kharchenko’s theorem [12, Theorem 2], we can replace h(w(sy, ..., s,)) with

Wh(s1,...,8n) +>_w(s1,- .., 2., 8n), where z; = h(s;) and then Q" satisfies the
7
blended component
b”Zw(sl,...,zi,...,sn)w(sl,...,sn)
i

+b”w(51,...,sn)Zw(sl,...,zi,..‘,sn) =0. (19)

%

In particular, for z; = s; and z; = 0 for all ¢ > 2, Q7" satisfies
20"w(s1,...,8,)2 = 0. (20)

Since char(R) # 2, this implies b”w(s1,...,s,)? = 0 and hence v = 0. Then H;

becomes inner and so all X-generalized derivations are inner, a contradiction. [J

Lemma 3.2. If d, h are both inner derivations, then one of conclusions (1), (5)
and (6(a)) of Theorem 1.1 holds.
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Proof. Since d is inner, and by Lemma 3.1, we may assume that g is not inner.
Let d(x) = [¢,z] and h(z) = [k, z] for all z € R. Then (17) reduces to

a(pes)? + Vg(w(s)w(s)) +bla.po(s)? + Hglw(s)w(s)

= mw(s)? + V"[K',w(s)?] (21)
for all s = (s1,...,8,) € (Q7)™. Since g is not an inner derivation on QJ*, by
using Kharchenko’s theorem [12, Theorem 2], we can replace g(w(si, ..., s,)) with

WI(S1,..y8n) + D wW(S1y--sYis---,Sn), Wwhere y; = g(s;) in the equation (21) and

K3
then Q" satisfies the blended component

abIZW(Sl,...7yi,...,Sn)W(Sl,...,Sn)

K2

+b|q, b Z:w(sl7 ey Yiy ey Sp)w(S1, .., sn)} =0. (22)
In particular, above equation yields
ablw(s)? + b{q, b’w(s)2] =0, (23)
that is,
(ab’ + bgb)w(s)? — bb'w(s)?q =0 (24)

for all s = (s1,...,8,) € (Q™)"™. By Lemma 2.1, one of the following holds:
Case 1: ¢ € C and ab’ = 0.
Therefore Hi(z) = ax and H1(b') = 0. Thus (21) reduces to

apw(s)? = mw(s)? +b"[k,w(s)?], (25)
that is,
(ap —m — b"ENw(s)? + bv"w(s)?k’ =0 (26)

for all s = (s1,...,8,) € (Q)™. Then based on Lemma 2.1, for all € R, one of
the following holds:
(1) ¥ € C and ap—m = 0. Thus in this case Hi(x) = ax, Ha(z) = pz + b g(x)
and Hg(z) = ma with H;(p) = m and H1(b') = 0, which provides a specific
case of the conclusion (1) of Theorem 1.1.
(2) ¥ =0 = ap — m. This gives Hi(x) = ax, Ha(x) = pzr + b/g(z) and
Hs(z) = ma with Hi(p) = m and H1(b') = 0 and as a result, we again
obtain a specific case of the conclusion (1) of Theorem 1.1.
(3) w(M)? € C and ap = m. Thus Hi(z) = azx, Ha(z) = pr + b'g(z) and
Hs(z) = mz+b"[K, x|, H1(p) = m and H1(b') = 0, that provides a specific

case of the conclusion (6(a)) of Theorem 1.1.
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Case 2: ab’ + bgt/ = bb' = 0.
In this case if ¢ € C, then from above ab’ = 0 and hence conclusion follows by
Case-1. Thus we assume that ¢ ¢ C. Then from (21)

apw(s)? + blg, pw(s)’] = mw(s)® + V" [k, w(s)?], (27)
that is,
(ap +bgp — m — b"E )w(s)? — bpw(s)?q +b"w(s)*k’ =0 (28)

for all s = (s1,...,8,) € (Q7)™.

Since ¢ ¢ C, by applying Lemma 2.2, for all z € R, one of the following holds:

(i) bp, k', bpq, ap+bgp—m € C with ap+b|q, p]—m = 0. Since ¢ ¢ C, bp = 0. Thus
Hi(x) = ax +blq, 2], Ha(z) = pr+Vg(x), Hs(x) = ma with bp = ap+bgp—m =0,
bb' = ab' +bgt’ =0, i.e., Hi(p) = m, H1(b') =0, bb’ = bp = 0. This gives a specific
case of the conclusion (1) of Theorem 1.1.

(ii) v, bp, ap+bgp—m—b"k" € C with ap+b[q, p] = m. Thus H,(z) = ax+blg, z],
Ha(z) = pxr+b'g(z), Hs(x) = ma + [0k, z] with bp, ap + bgp —m — bk’ € C with
Hi(p) =m, Hi(b') =0, bb’ = 0, and once again we get the conclusion (1).

(iii) bp —ab’ =X e C, k' —ag=pu € C, \g € C for some 0 # o, \, u € C. This
implies g € C, a contradiction.

(iv) w(R)? € C with Hi(p) = m. Thus Hi(z) = ax+Dblq, x], Ha(x) = pr+Vg(x),
Hs(z) = ma + b'[K, 2] with Hi(p) = m, H1(') = 0, b’ = 0; which gives the
conclusion (6(a)) of Theorem 1.1.

(v) R satisfies s4 (the conclusion (5) of Theorem 1.1).

Case 3: w(R)? € C and ab’ + b[g,b'] = 0.

Thus (22) gives

b’ [q,Zw(sl7 Uiy Sp)W(S1, .., 80) | = 0. (29)

K2

Since ¢ ¢ C, it yields bb’ = 0. Hence (21) reduces to
(ap + blg, p] — m)w(s)* = 0 (30)
which implies H1(p) = m. This gives the conclusion (6(a)). O

Lemma 3.3. If g, h are inner, then we obtain some specific case of the conclusions
(3) and (6(c)) of Theorem 1.1.
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Proof. Since g is inner, and by Lemma 3.1, we assume that d is not inner. Let
g(x) = [k, z] and h(z) = [g, ] for all x € R. Then (17) reduces to

a(pw(s)2 +b'[k, w(s)]w(s)) + bd(po.z(s)2 +b'[k, w(s)]w(s))

= muw(s)” +b"[q,w(s)’] (31)
for all s = (s1,...,8,) € (Q7)™. In this case d is not an inner derivation on Q.
By using Kharchenko’s theorem [12, Theorem 2], we can replace d(w(s1,...,8,))

with w¥(s1,...,8,)+ > w(s1,.., T4, ..., 8n), where z; = d(s;) in equation (31) and

7
then Q" satisfies the blended component

b(pw(sl,...,sn)Zw(sl,...,xi,...7sn) +pr(sl7...,xi,...,sn)w(sh...,sn)
7

%

+0' (kw(s1, ..., 80) Do w(s1, ..., @iy ..o Sn) +ED w(st,. .., @iy ..o, 8n)w(s1,. .., Sn)

K3

—w(sh...,sn)ka(sl,.,.,m,...,sn)
1

=2 w(s1, .o Ty Sn)kw(sy, . sn))> =0. (32)
In particular, for z; = s; and 2 = --- =z, = 0, Q)" satisfies
(bp + bb'k)w(s)? — bb'w(s)kw(s) =0 (33)

for all s = (s1,...,8,) € (Q7)™. Then from [7, Proposition 2.5], either k& € C or
b’ = 0. In any case we have from (33) that bpw(s)? = 0 implying bp = 0.

Case 1: Let k€ C and bp = 0.

Then g(x) = 0. Thus (31) gives

(ap + bd(p) —m — b"q)w(s)* +b"w(s)*q = 0 (34)

for all s = (s1,...,8,) € (Q)™. By Lemma 2.1, for all x € R, one of the following
holds:

(1) ap + bd(p) = m and g € C. In this case Hi(x) = ax + bd(z), Ha(x) =
px, Hs(x) = mz with Hi(p) = m, bp = 0, which is a specific case of the
conclusion (3) of Theorem 1.1.

(2) ap + bd(p) — m = b”" = 0. In this case Hi(z) = ax + bd(x), Ha(z) =
px, Hs(x) = ma with Hi(p) = m, bp = 0. This gives again a specific case
of the conclusion (3) of Theorem 1.1.

(3) ap + bd(p) = m and w(sy,...,s,)? is central valued on M. In this case
Hi(z) = ax + bd(x), Ha(z) = px, Hs(z) = ma + b"[q, x] with Hi(p) = m,
bp = 0. This is a specific case of the conclusion (6(c)) of Theorem 1.1.

Case 2: Let b’ = 0 and bp = 0.
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From (31),

a(pw(s)? + [k, w(s)lw(s)) + bd(p)w(s)? + bd(b') [k, w(s)|w(s)
= muw(s)? + (g, w(s)’] (35)

ie.,

(Hi(p) +Hi(0)k —m — b"q)w(s)?
—H1(V)w(s)kw(s) + b"w(s)?q = 0. (36)

for all s = (s1,...,8,) € (Q™)". By Lemma 2.6, H(b') € C (for k ¢ C). Then we

have

(Ha(p) +Hi(b)k —m — b"q)w(s)
—w(s)H1(b)kw(s) +b"w(s)?q =0 (37)

for all s = (s1,...,8,) € (Q™)™. By [7, Proposition 2.7], H;(b')k € C. Since k ¢ C,
H1(¥') = 0. Thus from above

(Hi(p) —m = b"q)w(s)® + b"w(s)’q = 0 (38)

for all s = (s1,...,8,) € (Q™)™. This is the same as (34). Hence by the same
argument, for all z € R, we have the following conclusions:

(i) Hi(z) = ax + bd(x), Ho(x) = px + b'[k,z], Hz(x) = ma with Hi(p) = m,
bp =0 =bb" = H1(V'). This is a specific case of the conclusion (3).

(i) Hi(z) = ax + bd(x), Ha(z) = px + V'[k, x], H3(x) = ma with Hi(p) = m,
bp =0 =bb = H;(b') which is the same as above.

(i) Hi(z) = ax + bd(x), Ha(z) = pr + V[k,z], Hs(z) = ma + b"[q, z] with
w(R)? € C, Hi(p) = m, bp = 0 = b’ = Hy (V). This is a special case of the

conclusion (6(c)). O

Lemma 3.4. If d is inner, then one of the conclusions (1), (5) and (6(a)) of
Theorem 1.1 holds.

Proof. Let d(z) = [¢, ] for all x € R. Then (17) reduces to

a(pes)? + Vglw(s)w(s)) +bla, (po(s)® + Vg(w(s)w(s))]
= mw(s)? + b"h(w(s)?) (39)

for all s = (s1,...,8,) € (Q7)".
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By Lemma 3.1, we may assume that ¢ is not inner. Moreover, if h is an inner
derivation of fR, then the required conclusions follows from Lemma 3.2. Thus, we

now suppose that h is not inner and prove that a contradiction follows.
Let h and g be linearly C-dependent.

Then for some oy, as € C, ajh(x) + asg(x) = [k,z]. Since both of h and g
are outer, oy, ag are non-zero. Then h(xz) = afg(z) + [k, z] for all z € R where

o) = —a;tag and k' = aj 'k, then (39) becomes
a(pw(s)2 + b’g(w(s))w(s)) +b [q, (pw(8)? + ' g(w(s))w(s))
= muw(s)? + a1b"g(w(s)?) + [k, w(s)?] (40)
for all s = (s1,...,8,) € (Q7)™. By using Kharchenko’s theorem [12, Theorem 2],

we can replace g(w(s1,...,8,)) with w?(s1,...,8,)+ >, w(S1,.-,Yi,.-.,Sn), where

2
y; = g(s;) and then Q" satisfies the blended component

abIZW(Sl,...7yi,...,Sn)W(Sl,...,Sn)

K2

+blg, b Yo w(st, - Wiy Sp)w(st, - 8n)]

K

= a'lb”(w(sl, s 8n) 2o w81y Yy Sn)
+Zi:w(sl,...,yi,...7sn)w(31,...7sn)). (41)
In particular, for y; = 1 and y; = 0 for all ¢ > 2, Q)" satisfies
ab'w(si,...,s0)2 +blg, b'w(st, ..., 8,)% = 240 w(sy, ..., 8n)% (42)
that is,
(ab’ + bgt! — 24" )w(s1, ..., 80)% — bb'wW(s1,...,8,)%q =0. (43)

By Lemma 2.1, ab’ + b[q, b'] — 2a;b” = 0 and either ¢ € C or bb' =0 or w(R)? € C.

In any of these cases, (41) reduces to

B[S w1,y Ui 50,51, 50)] = 0. (44)

3

Then replacing y; by [A’, ;] for some A’ ¢ C, we get

aV'[A  w(st, ... 8n)]2=0 (45)



X-GENERALIZED DERIVATIONS 39

which gives of = 0 or b = 0. Thus H3 and H; both are inner, a contradiction.
Let g and h be linearly C-independent.

By applying Kharchenko’s theorem [12, Theorem 2] to (39), we can replace
g(w(s1,...,8n)) with w9(s1,...,8,) + > w(S1,..yYi,--.,8,) and h(w(s1,...,Sn))

with w"(s1,...,8,) + > w(s1,...,2i,...,8,), where y; = g(s;) and z; = h(s;) in

(39), and then Q" satisfies blended component

b//{Zw(sl,...,zi,,..,sn)w(sl,...,sn)+w(51,...,sn)Zw(sl,...,zi,...,sn)} =0.

i 2

In particular, for z; = s; and 29 = -+ = 2z, = 0, Q™ satisfies 20" w(sy,...,5,)? =
0. Since char (fR) # 2, this implies that b” = 0, i.e., Hs and H; are inner, a
contradiction. [l

Lemma 3.5. If g is inner, then we obtain some special cases of the conclusions

(3), (4), (6(c)) and (6(d)) of Theorem 1.1.
Proof. Let g(z) = [k, z] for all z € ®. Then (17) reduces to

a(pos)? + W, w(s))els) ) + b (peo(s)? + 5k, w(s)e(s) )

= me(s)? + b h(w(s)%) (46)
for all s = (s1,...,5,) € (QM)™. If h is inner, according to Lemma 3.3, it follows

that some specific cases of the conclusions (3) and (6(c)) hold. From this last fact

and by Lemma 3.1, we now assume that both d and h are not inner derivations.
Let d and h be linearly C-dependent.

There exist some oy, ag € C such that ayd(x) + agh(x) = [g,x]. Since both of h
and d are outer, ay, ag are non-zero. Thus we can write h(z) = ojd(z) + [¢/, x] for
all z € M. By (46),

a(pw(s)2 + b’[hw(s)]w(s)) + bd(pw(s)2 + b’[k,w(s)]w(s))
= mw(s)® + 6"\ d(w(s)?) +"[¢", w(s)?] (47)
for all s = (s1,...,8,) € (Q7)". By using Kharchenko’s theorem [12, Theorem 2],
we can replace d(w(sy, - .., 5,)) with w¥(sq1,...,5,) +> w(s1,.--, 2, - -, 8n), where
z; = d(s;) and then Q" satisfies the blended component
bp(Zw(sl,...,zi, cey Sn)w(S1, .o, Sn) Fw(s1, ..., 8n) Zw(sl,...,zi,. .y 8n))
+bb/[l€,z:w(31, ey Zige ooy Sn)|w(s1, e, 8n) + 0V [k, w(s1,. ., 80)] Zw(sl, ey Ziyeens8n)

=b"0) (O w(S1, -y 2iy ey Sn)W(S1, vy 8n) FW(S1,. 03 80) D wW(S1,.-yZiy. .y 8n)).

[ @
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In particular, for z; = s; and z; = 0 for all ¢ we get
bpw (st .-y 8n)2 + 00 [k, w(st, .., 80)|w(st, ..y 8n) = b dhw(st,. .., sn)%, (48)
that is,
(bp + bb'k — )b )w(s1, ..., 80)% — bV W(s1,. .., 80)kw(s1,...,8,) =0. (49)

By [7, Proposition 2.5], bb" = 0 or k € C. In any case, we have from (49), (bp —
b \w(s1,...,8,)% =0 implying bp = o} b”. Thus we consider the following cases:
Case-1. Let k € C and bp = ob”.
Thus by (47),

(Hi(p) —m —b"q")w(s)? + b"w(s)*q" = 0. (50)

Since H3 is not inner, b # 0.

By Lemma 2.1, H1(p) = m and either ¢’ € C or w(R)? € C. Thus Hi(z) =
ax + bd(x), Ha(z) = pz, Ha(z) = mz + ob"d(x) + b'[¢, z], with Hi(p) = m,
bp = b and either ¢’ € C or w(R)? € C, which provides some specific cases of
the conclusions (3) and (6(c)) of Theorem 1.1 (in the reduced case when &’ = 0).

Case-2. Let b’ = 0 and bp = ojb”.

Thus (47) reduces to

apw(s)? 4 ab'[k, w(s)]w(s) + bd(p)w(s)? + bd(b')[k, w(s)]w(s)
=mw(s)® +b"[¢',w(s)?], (51)
(Hi(p) —m+Hi(V)k = b"q )w(s)® — Hi(bV )w(s)kw(s) + b"w(s)?q =0 (52)

for all s = (s1,...,8,) € (Q™)™. By [7, Proposition 2.5], either H;(d') = 0or k € C.
Since we have already discussed the case k € C, we now consider H;(b') = 0. Thus,
the relation (52) reduces to (50) and, by the same above argument, it follows that
Hi(z) = ax 4+ bd(x), Ha(x) = px +b'[k, 2], Hz(z) = max+ ajb"d(x) +b"[¢, x], with
Hi(p) =m, bp = b, bb' = H1(b') = 0 and either ¢’ € C or w(R)? € C. Hence we

get some special cases of the conclusions (4) and (6(d)) of Theorem 1.1.
Let d and h be linearly C-independent.

By applying Kharchenko’s theorem [12, Theorem 2] to (46), we can replace
d(w(sy,...,8n)) with w¥(s1,...,8,) + > w(s1,..., T4 ...,5,) and h(w(s1,...,5,))

with w?(s1,...,80) + S w(s1,..-,2i,-..,5n), where z; = d(s;) and z; = h(s;) in
i
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(46) and the Q! satisfies the blended component

B> w(S1y vy Ziye ey Sn)wW (81, .y Sn)

K2

+b'w(s1,. .. 80) wlst, .., 20, ..., 50) = 0. (53)

7
In particular, for z; = s; and 29 = - -+ = 2, = 0, Q™ satisfies 20" w(s1,...,5,)2 =0
implying b = 0, i.e., H3 is inner, a contradiction. O

Remark 3.6. In the light of Lemmas 3.4 and 3.5, in the rest of this section we will

suppose that both d and g are not inner derivations of fR.

Lemma 3.7. If h is inner, then some particular cases of the conclusions (3), (4),

(6(c)) and (6(d)) of Theorem 1.1 hold.
Proof. Let h(z) = [k, z] for all z € R. Then (17) reduces to
a(pw(s)? + Vglw(s)(s)) + b (po(s)? + Vo(w(s)w(s))
= mu(s)? + B[, (5)* ) (54)
for all s = (s1,...,5,) € (Q™)™.
Let d and g be linearly C-dependent.

Then for some aq, ag € C, arg(x) + aad(z) = [g,x]. Since both of ¢ and d
are outer, ai, ag are non-zero. Then g(z) = ojd(x) + [K/, z] for all z € R where
o) = —a7'ag and k' = ay'q. Then (54) becomes

a(pus)? + b (ahd(w(s)) + ¥, w(s)])w(s) ) +bd(pw(s)® +

b (eid(w(s)) + [k’,W(S)DW(S)) = mw(s)? +b"[k, w(s)?]. (55)
By using Kharchenko’s theorem [12, Theorem 2], we can replace d(w(sy,...,S,))
with w?(sy,...,80)+> w(81,..,Ti,- .., 8n), Where z; = d(s;) and d?(w(s1,...,5,))
with 1
wd2(sla c '7877.) + 2de(31a- <y Yiy - '7Sn)
i
+Zw(517"'aci7"'35n) + Zw(slv"'7yia"'7yja"'35n)
5 i#i

where ¢; = d?(s;) to (55) and then Q™ satisfies the blended component

b S w(st, -y CiyenySp)w(s1, .-, 8n) =0. (56)

i

In particular, for ¢; = s; and cg = -+ = ¢, = 0, Q" satisfies

b ajw(sy,...,s,)° =0,
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which implies bb’ = 0 (since «} # 0). Then from (55), we get
a(po(s)? + 1 (fd(w(s)) + ¥, w(s)))(s) ) + b(pro(s)?)
+hd(v') (05 d(w(s)) + K, w(s)] Jw(s) = maw(s)? + B[k, w(s)?]. (57)

By using Kharchenko’s theorem [12, Theorem 2], we can replace d(w(s1,...,8,))
with wé(s1,...,8,) + Y w(s1,.-+,Ti,...,8,), where x; = d(s;) to (57) and then

2
Q" satisfies the blended component

ab' )l Y w(st, .y Tiyeeny Sn)w(S1,. .., 8n)
i

+bp(w(s1,...,sn)Zw(sl,...,xi,...,sn)+Zw(sl,...,xi,...,sn)w(sl,...,sn))

i

+bd(d )t S w(sty ooy Tiy .oy Sn)w(S1,. .., 80) = 0. (58)

k3

In particular for z; = s; and 9 = --- = x,, = 0, Q" satisfies
(ab’o/l + 2bp + bd(b’)a&)w(sl, o 8n)2 =0,
which implies ab’a} 4+ 2bp + bd(b' )y = 0. Then from (57)
a(pw(s)? + VI w(s)]w(s) ) + ba() (K, w(s)w(s) ) = bpd(w(s))w(s)

+bpw(s)d(w(s)) + bd(p)w(s)® = mw(s)® + b [k, w(s)?]. (59)
By using Kharchenko’s theorem [12, Theorem 2], we can replace d(w(s1,...,8,))
with w(s1,...,8,) + > w(s1,..-,Tiy-..,5n), where z; = d(s;) to (59) and then
Q7" satisfies the blendeél component

7bpzw(sla sy Ly e ey Sn)w(sla RS Sn)

—|—bpw(81,...,sn)2w(sl,...,zi,...,sn):O. (60)
Replacing x; by [A’, s;] for some A’ ¢ C in above relation, we get

bp|[A",w(st, .., 8n)],w(s1,...,8,)| =0,

which implies bp = 0 (since A" ¢ C). So we have now bp = 0 and bb’ = 0 with
abl +bd(b') =0 (since o # 0), i.e., H1(d') = 0. Then (59) reduces to

apw(s)? — ab'w(s)k'w(s) — bd(b' )w(s)k'w(s)
—bd(p)w(s)? — mw(s)? — b"kw(s)? + b"w(s)?k = 0, (61)

ie.,

(ap + bd(p) —m — b"Ek)w(s)? + b'w(s)?k = 0. (62)
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By Lemma 2.1, H;(p) = m and either k € C or b’ = 0 or w(R)? € C. Thus we have
Hi(z) = ax + bd(x), Ha(z) = px + &4V d(x) + V'[K, z] and Hsz(x) = ma + b [k, z]
for all z € R with bp = bb' = H1(b') = 0, H1(p) = m and either k € C or b =0 or
w(R)? € C. Thus, some particular cases of the conclusions (4) and (6(d)) follow.

Let d and g be linearly C-independent.

By applying Kharchenko’s theorem [12, Theorem 2] to (54), we can replace
d(w(s1,...,8n)) with w(sy,...,80) + > w(s1,. .., Tiy. .., 8n), g(w(s1,...,5,)) with

wg(sl,...,sn)+Zw(51,...,yi,...,sn) and
K3

dg(w(st,...,8,)) = w(s1,...,8,) + de(sl,...,yi, ey 8n)
+ng(317-~-,$i,---75n) +Zw(51,...,zi,...7sn)
+ > WSty Tise e Yjs ey Sn),
iz

where z; = d(s;), y; = g(s;) and z; = dg(s;) in (54) and Q™ satisfies the blended
component

b > w(S1y vy Ziye ey Sp)wW (81, ...y 8pn) = 0. (63)
In particular for z; = s; and 23 = --- = 2z, = 0, Q" satisfies

bw(sy,...,sn)> =0,
which implies b0’ = 0. Then from (54)
a(pw(s)® + ' g(w(s))w(s)) + bd(pw(s)?) + bd(b')g(w(s))w(s)
= mw(s)? + b [k,w(s)?] (64)

for all s = (s1,...,8,) € (Q™)". By applying Kharchenko’s theorem [12, Theorem
2] to (64), replacing d(w(s1, .- .,5,)) With w4 (s1,...,8,) + > wW(S1,- -+, Tiy -, 5n)
and g(w(s1,...,8,)) With w9(s1,...,8,) + > w(S1,.--, Yiy.-.,8n), Q7 satisfies the

blended components

bp(w(sl,...7sn)2w(sl,...,xi,...,sn)

—|—Zw(31,...,xi,...,sn)w(sl,...,sn)> —0 (65)

and

(ab’ +bd(V')) Zw(sl, s Yise ey Sp)W(S1, ..y 8n) = 0. (66)

i
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Then in particular for 1 = s, o =--- =z, =0 and for y; = s;7 and yo = -+ =
yn = 0, Q7" satisfies

bpw(si,...,s0)% =0

and
(ab' 4+ bd(b'))w(s1,...,s0)% =0,

ie, bp = 0 and ab’ + bd(V') = 0, i.e., H1(b') = 0. Using these facts, relation (64)
reduces to (62) and, by the same above argument, we have the following conclusions:

Hi(z) = ax+bd(x), Ha(x) = pr+bg(x) and Hs(x) = max+b"[k, ] for all z € R
with bp = bb' = Hq(b') = 0, H1(p) = m and either k € C or b = 0 or w(R)? € C.
Thus we obtain some specific case of the conclusions (3) and (6(c)) of Theorem 1.1
(reduced to the case when A = 0). O

Proof of Theorem 1.1. The results contained in all previous Lemmas, allow us to
have to discuss only the case when no one between d, g and A is an inner derivation
of R. Under this final assumption, we will prove that one of the conclusions (3),
(4), (6(c)) and (6(d)) of Theorem 1.1 holds. To do this, we will divide the argument

into two main cases, as follows:
Case-1. d, g and h are linearly C-dependent.

In this case, there exist some a1, az, a3 € C, ¢ € Q) such that aqd(z) +azg(x)+
agh(z) = [q, z] for all x € Q. Since d is not inner, (az,a3) # (0,0).

Without loss of generality, we may assume asz # 0. Thus h(z) = ojd(z) +
abg(x) + ¢, x] for all z € Q7 where o) = —aja3 ', ah = —azaz’ and ¢ = az'q.
By (17),

a(pe(s)? + ¥g(w(s))w(s)) + bd(pw(s)? + Vglw(s)w(s) )
= muw(s)? + alb"d(w(s)?) + abb"g(w(s)%) + b"[q',w(s)’] (67)

for all s = (s1,...,8,) € (Q)™. Then we have the following cases.

Sub-case-i. Let g and d be C-dependent modulo inner derivations of Q;"*. Then
B1g(x)+Pad(x) = [t, ] for some t € Q7, B, B2 € C. Since d and g are outer, 8; and
B2 both are non-zero. Thus g(x) = Bhd(z) + [t', x|, where By = —B287 ", t' = By 't.
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Then (67) reduces to

apo(s)? + b { B3 (s)(s) + [t 0(5) ()}
b (po(s)? + H Byd(o(s) o (s) + V1 w(s) ()
= muw(s)? + " {add(w(s)?) + abfhd(w(s)?)
o lt ()] + ' ()]} (63)
for all s = (s1,...,5,) € (Q™)". Applying Kharchenko’s theorem [12, Theorem 2],

using the value of d?(w(s1, ..., 8,)), we have as before that Q™ satisfies the blended

component

bb’ﬂéZw(sl,...,wi,...,sn)w(sl,...,sn) =0,

where w; = d*(s;). In particular, for w; = 57 and wy = - - = w,, = 0, Q™" satisfies
by Bhw(s1,. .., 8,)% = 0, then bb' = 0. Then from (68), applying Kharchenko’s
theorem [12, Theorem 2|, using the value of d(w(s1,...,s,)), we have as before

that Q" satisfies
(ab' B + 2bp + bBLAD') — 240" — 204850 )w(s)? =0 (69)
for all s = (s1,...,8,) € (QM)™ implying
ab' B + 2bp + bBLA(Y) — 2a,b" — 204 B4b" = 0. (70)
By using bb’ = 0 and (70), (68) reduces to
apw(s)? + ab'[t', w(s)]w(s)

+bd(p)w(s)? + bpw(s)d(w(s)) — bpd(w(s))w(s) + bd(b')[t', w(s)w(s)
= muw(s)? + b djw(s)d(w(s)) — b"ajd(w(s))w(s)
+0" a5 faw(s)d(w(s)) — b" a5 fad(w(s))w(s)
+{as[t, w(s)?] + [q', w(s)?]} (71)

for all s = (s1,...,8,) € (Q7)™. Again applying Kharchenko’s theorem [12, Theo-

rem 2], using the value of d(w(s1,...,s,)), we have as before that Q" satisfies

(bp = 0" — V"B w1y s Yiy e vy Sn)ywW(81y. ..y 8n)] = 0. (72)

[

Replacing y; with [A, s;] for some A ¢ C, we have

(bp —b"ay — b ahB)[A,w(s1,...,8n)]2 =0 (73)
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which implies bp — "o — V"abB, = 0. Thus by (70), we have ab’ + bd(b') = 0.
Therefore, (71) reduces to

apw(s)® +bd(p)w(s)® = muw(s)? + 0" {aat',w(s)’] +[¢" w(s)*]},  (74)
that is,
{H1(p) —m —b"(aht' + ¢')}w(s)® + 0w (s)*(aht' +¢') =0 (75)

for all s = (s1,...,8,) € (Q)™. Since b # 0, by Lemma 2.1, one of the following
holds:

(1) obt' + ¢ € C and Hi(p) — m = 0. Thus Hi(z) = ax + bd(x), Ha(z) =
pr + U (B2d(x) + [¢/,2]) and Hs(x) = ma + Ab"d(z) for all z € R with
bb' =0 =bp— A" =H,(b') and Hi(p) = m, where A = o) + 585 € C. We
get the conclusion (4) of Theorem 1.1.

(2) w(s1,...,8,)% is central valued on R and Hi(p) — m = 0. Thus Hy(z) =
ax +bd(z), Hao(z) = px + V' (Bad(z) + [/, x]) and Hz(z) = ma 4+ b"(Ad(z) +
[e,z]) for all z € R with bb' = 0 = bp — A" = H1 (V') and Hi(p) = m. In

this case we have the conclusion (6(d)).

Sub-case-ii. Let g and d be C-independent modulo inner derivations of Q). By
Kharchenko’s theorem [12, Theorem 2] to (67), Q7" satisfies the blended component

b > w(S1y vy Ziye vy Sn)wW(S1y...,8n) =0

where z; = dg(s;). In particular, for z; = s; and 2z = -+ = z, = 0, we have that
QM satisfies bb'w(sy,. .., s,)? = 0 which implies bb’ = 0.

Then by similar argument above, applying Kharchenko’s theorem [12, Theorem
2] in (67), we can replace d(s;) with x; and g(s;) with y; and then Q7 satisfies

blended components

(ab! +bd(b') — abb”) D w(S1y ey Yiye vy Sn)W(S1y- -y 8n)

7

= ahb w(s1, ...y 8n) D w(S1y- s Yiy--y8n) = 0. (76)

%

Above relation yields ab’ + bd(b') = 2a4b”. Then (76) reduces to
aéb”(Zw(sl,...,yi,...,sn)w(sl,...,s") —w(sh...,sn)Zw(s1,...,yi,...,sn)) =0.

2 @

Now replacing y; by [4’, s;] for some A’ ¢ C, we get
ahb” [[A’,w(sl, ey Sp)],w(st, . sn)} =0

which gives abd” = 0, i.e., ab, = 0, since b” # 0. Therefore, ab’ + bd(b') = 0. Hence
h(z) = ofd(z) + [¢, ] for all z € R.
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Thus (67) reduces to

apw(s)? + bd(p)w(s)® + bpd(w(s)?)
= muw(s)? + afb"d(w(s)?) + b"[q', w(s)?] (77)

for all s = (s1,...,8,) € (Q™)". Again applying Kharchenko’s theorem [12, Theo-
rem 2], we can prove that bp = o4b”. Thus (77) reduces to (50) and, by the same
above argument, it follows that Hq(z) = ax + bd(x), Ha(x) = pr + Vg(x) and
Hs(z) = mz + o4 b"d(x) + b"[¢, x] for all z € R, with bb' =0 = H(V'), bp = ajb”,
Hi(p) = m and either ¢ € C or w(R)? € C. Thus one of the conclusions (3) and
(6(c)) holds.

Case-2. d, g and h are linearly C-independent.

Substituting the values of d(w(s1,...,8,)), g(w(s1,...,5n)), A(w(s1,...,8,)),
dg(w(s1,...,8,)) in (17) and then using Kharchenko’s theorem [12, Theorem 2] to
(17), O satisfies the blended component

B'{> w(s1y ey Ziyeeey Sp)wW(S1ye vy 8n) FwW(S1yvs8n) Y wW(S1ye vy ZiyeenySn)} =0

i
where z; = h(s;). Again this implies b = 0, a contradiction.

Thus the proof of the Theorem is now complete. O
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