INTERNATIONAL
ELECTRONC JOURNAL OF
ALGEBRA

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA
VOLUME 39 (2026) 50-66
DOI: 10.24330/ieja.1707407

HOMOLOGICAL INVARIANTS OF GENERALIZED BOUND
PATH ALGEBRAS

Viktor Chust and Flavio U. Coelho

Received: 6 September 2023; Revised: 7 August 2024; Accepted 1 May 2025
Communicated by Abdullah Harmanci

ABSTRACT. We study homological invariants of a given generalized bound path
algebra in terms of those of the algebras used in its construction. We discuss
the particular case where the algebra is a generalized path algebra and give

conditions for those algebras to be shod or quasitilted.

Mathematics Subject Classification (2020): 16G10, 16G20, 16E10
Keywords: Generalized path algebra, representation of generalized path al-

gebras, homological dimension

1. Introduction

An important result in the representation theory of algebras states that every
finite dimensional basic algebra A over an algebraically closed field k is isomorphic
to a quotient of a path algebra kQa/I4, where Q4 is a finite quiver and I4 is
an admissible ideal (see below for details). This allows us to describe the finitely
generated A-modules in terms of the representations of its corresponding quiver
Q 4, a connection which proves to be essential in this theory.

In order to generalize this construction, Coelho and Liu introduced in [8] the
notion of generalized path algebras (or gp-algebras for short). Instead of assigning
the base field k to each vertex of a quiver ) as in the classical construction of
the path algebra kQ, a finite dimensional k-algebra is assigned. This was further
generalized by us in the article [5], where we considered certain quotients of the
gp-algebras. Specifically, let T' denote a quiver and A = {A; : i € Ty} denote a
family of basic finite dimensional k-algebras indexed by the set 'y of the vertices of
I". Consider also a set of relations I on the paths of I" which generates an admissible
ideal of kI". To such data we have considered ([5]) the generalized bound path algebra
A =Kk(T, A, I) (gbp-algebra for short) with a natural multiplication given not only
by the concatenation of paths of the quiver but also by the multiplication of the
algebras associated with the vertices of T', modulo the relations in I (see below for
details).
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Our idea behind such a construction is to obtain properties of a gbp-algebra A
from those of the algebras in A. In the seminal work [8], the focus was more ring
theoretical, and, as mentioned, the authors only considered the case where I = 0.
We mention, for instance, [9,12,13,14,15] for further works which are connected
with this construction.

In [5,6], we have studied the case where I is not necessarily zero, thus extending
the description of the representations of the algebra A given in [12]. Clearly, a
path algebra A can be realized as a generalized one in two trivial ways: by its
usual description as a quotient of the path algebra over the ordinary quiver @ 4,
and also by considering a quiver with a single vertex and no arrows and assigning
to it the whole algebra A. In [5], we discuss when there are other possibilities,
apart from the two above, of realizing a path algebra as a generalized one. This is
important because then we can relate properties of a gbp-algebra with those of the
smaller algebras used in its definition. In [6], we studied the correspondence between
modules over a gbp-algebra and representations of the corresponding quiver.

Also in [6], we gave a description of the projective and injective modules over a
ghp-algebra. Using this, here we introduce a special case of ghp-algebras, which we
call terraced gbp-algebras, and we show that we can study homological invariants of
these algebras in terms of those of the “smaller” algebras used in their construction.

This is done in Sections 3 and 4 after devoting Section 2 to preliminary concepts
needed along the paper. The particular case of gp-algebras is discussed in Section
4 where we prove, for instance, that the global dimension of a gp-algebra is the
maximum between one and the global dimension of the algebras assigned to each
vertex (Theorem 4.1).

Also, we provide a sufficient condition for a gp-algebra to belong to classes of
algebras which can be defined using some homological invariants, such as shod or
quasitilted algebras (see [7,10]). These classes of algebras were introduced with
the idea of generalizing the class of tilted algebras through their homological prop-
erties. Also as a motivation, we mention that a very strong connection between
shod/quasitilted algebras and the so-called silted algebras was recently found by

Buan and Zhou [4], leading to a new line of investigation.

2. Preliminaries

Along this paper, k will denote an algebraically closed field. (We make this
assumption in order to use results derived from [6,12]). For an algebra, we mean an

associative and unitary basic finite dimensional k-algebra. Also, given an algebra
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A, an A-module (or just a module) will be a finitely generated right module over A.

We refer to [1,2,3] for unexplained details on modules and representation theory.

2.1. Path algebras. A quiver @ is given by a tuple (Qo, @1, s, e), where Qg is
the set of vertices, @1 is the set of arrows and s,e: )1 — o are maps which
indicate, for each arrow a € @1, the starting vertex s(a) € Qo of a and the ending
verter e(a) € Qo of a. A vertex i € Qo is called a source (respectively, a sink)
provided there are no arrows ending (or starting, respectively) at i. A path in Q of
length n > 11is given by aq - - - a,, where for each i = 1,--- ;n—1, e(a;) = s(@iy1).
There are also paths of length zero which are in a one-to-one correspondence to the
vertices of Q).

We shall assume that all quivers are finite, that is, both sets Q¢ and @); are
finite.

Given a quiver (), one can assign a path algebra kQ with a k-basis given by
all paths over () and multiplication on that basis defined by concatenation. Even
when @ is finite, the corresponding algebra does not need to be finite dimensional.
However, a well-known result by P. Gabriel states that given an algebra A, there
exists a finite quiver @@ and a set of relations on the paths of @ which generates an
admissible ideal I of kQ such that A = kQ/I (see [1] for details).

2.2. Generalized bound path algebras (gbp-algebras). Let I' = (I'g,I'1, s, €)
be a quiver and A = (4;)ier, be a family of algebras indexed by I'g. An A-path
of length n over T is defined as follows: for n = 0, such a path is an element of

UieFo A;, and for n > 0, it is a sequence of the form

a151a2 . .. anBrany1

where f31...[3, is an ordinary path in the quiver I, a; € Ay, if i < n, and
ant1 € Ag(p,)- Denote by k[T, A] the k-vector space spanned by all A-paths over
I.

Then we consider the quotient vector space k(I", A) = k[I', A]/V, where V is the

subspace generated by all elements of the form

(a1Pr ... Bj—1(aji+. . .+ajm)Biajp1 - .. Bnan+1)—2(a1ﬁ1 o Bi—1a505 - - Brang)

=1

or, for A € k,

(a1B1 ... Bj—1(Xaj)Bjajy1 .. Bnant1) — A+ (a1Br... Bj_1a;B5a 41 - .. Buant1).

The space k(T', A) has a naturally defined multiplication, induced by the multi-
plications of the algebras A;’s and the composition of the A-paths. More explicitly,
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it is defined by linearity and the following rule:
(@181 ... Bnans1) (0171 - - Ymbmt1) = a1Bi ... Balan+1b1)71 - - Ymbm+1
if e(B3,) = s(71), and
(a1B1 .- Brant1)(b171 -« - Ymbms1) =0

otherwise.

With this multiplication, k(T',.A) is an associative algebra, and since we are
assuming the quivers to be finite, it has also an identity element, which is equal to
> ier, 14, Finally, it is easy to observe that k(T', A) is finite dimensional over k if
and only if so are the algebras A; and T is acyclic. We call k(T', A) the generalized
path algebra (gp-algebra) over I' and A (see [8]). In case A; = k for every i € T,
this construction gives the usual path algebra kI'.

It was already observed in [8] that generalized path algebras can alternatively
be constructed as tensor algebras, as follows: let T' be a quiver, let 4 = {4, :
i € T} be a set of finite-dimensional k-algebras, one for each vertex of T', and let
M = {M;; : i,j € Ty} be a set of modules, such that, for each i,j € T'g, M;;
is an (A; — Aj)-bimodule, finitely generated from both sides, with M;; free as an
A" @ Aj-module, having rank equal to the number of arrows ¢ — j in I'g. (By
the way, this structure is similar to those of modulations introduced by F. Li in
[15], and of pro-species of algebras introduced by J. Kilshammer in [13]. However,
in their context, it is not necessary to assume, for example, that k is algebraically
closed or that the M;;’s are free as bimodules.)

Let now A4 =] A; be the product algebra and M 4 = @i,jero M;;. Then,

by restriction of scalars through the canonical projections A4 — A;, we can make

1€l

M4 into an (A4 — Aa)-bimodule. Finally, the tensor algebra T'(A4, M4) is iso-
morphic to the generalized path algebra k(T', A) defined above.

2.3. Generalized bound path algebras. Let k(T',.A) be a generalized path al-
gebra. Using the result mentioned above in 2.1, for each ¢ € Ty, we may fix a quiver
Y; such that A; 22 k3;/Q; with Q; an admissible ideal of kX;.

Following [5], we consider quotients of generalized path algebras by an ideal
generated by relations. Namely, let I be a finite set of relations over I' which

generates an admissible ideal in AI'. Consider the ideal (A(I)) generated by the
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following subset of k(T,.A):

t
A(l) = {Z AiBirYi1Biz -+ - Vi(my—1) Bim

i=1
t
Z AiBi1 - - . Bim, is a relation in I and +;; is a path in Ze(ﬂij)} .
i=1

The quotient ](Cf(;‘)‘)) is said to be a generalized bound path algebra (gbp-algebra).

We may also write % = k(T', A, I). When the context is clear, we simply denote
the set A(I) by I.

We use the following notation in the sequel: TI' is an acyclic quiver,

A = {A; : i € Ty} denotes a family of basic finite dimensional algebras over an
algebraically closed field k, and I is a set of relations in I' generating an admissible
ideal in the path algebra kT'. By A = k(T', A, I), we denote the gbp-algebra obtained
from these data. Also, A4 will denote the product algebra [] A;. We denote
the identity element of the algebras A; by 1; instead of 14,. Also, for an algebra

i€ly
A, we shall denote by modA the category of finitely generated right A-modules.

2.4. Representations. In [6], we have described the representations of a gbp-
algebra, including those associated to projective and injective modules. We shall

now recall the results needed in the sequel.

Definition 2.1. Let A = k(T", A, I) be a gbp-algebra.

(a) A representation of A is given by ((M;)iery, (Ma)aer, ) where
(i) M; is an A;-module, for each i € T'y;
(ii) Mo @ Mgy — Me(q) is a k-linear transformation, for each arrow
a€TI'y; and
(iii) whenever v = 22:1 AtQi1 Qg . . . i, 18 a Telation in I, with \; € k and

aj; € I'y, we have
t
E )\tMami ONin, ©...0Mqy,, 0¥z 0 M,,, =0
=1

for every choice of paths v;; over Xy, ), with 1 <@ <¢, 2 <j <n,.
(b) We say that a representation ((M;)icr,, (Ma)aer,) of A is finitely generated
if each of the A;-modules M; is finitely generated.
(c¢) Let M = (M;)iery, (Ma)aer,) and N = ((N;)ier,, (Na)acr, ) be represen-
tations of A. A morphism of representations f : M — N is given by a tuple
f = (fi)ier,, such that, for every i € T'g, f; : M; — N; is a morphism of
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A;-modules; and such that, for every arrow « : i — j € I'y, it holds that
fiMq = N, f;, that is, the following diagram commutes.

Mo
M; —2= M;

I

7 > Nj
Na

We shall denote by Repy (T, A, I) (or by repx (T, A, I)) the category of the repre-

sentations (or finitely generated representations, respectively) of the algebra k(T", A, I).
Theorem 2.2. ([6], see also [12]) There is a k-linear equivalence

F : Repy (T, A, I) - Mod k(T', A, I)
which restricts to an equivalence

F :rep, (T, A, ) = mod k(T', A, I).

2.5. Realizing an A;-module as a A-module. Let i € 'y and let M be an
A;-module. We consider three ways of realizing M as a A-module (see [6] for fur-

ther details of these constructions).

A) Natural inclusion. Define Z(M) = ((M;)er,, (¢a)acr, ) to be the represen-
tation given by
M ifj=i
M; = and ¢, =0 forall a €T};.
0 if j#1
By abuse of notation, we shall identify Z(M) = M, since these two have the same

underlying space.

B) Cones. As recalled from [8] above, consider the gp-algebra k(T',.A) as a tensor
algebra k(I'y A) = T(Aa, M4). Since M is naturally an A 4-module and there is
a canonical map A4 — A = k(T,.A)/I, by extension of scalars, M originates a
A-module C;(M), which is called the cone over M.

We now recall the following results from [6].

Proposition 2.3. Given i € Iy, we have:

(1) The cone functor C; : mod A; — mod A is ezxact.

(2) If P is a projective A;-module, then C;(P) is a projective A-module.
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C) Dual cones. The dual cone over M is given by CX(M) = DC;D(M), where
D = Homyg(—, k) is the usual duality functor. A dual result of Proposition 2.3 for

injective modules holds true (see [6]).

3. Homological dimensions of gbp-algebras

We shall prove in this section general results involving gbp-algebras, leaving the
particular case of gp-algebras for the next section. Using the notations established
above, we shall compare some homological dimensions of a gbp-algebra A with those
of the algebras A;, i € 'y, which are used in its construction. Given an algebra
A and an A-module M, we denote by pds M and by id 4 M the projective and the
injective dimensions of M, respectively. Also, the global dimension of A is denoted
by gl.dimA.

3.1. First case. We analyse the natural inclusion of A;-modules in mod A.

Lemma 3.1. Leti € 'y and let M be an A;-module. Then

(a) pdy M = pdy, M.

(b) if i is a sink, then pdy M = pd,, M.
() idy M > ida, M.

(d) if i is a source, then idy M =id4, M.

&

Proof. We shall prove only (a) and (b) since the proofs of (c¢) and (d) are dual.

(a) There is nothing to show if pdy M = co. So, assume M has finite projective
dimension m over A. It follows from the description of the projective modules over
A (see [6], Subsection 5.1) that every component of a projective representation is
projective (indeed, the i-th component is either a direct sum of indecomposable
projective modules over A;, copies of A;, or zero modules). Therefore the i-th
component of a minimal projective resolution of M as a A-module is a projective
resolution of M; as an A;-module, which proves this item.

(b) Because i is a sink, every projective resolution of M over A; is easily seen to

yield a projective resolution of M over A with the same length. |
The next result follows easily.
Corollary 3.2. gl.dimA > max{gl.dimA,,...,gl.dimA,}.

We shall see below examples of when equality in the above statement holds and

when it does not.
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3.2. Cones and duals. The next result, which relates the projective and the
injective dimensions of a module over A; with the corresponding dimension of its

cone or its dual cone, is a direct consequence of Proposition 2.3 and its dual.

Lemma 3.3. Given i € T'y and M an A;-module, we have
(a) pdy, M =pd, Ci(M).
(b) ida, M =idp C}(M).

Proof. We shall prove only (a) since the proof of (b) is dual. Let

0 P, - P Py M 0

be a minimal projective resolution of M in mod A;. Thus m = pd,, M. Applying

the functor C;, we have

Because of Proposition 2.3, this sequence is exact. Moreover, also by Proposi-
tion 2.3, every term except possibly for C;(M) is known to be projective. So this is
a projective resolution in mod A, proving that pd, C;(M) < pd4, M. Since the i-th
component of C;(M) is M, we know from Proposition 3.1 that the inverse inequality
also holds. (]

3.3. General case. Having studied the projective and injective dimensions of
modules which are inclusion or cones of A;-modules, we turn our attention to general

representations over A.

Definition 3.4. Let M = ((M,)icr,, (¢a)acr,) be a representation over k(I', A, I).
The support of M is defined as the set of vertices supp M = {i € Ty : M; # 0}.

Proposition 3.5. For a A-module M,

(a) pdy M < max;esupp m{pdy M;},
(b) ldA M S maX;ecsupp M{ldA MJ}

Proof. For both items, it is sufficient to observe that since I' is acyclic, M is
an iterated extension of its components M;, and so it must have its projective or

injective dimensions over A limited by those of the M;’s. O

Remark 3.6. Although we have not explicitly stated, the results we gave so far
hold in more general settings, for example in the context of tensor algebras over
modulations by F. Li recalled above, provided that the defining bimodules M;;
are projective from both sides. However, the proofs of our upcoming results rely

specifically on the structure of gbp-algebras.
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3.4. The main lemma. We will adopt the following notation from here on: if ¢
is a source vertex of I', then I' \ {i} shall denote the quiver obtained from I' by
deleting the vertex ¢ and the arrows starting at i. Moreover, if I is equipped with a
set of relations I, I\ {i} will be the set obtained from I by excluding the relations
starting at ¢. Also, since I' is acyclic, we can iterate this process and enumerate
Io ={1,...,n} in such a way that i is a source vertex of I'\ {1,...,7— 1} for every

i. (Some authors call this a topological ordering of the vertices.)

Lemma 3.7. Let i € Ty, M be an A;-module, and let (P, g) be ils projective cover

in mod A;. Then there is an exact sequence of A-modules:

0 —— Ci(Kerg) ® L Ci(P) M 0

where L is a A-module with supp L C {j € Ty : j # i and there is a path i ~ j}.
Moreover,

(a) Lj is free for every vertex j, and

(b) Ifi€Tyq is such that I\{1,...,i} = I\{1,...,i—1}, then L is projective

over A.

Proof. (a) It follows from [6, Proposition 5 and Remark 5] that (C;(P)); = P. So,
we can define a morphism of representations ¢’ : C;(P) — M by establishing that
g; = g and that gj = 0 for j # i. We want to show that Kerg’ = C;(Kerg) ® L,
where L satisfies the conditions in the statement.

Let {p1,...,pr} be a k-basis of Kerg and complete it to a k-basis
{p1,.-yDry.-.,0st of P. Also let, for every j € Ty, {a{,...,aij} be a k-basis
of Aj. Forapathy:i=1ly—1i — ... =1, =j from i to j in I' denote

O s = Ph @105 V720l L ypal, € Kerg'.

Remember that since g’ was defined as a morphism of representations, it corre-

sponds to a morphism of A-modules, because of Theorem 2.2. Therefore,

9 Oyniv.oie) = 9 (o ® Ma; 7205072 | yial,) = glpn).

SO Oy hi,...i, ¢ Kerg' if and only if v is the zero-length path ¢; and r < h < s.
Thus we can write
Kerg' = (0, n: 1 <h<r)+ (0yny,..i 2 L(7) >0)
= Oy hyin,iy L <A <1)® (O hiy,ip s U(y) >0and r < h < s)
=Ci(Kerg)® L
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where L = (0, 1,4, : 1(7) > 0 and r < h < s). Since the generators of L involve
only paths of length strictly greater than zero, the only components of L that are
non-zero are the ones over the successors of i, except for i itself. Therefore the
condition about the support of L in the statement is satisfied. It remains to prove
the other two assertions in the statement.

To prove (a), fix j € T'g. If j = ¢ or if j is not a successor of ¢, then L; = 0, so we

may suppose this is not the case. Again using the equivalence given by Theorem 2.2,

Li=L-1;=0Oyhi, i :7v: i~ jand r <h <s)

=(pr ® 'ylafl(%)fygafy” . .%agt iyt~ jand r < h <s).
So L; is isomorphic to the free Aj;-module whose basis is the set of all possible

elements p, ® ’ylafl(%)wafy” ...7%. In particular, L; is free over A;, and this

proves (a).
(b) Assume that I\ {1,...,4} = I\ {1,...,5— 1} and let i* denote the set of
immediate successors of 7. Since, by hypothesis, there are no relations starting at

i, we can write:

L= (0yh,,. :l(y)>0andr <h<s)

=(pn® fylafl(%)’ygafyﬂ .. .fytagt :l(y) >0and r < h <)

= (pr ® fylafl(%) ® vgaj(W) . 'ytagt :l(y)>0and r < h < s)

5 ..

o (as(vl) ® 72%?2(’*2) .. ,%agt (y) > 0)(

1
= (P Ci(an) "
i eit
Since A;: is projective over A;/, C;(A;) is projective over A by Proposition 2.3. We
have thus shown that L is isomorphic to a direct sum of projective A-modules, and

therefore it is also projective, concluding the proof. O

3.5. A special kind of gbp-algebras. Before our next result, we need an ad-
ditional definition. For a vertex j of I', denote by S; the simple kI'/I-module

associated with j.

Definition 3.8. A gbp-algebra A is called terraced provided that for every i € I'g
such that I\{1,...,i} # I\{1,...,i—1} (i.e., every time there are relations starting
at i), one has pdyp,; S; > max{pd,p,; S; : j is a successor of i} + 1.

Example 3.9. Observe that any gp-algebra (that is, when I = 0, which makes kT"

hereditary) is terraced. An example of a non-terraced gbhp-algebra is the following
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bound path algebra given by

>
3
2

—3—1

N<—h<— WO
\

and the relations fa = 6+, €8 = 0. Here the simple module S5 associated to vertex
5 has projective dimension 2, and does not exceed by one the dimension of Sy,

which is also 2.

Theorem 3.10. Let A = k(T', A,I) be a terraced gbp-algebra. Then, for every
representation M over A,
pdy M < max {pd,, M;,pdyr,; Si}
i€supp M

where S; denotes the simple kI'/I-module associated with the vertes .

Observe that if A is simply a terraced bound path algebra (i.e., A; = k for every
i € Tp), then each of the M, are semisimple and we recover an inequality given by

M. Auslander: pdy M < max{pd, S : S is a simple composition factor of M}.

Proof. The proof is done by induction. First, suppose supp M = {n}. By the
assumption on the numbering of the vertices, we know that n is a sink vertex of
[o. It follows from Lemma 3.1(b) that pdy M = pd, M,. Since n is a sink
vertex, the simple kI'/I-module S, is projective, and thus it holds that pd, M =
max{pd, My, pdyr); Sp}. This proves the initial step of induction.

Now suppose that supp M C {i,...,n} and that the statement is valid for rep-
resentations whose support is contained in {i 4+ 1,...,n}. Initially we are going to
study the projective dimension of M; over A. If i is a sink vertex, then, similarly to
above, we have that pd, M; = max{pd,, M;, pdyr) 1 S;}, so suppose 7 is not a sink
vertex. Let (P, g) be a projective cover of M; over A;. Then, because of Lemma 3.7,

there is an exact sequence in mod A:

where L satisfies the conditions given in the statement of the cited lemma. From

this exact sequence, we deduce that

pdp M; < max{pd, C;(P),pd,(Ci(Kerg) ® L) + 1}.
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Since P is projective over A;, Proposition 2.3 implies that pd, C;(P) = 0. Thus
pdy M; < pd,(C;(Kerg) ® L) + 1 < max{pd, C;(Kerg),pd, L} + 1.
Using Corollary 3.3, we have
pdy M; < max{pd,, Kerg,pd, L} + 1. (3.1)

Now we divide our analysis in cases:

Case 1: pd,, Kerg > pd, L.

In this case, Equation 3.1 implies that pd, M; < pdy, Kerg + 1 = pd,, M;,
because (P, g) is the projective cover of M;.

Case 2: pdy, Kerg < pd, L.

Now, from Equation 3.1, pdy M; < pdyL + 1. In case I\ {1,...,i} =
I\{1,...,i — 1}, from Lemma 3.7, we get that pdy L = 0. Since we have al-
ready supposed in this case that pd,, Kerg < pd, L, we have pd,, Kerg = 0.
Again from Equation 3.1, pd, M; < 1. Since i is not a sink, we know that .S; is not
projective over kA/I and so pdy,,;S; > 1. Thus pdy M; < pdya,r Si-

Assume now I\ {1,...,i} # I\ {1,...,i — 1}. By Lemma 3.7, pdy, L; = 0 for
every j, and since the support of L is contained in {i + 1,...,n}, by the induction
hypothesis and because A is terraced:

pdy L < max {pdyr,; S;} < pdyr/r Si — 1.
Jjé€supp L

€su
Then pdy M; < pdy L+1<pdyp,; Si—1+1=pdyp/;Si.
Putting together all cases discussed above, we conclude that
pdy M; < max{pdy,, M;,pdyr,; Si}-

Now, using Proposition 3.5, we have that

pdy M < max pdy M; <
j

j€E€supp M ma;(M{pdAj ij pde‘/I Sj}a

€sup

which proves the theorem. (I

Corollary 3.11. Let A = k(T', A, I) be a terraced gbp-algebra. Then, for every
jeTlo, gldimA; < gl.dimA, and the following inequality holds:

kT
gl.dim A < max {gl.dim7 gl.dimAj} .
j€Tlo I
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3.6. The dual result. Using the fact that the duality functor D = Homy(—, k)
anti-preserves homological properties and [6, Proposition 3], we obtain the following
result, which is dual to Theorem 3.10.

Corollary 3.12. Let A = k(T', A, I) be a terraced gbp-algebra, and let M be a
representation over A. Then idy M = maxX;csupp m{ida, My, idgr/; Si} where S;

denotes the simple kI'/I-module associated with the vertez i.

3.7. Finitistic dimension. Given an algebra A, its finitistic dimension is given
by:

fin.dim A = sup{pd4 M : M is an A-module of finite projective dimension}.

A still open conjecture, called the Finitistic Dimension Conjecture, states that

every algebra has finite finitistic dimension.
Proposition 3.13. Let A = k(T', A, I) be a terraced gbp-algebra. Then
. . kT .
fin.dim A < max< gl.dim —, fin.dim A; ¢ .
i€l I

In particular, if the bound path algebra kU'/I has finite global dimension and
fin.dim A; < oo for each i, then also fin.dim A < oco.

Proof. Let M = ((M;)icry, (da)acr,) be a representation of finite projective di-
mension over A. From Lemma 3.1, for every i € T'g, pd,, M; < pdy M, so M;
has finite projective dimension over A;, and thus pd,, M; < fin.dim A;. Using
Theorem 3.10,

pdy M < m%x{pdkp/l Si,pdy, M} < m%x{gl.dim kT/I,fin.dim A;}.
1€l 1€l’o
Since M is arbitrary, the statement follows. ([

4. Homological dimensions for gp-algebras

We now focus on gp-algebras, which are, as observed above, terraced gbp-
algebras. We start with the following result which is a direct consequence of the

above considerations.

Theorem 4.1. Let A = k(T', A) be a gp-algebra, with T' having at least one arrow.
Then gl.dim A = max;er,{1, gl.dim A;}.

Proof. Observe that gl.dimkl’ = 1 in this case and hence, by Corollary 3.11,
gldim A < max;er,{1,gl.dim A;}. The equality now follows using Corollary 3.2

and the fact that A is not semisimple (since kI is not). O
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Remark 4.2. Theorem 4.1 may be considered a slight improvement from basic
formulas for calculating the global dimension of a tensor algebra. For example, if
we had used [11, Theorem 2.2.11], then we could only affirm that gl.dim &(T', A) <
maxjer,{gl.dim A;} + 1.

4.1. Shod and quasitilted algebras. The next result is an application to the
study of shod and quasitilted algebras. Quasitilted algebras were introduced in [10]
as a generalization of tilted algebras, by considering tilting objects in abelian cate-
gories. We shall, however, use a characterization of quasitilted algebras, also proven
in [10], which suits better our purpose here. The shod algebras were introduced in
[7] in order to generalize the concept of quasitilted. The acronym shod stands for
small homological dimension, as it is clear from the definition below. We refer to
[7,10] for more details.

Definition 4.3. Let A be an algebra. We say that A is a shod algebra if, for every
indecomposable A-module M, either pdy M < 1 or idy M < 1. If, besides from

being shod, A has global dimension of at most two, we say that A is quasitilted.

Our next result allows us to produce a quasitilted or shod gp-algebra from other
algebras. It is worth mentioning that it is not intended as a complete description
of which generalized (bound) path algebras are quasitilted or shod. Before stating

it, please note that every hereditary algebra is quasitilted, and thus also shod.

Proposition 4.4. Let A = k(I', A) be a gp-algebra, with T acyclic. Suppose that
Aj is hereditary for every j € I'g, except possibly for a single vertex i € I'y. Then:

(a) If A; is shod, then A is shod.
(b) If A; is quasitilted, then A is quasitilted.

Proof. (a) Let M = ((M;);ery, (¢a)acr,) be an indecomposable representation
over A. Since I' is acyclic, we infer that the algebra kI" is hereditary and so every
simple module over it will have projective and injective dimension of at most one.
Observe also that, since A; is hereditary for j # ¢, we also have pd A, M; <1 and
idg, My <1if j #i.

Now, since A; is shod, either pd,, M; < 1 or ids, M; < 1. In the former
case, from Theorem 3.10, we have that pd, M < maxjer, {pdAj M;,pd,r S;} <1,
and in the latter, using Corollary 3.12 in an analogous manner, one obtains that
idy M < 1. Thus A is shod.
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(b) Since A; is quasitilted, it is shod and from the previous item we get that A
is shod. It remains to prove that gl.dim A < 2. Applying Corollary 3.11,
gl.dim A < max{kI',gl.dim A;} <2,
j€lo

using that A; is quasitilted and that the other algebras are hereditary. |

Example 4.5. This example will show that the converse of proposition above could

not hold. Let A be the bound path algebra over the quiver

1252 "33

bound by a8 = 0, and let A be the generalized path algebra given by

A k A.

We have that, with this setting, A does not satisfy the hypothesis from the last
proposition: there is more than one vertex upon which the algebra is quasitilted
and non-hereditary. However, using [12, Theorem 3.3] or [5, Theorem 3.9], we see

that A is isomorphic to the bound path algebra over the quiver

B 5

%I\D%H
%@H@

bound by a8 = vd = 0. Then a routine calculation shows that A is a quasitilted

algebra. The same example shows that the converse of the above proposition also

does not hold for shod algebras.

We finish our considerations with a result which is a direct consequence of Propo-
sition 3.13.

Proposition 4.6. Let A = k(T', A) be a gp-algebra, with T' having at least one

arrow. Then
fin.dimA = mi@x{l,ﬁn,dimAi}.
1€lo

In particular, if fin.dim A; < co for each i, then also fin.dim A < oco.

Proof. Just observe that gl.dim kI" = 1, and use Proposition 3.13. (]
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