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Abstract. Orthonormal bases play an important role in the geometric study

of vector spaces. For inner product spaces over real or complex number fields,

we can apply Gram-Schmidt algorithm to construct an orthonormal subset

from a linearly independent subset. However, on sesquilinear spaces over fi-

nite fields, Gram-Schmidt algorithm fails to produce an orthonormal subset

because of the presence of non-zero, self-orthogonal vectors. In fact, there is

a subspace that does not contain an orthonormal basis. In this paper, we

study sesquilinear spaces over finite fields and show that a non-zero subspace

has an orthonormal basis if and only if it is non-degenerate. An Extended

Gram-Schmidt Process (EG-SP) is then discussed to construct an orthogonal

subset from a linearly independent subset having equal generated subspaces.

An advantage of the proposed EG-SP is that the obtained orthogonal subset is

orthonormal when the generated subspace is non-degenerate. In addition, we

can also extend an orthonormal subset of a sesquilinear space to an orthonor-

mal basis.
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1. Introduction

Inner product notion has a significant role in the geometric study of vector

spaces, including the study concerning norm and orthogonality. In recent years,

generalizations of inner product were developed and studied including semi-inner

product, indefinite inner product and sesquilinear form [10]. Many of these notions

are generalizations of inner product in vector spaces over real or complex fields.

In the case of the underlying field being finite, inner product notion has been

generalized to sesquilinear form [2] or Euclidean and Hermitian inner product [9].

Furthermore, geometric study including semi-norm and orthogonality can also be

investigated in those spaces.

Meanwhile, vector spaces over finite fields play a fundamental role in some of

the most fascinating applications of modern algebra to the real world. These ap-

plications occur in the general area of data communication, a vital concern in our
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information society [6]. Therefore, the study of vector spaces over finite fields is

very important to be developed. In this article, we deal with finite dimensional

sesquilinear spaces over the finite field Fq2 , the finite field having order q2 where

q = pk for some odd prime p, and k ∈ N. This field is unique up to isomorphism

[5]. The field Fq2 can be considered as Galois extension of degree 2 over the field

Fq. This extension was introduced by Coons, et al. [4], where q prime and q ≡ 3

mod 4 and generalized by Ballico in [1] for Fq2 where q = pk, p is a prime number

and k ∈ N.
On the field Fqm for some positive integer m ≥ 2, if α ∈ Fqm , the m−1 elements

α, αq, αq2 , . . . , αqm−1

are called conjugates of α [6]. We define ᾱ = αq+q2+...+qm−1

and norm of α denoted by |α| as αᾱ. With this definition we get (ᾱ) = |α|m−2α.

Thus, for the case m = 2, we obtain ᾱ = αq and (ᾱ) = α and for any α ∈ Fq2 .

One of the applications of vector spaces over finite fields is in coding theory.

Since linear codes can be viewed as vector spaces, their structures are easier to

describe and handle. By knowing the basis of linear codes, we can express its

codewords explicitly [7]. Having a basis for a given linear code or its dual can be

useful in encoding and decoding algorithms. Wilson in [11] developed algorithm to

find standard basis of finite-dimensional Hermitian form. A basis B of V is called

standard if every x ∈ B has at most one yx ∈ B such that their Hermitian product

is non-zero. He also proved the existence of standard basis. Clear that orthonormal

and orthogonal bases are a special case of standard basis. Moreover, if the basis of

the code is orthonormal, then certain calculations become easier to handle. In this

article, it is shown that any non-zero subspace of a sesquilinear space over finite

fields has an orthogonal basis. In contrast, not every subspace of a sesquilinear

space has an orthonormal basis. We will be more specific about orthonormal basis,

investigate its existence, and develop an algorithm for obtaining it.

For the class of inner product spaces over real or complex fields, Gram-Schmidt

process is a well known process to obtain an orthonormal basis of a given lin-

ear independent subset [8]. However, Gram-Schmidt method fails to transform a

linearly independent subset of a sesquilinear space over a finite field to become an

orthonormal subset because of the presence of self-orthogonal vectors. For sesquilin-

ear spaces Fn
q2 where q is odd prime, equipped with dot product, Soules method

was proposed to construct an orthonormal basis for a given non-self-orthogonal

vector [3]. Surely, Soules method addressed the above issues. Nevertheless, it re-

mains an open problem: can and how we construct an orthonormal basis for a

given subspace? And also, can we extend an orthonormal subset to become an or-

thonormal basis for the whole vector space?[2]. Moreover, it also remains an open

problem whether every non-zero subspace of a sesquilinear space over a finite field

has an orthonormal basis. For example, one dimensional subspace generated by
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self-orthogonal vector does not have an orthonormal basis. In fact, we also find

counterexample of [3, Lemma 6.2] for subspaces with dimension greater than one.

The aim of this article is to derive an equivalent condition for the existence of an

orthonormal basis for a subspace of a finite dimensional sesquilinear space over a

finite field. Further, we upgrade the Gram-Schmidt Process to transform a linearly

independent subset into an orthogonal subset having equal generated subspaces.

As a result of the EG-SP, we obtain an orthonormal subset for a given linearly

independent subset whose its generated subspace is non-degenerate. Another result

is a positive answer to the problem that any orthonormal subset of a sesquilinear

space can be extended to an orthonormal basis.

2. Sesquilinear spaces

Let p be an odd prime number and q = pk where k ∈ N. Throughout this article,
unless it is stated otherwise, F shall denote Fq2 , the finite field having order q2.

The Fq-conjugate of an element α ∈ F is defined to be the element ᾱ = αq and

Fq-norm of α defined to be the product of α with its conjugate, |α| = αα.

Let A ∈ Fn×m. Similar to the complex matrix case, the m× n matrix obtained

by transpose-conjugate action on A is called the adjoint of A and denoted by A∗.

Matrix A ∈ Fn×n is called self-adjoint if A∗ = A. In this article we deal with finite

dimensional sesquilinear spaces over finite fields defined as the following.

Definition 2.1. Let V be a finite dimensional vector space over the field F . A

mapping [·, ·] : V × V → F is called a sesquilinear product on V if the following

conditions hold.

(1) [αx+ βy, z] = α[x, z] + β[y, z] for all x, y, z ∈ V and α, β ∈ F .

(2) [x, y] = [y, x], for all x, y ∈ V .

(3) If x ∈ V satisfies [x, y] = 0 for all y ∈ V , then x = 0.

A sesquilinear space is a vector space equipped with a sesquilinear product.

Remark 2.2. We say the mapping [·, ·] : V × V → F that satisfies condition 3 as

non-degenerate product. A subspace of a sesquilinear space such that the condition

3 holds in this subspace is called a non-degenerate subspace. Hence, a subspace of

a sesquilinear space is non-degenerate if and only if the restriction of the product

on the subspace is sesquilinear product or equivalently, if it is a sesquilinear space

with respect to the product on the space.

The n-dimensional vector space consists of all n-column vectors is denoted by

Fn. The mapping ⟨·, ·⟩ : Fn × Fn → F defined as ⟨x, y⟩ = y∗x, ∀x, y ∈ Fn is

a sesquilinear product on Fn ([3], [9]) and it is called dot product or Hermitian

inner product or the standard sesquilinear product on Fn. Given a self-adjoint
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matrix A ∈ Fn×n with det(A) ̸= 0, we can also define a sesquilinear product on Fn

corresponding to A as follows.

Theorem 2.3. Let A ∈ Fn×n be a non-singular self-adjoint matrix and define a

mapping ⟨·, ·⟩A : Fn × Fn → F by ⟨x, y⟩A = ⟨Ax, y⟩, ∀x, y ∈ Fn. Then ⟨·, ·⟩A is a

sesquilinear product on Fn.

Proof. Linearity on the first term is obvious. Further, ∀x, y ∈ Fn,

⟨y, x⟩A = ⟨Ay, x⟩ = x∗Ay = ȳA∗x∗ = y∗Ax = ⟨Ax, y⟩ = ⟨x, y⟩A.

Note that if x ∈ Fn, satisfies ⟨x, y⟩A = 0 for all y ∈ Fn, then ⟨Ax, y⟩ = 0. According

to the fact that ⟨·, ·⟩ is a sesquilinear product, we get Ax = 0 and so x = 0 since A

is non-singular. Thus, ⟨·, ·⟩A is a sesquilinear product on Fn. □

Theorem 2.4. Let [·, ·] : Fn × Fn → F be a sesquilinear product on Fn. Then

there exists a unique non-singular self-adjoint matrix A such that [·, ·] = ⟨·, ·⟩A.

Proof. Let B = {b1, . . . , bn} be a basis for Fn. Let x =
∑n

j=1 αjbj and y =∑n
i=1 βibi ∈ Fn. Note that

[x, y] =

 n∑
j=1

αjbj ,

n∑
i=1

βibi


=

∑
i

∑
j

βiαj [bj , bi]

= β1

∑
j

αj [bj , b1] + β2

∑
j

αj [bj , b2] + . . .+ βn

∑
j

αj [bj , bn]

= (β̄1β̄2 . . . β̄n)


∑

j αj [bj , b1]∑
j αj [bj , b2]

...∑
j αj [bj , bn]



= (β̄1β̄2 . . . β̄n)


[b1, b1] [b2, b1] . . . [bn, b1]

[b1, b2] [b2, b2] . . . [bn, b2]
...

...
. . .

...

[b1, bn] [b2, bn] . . . [bn, bn]



α1

α2

...

αn

 .

Choose A = (aij) where aij = [bj , bi], ∀i, j = 1, 2, . . . , n. We obtain

[x, y] = ⟨Ax, y⟩ = ⟨x, y⟩A.

Assume for the contrary, i.e., A is singular, then there exists x ∈ Fn, x ̸= 0 such

that Ax = 0. Therefore, for all y ∈ Fn, we get [x, y] = ⟨Ax, y⟩ = ⟨0, y⟩ = 0,

a contradiction to the non-degenerate condition of the product. We can see that
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A is self-adjoint since for all 1 ≤ i, j ≤ n, we get [bi, bj ] = [bj , bi]. Finally, the

uniqueness of the matrix A is obtained from the fact that if A′ is a matrix that

satisfies the theorem, then the (i, j)-th component of A′ is none other than [bj , bi].

Thus A′ = A. □

Remark 2.5. The matrix A above depends on the choice of the basis. If the

standard basis is used, then A is the identity matrix. For different sesquilinear

product, A may take a different form.

Theorem 2.6. For any n-dimensional sesquilinear space V over the field F , there

exists an isomorphism f : V → (Fn, ⟨·, ·⟩A) that preserves product; that is,

⟨f(x), f(y)⟩A = [x, y], ∀x, y ∈ V.

Proof. Let B = {b1, b2, . . . , bn} be a basis of V and the coordinate of any vector

x ∈ V with respect to the basis B be denoted by [x]B . Certainly, the coordinate

mapping f(x) = [x]B , ∀x ∈ V is an isomorphism from the space V to the space

Fn. Let define A = (aij) ∈ Fn×n, where aij = [bj , bi], ∀i, j = 1, 2, . . . , n. Similar

to the proof of Theorem 2.4 above, it can be shown that A is a non-singular self-

adjoint matrix such that for all i, j = 1, 2, . . . , n occur [bj , bi] = ⟨[bj ]B , [bi]B⟩A =

⟨f(bj), f(bi)⟩A. As a consequence, we obtain [x, y] = ⟨f(x), f(y)⟩A, ∀x, y ∈ V . □

As a result of the above explanation, one can represent an arbitrary sesquilinear

product on Fn as a product corresponding to a non-singular self-adjoint matrix A.

Any n-dimensional sesquilinear space V can be represented by a sesquilinear space

Fn for a certain non-singular self-adjoint matrix. All these facts will be utilized to

derive our results.

Let V be a sesquilinear space over the field F with sesquilinear product [·, ·]. The
norm of an element x ∈ V is defined as |x| = [x, x]. A unit vector is a vector with

norm 1. Elements x, y ∈ V are called orthogonal if [x, y] = 0. Non-zero element

x ∈ V is called self-orthogonal if [x, x] = 0. By exploiting the field property F ,

every non-zero, non-self-orthogonal vector in V can be shown as a multiple of a

unit vector.

A subset S ⊆ V defined to be an orthogonal subset if for any pair x, y ∈ S, x ̸= y,

we have [x, y] = 0. An orthonormal subset is an orthogonal subset with all its

elements are unit. Subsets S and T of V are orthogonal sets if for all s ∈ S, we

have [s, t] = 0 for every t ∈ T .

Remark 2.7. By the above definition, 1-dimensional sesquilinear product space

must be generated by a non-zero, non-self-orthogonal vector.

[3, Lemma 6.2] says that any subspace of Fn with dimension at least 2 contains

a vector with non-zero norm. Here is a counterexample that this lemma is not true.
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Example 2.8. Let F = Z7[i], the extension field of Z7 with irreducible polynomial

x2+1. Let V = F 4 be the dot product space over the field F . Let S = span(b1, b2)

be the 2 dimensional subspace of V where

b1 =
(
2 + i 1 + i 0 0

)T

, b2 =
(
0 0 2 + i 1 + i

)T

.

Clearly ⟨bi, bj⟩ = 0 for all i, j = 1, 2 and hence all non-zero elements in S are

self-orthogonal.

In the following, we provide a modified result concerning that lemma, that is,

by restricting the result to non-degenerate subspaces.

Lemma 2.9. Let V be a non-zero sesquilinear space over the field F . Then V

contains a non-zero vector that is not self-orthogonal.

Proof. If V is a 1-dimensional sesquilinear space, then obviously, V is generated

by a vector with non-zero norm. If V is an n-dimensional sesquilinear space where

n ≥ 2, then it has a basis with n-vectors, say B = {b1, . . . , bn}. If there is bi ∈ B

with non-zero norm for some i ∈ {1, 2, . . . , n}, then we are done. Now suppose that

[bi, bi] = 0 for all i ∈ {1, 2, . . . , n}. Since b1 ̸= 0, there exists x ∈ V, x ̸= 0 such

that [b1, x] ̸= 0. As a result of x being a linear combination of B and b1 being

self-orthogonal, there exists j ∈ {2, . . . , n} such that [b1, bj ] ̸= 0. Without loss of

generality, we can assume [b1, bj ] = 1. Hence, for any µ ∈ F , we obtain the norm

of b1 + µbj is

[b1 + µbj , b1 + µbj ] = [b1, b1] + µ̄[b1, bj ] + µ[bj , b1] + µµ̄[bj , bj ]

= µ̄+ µ.

Consequently, we have [b1 + µbj , b1 + µbj ] = µ̄ + µ is non-zero by the choice of

µ. Of course b1 + µbj ̸= 0. Therefore, V contains a non-zero vector that is not

self-orthogonal. □

Definition 2.10. Let V be a sesquilinear space and S ⊆ V, S ̸= ∅. The orthogonal
complement of S is the set defined as follows

S⊥ = {x ∈ V | [x, s] = 0, ∀s ∈ S}.

Remark 2.11. It is a routine to show that S⊥ is a subspace of V .

In the following theorem, we provide a characterization of non-degenerate sub-

space through its orthogonal complement.

Theorem 2.12. Let V be a sesquilinear space over the field F and S be a subspace

of V . Then S is non-degenerate if and only if S ∩ S⊥ = {0}.
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Proof. If S ∩ S⊥ = {0}, then any vector in S which is orthogonal to all vectors

x ∈ S is only 0. Thus, S is non-degenerate. Conversely, if S is a non-degenerate

subspace, then an element x ∈ S that satisfies [s, x] = 0 for all s ∈ S is only x = 0.

This fact means that 0 is the only element in S ∩ S⊥. □

Remark 2.13. In the area of Coding Theory, a k-dimensional subspace of the

space Fn is called a linear [n, k] code over the field F . A linear [n, k] code S on

the Hermitian inner product Fn is called Hermitian Linear Complementary Dual

(LCD) if S ∩ S⊥ = {0} [9]. Hence, we can conclude that a Hermitian LCD code is

a linear code that is non-degenerate.

According to Theorem 2.12, the subspace S is non-degenerate if S ∩ S⊥ = {0}.
An alternative means to evaluate the non-degeneracy property of a subspace of V

is by utilizing its basis, particularly examining a matrix containing products of the

basis elements called as Gram matrix [11].

Theorem 2.14. Let V be an n-dimensional sesquilinear space over the field F and

S be a subspace of V . Let B = {b1, . . . , bk} be an order basis of S and Gram matrix

A = (aij) where aij = [bj , bi], i, j ∈ {1, 2, . . . , n}. Then det(A) ̸= 0 if and only if S

is non-degenerate.

Proof. Similar to the proof of Theorem 2.6, we consider the coordinate mapping

with respect to the basis B, [x]B for any x ∈ S, is an isomorphism from S to the

space F k. If S is non-degenerate, then S is a sesquilinear space with respect to the

sesquilinear product of V . Hence, following the proof of Theorem 2.6, we obtain

det(A) ̸= 0.

Conversely, let det(A) ̸= 0 which implies that the product ⟨·, ·⟩A is a sesquilinear

on F k. Let x, y be arbitrary elements in S. Then, x =
∑k

j=1 αjbj and y =
∑k

i=1 βibi

for some αj , βi ∈ F . Thus, we obtain

[x, y] =

 k∑
j=1

αjbj ,

k∑
i=1

βibi

 = [y]∗BA[x]B = ⟨[x]B , [y]B⟩A.

Therefore, if ⟨·, ·⟩A is non-degenerate on F k, then [·, ·] is also non-degenerate on

S. □

3. Orthonormal bases

This section explains necessary and sufficient conditions for a subspace of a

sesquilinear space to have an orthonormal basis. Suppose S is a non-degenerate

subspace of Fn. The only vector in S that is orthogonal to all vectors in S is the

zero vector. Consequently, if B = {b1, . . . , bk} is a basis of S and x ∈ S such that
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[x, bi] = 0 for all bi ∈ B, then we must have x = 0. This observation gives us the

following lemma.

Lemma 3.1. Let V be a non-zero sesquilinear space over the field F and S ⊆ V be a

non-degenerate subspace of V . Then S does not have a basis which is simultaneously

orthogonal and self-orthogonal.

Proof. Suppose on the contrary, there exists B = {b1, . . . , bk} a basis of S which

is simultaneously orthogonal and self-orthogonal. Particularly, we have [b1, bi] = 0

for all bi ∈ B. By the above discussion, this implies b1 = 0, a contradictory fact to

the assumption that b1 is an element of the basis B. □

The following theorem will be useful for our purpose to get an orthonormal subset

of vectors that spans a subspace of Fn. Moreover, every vector in that subset is

not self-orthogonal.

Theorem 3.2. Let V be an n-dimensional sesquilinear space and S = span{u}
for some u ∈ V with [u, u] ̸= 0. Then V = S ⊕ S⊥, dim(S⊥) = n − 1 and S⊥ is

non-degenerate.

Proof. Clearly, S is non-degenerate, hence S∩S⊥ = {0}. Define a linear functional

λ(v) = [v, u], ∀v ∈ V . Since [u, u] ̸= 0, λ is a non-zero mapping. According to

Rank-Nullity Theorem, null(λ) = n − 1. Since ker(λ) = S⊥, we get dim(S⊥) =

n − 1. Hence V = S ⊕ S⊥. Further, we will show that S⊥ is non-degenerate.

Suppose on the contrary, S⊥ being degenerate. Then, there exists x ∈ S⊥, x ̸= 0

which is orthogonal to all elements in S⊥. Since V = S ⊕ S⊥, we obtain x being

orthogonal to all elements in V , a contradictory fact to the assumption that V is a

sesquilinear space. Thus S⊥ must be non-degenerate. □

There is a necessary and sufficient condition for the existence of an orthonormal

basis in sesquilinear subspace. The details are given by two theorems below.

Theorem 3.3. Any n-dimensional sesquilinear space with n ≥ 1 has an orthonor-

mal basis.

Proof. The theorem will be proved by induction on the dimension of the sesquilin-

ear space V . If dim(V ) = 1, then the non-degeneracy of V implies V = span{v} for

some non self-orthogonal vector v. Thus V has an orthonormal basis. Assume that

the theorem is true for every space V with 1 ≤ dim(V ) ≤ k − 1. Let dim(V ) = k.

According to Lemma 2.9, there exists x1 ∈ V, x1 ̸= 0 and [x1, x1] ̸= 0. Define

S1 = span{x1}. According to Theorem 2.12, V = S1 ⊕ S⊥
1 , dim(S⊥

1 ) = k − 1 and

S⊥
1 is non-degenerate. Hence, S⊥

1 is a k − 1-dimensional sesquilinear space and so,

according to the induction hypothesis, we know that S⊥
1 has an orthonormal basis.



EG-SP ON SESQUILINEAR SPACES OVER FINITE FIELDS 75

By combining the orthonormal bases of S1 and S⊥
1 , we obtain an orthonormal basis

of V . □

Theorem 3.4. Let V be an n-dimensional sesquilinear space and S ⊂ V be a

non-zero subspace of V . Then S has an orthonormal basis if and only if S is

non-degenerate.

Proof. If S is non-degenerate, then S equipped with sesquilinear product restricted

on S is a sesquilinear space. Hence according to Theorem 3.3, S has an orthonormal

basis. Conversely, let S has an orthonormal basis B = {b1, b2, . . . , bk}. For any

vector x ∈ S, x ̸= 0, then x =
∑k

i=1 αibi for some αi ∈ F, i ∈ {1, 2, . . . , k} with

αj ̸= 0 for some j. In this case, we obtain [x, bj ] = αj ̸= 0. Thus S is non-

degenerate. □

Remark 3.5. From Example 2.8, we can conclude that S is not only two-dimensional

space with self-orthogonal vectors but also does not have orthonormal bases. Based

on Theorem 2.14, we can also said that a non-zero space with non-singular Gram

matrix has orthonormal bases.

Let S ⊂ V be a non-zero non-degenerate subspace of a finite dimensional sesquili-

near space V . The existence of an orthonormal basis of S is enable us to define an

orthogonal projection on S. Let B = {b1, b2, . . . , bk} be an orthonormal basis of S.

The mapping defined on V , p(v) =
∑k

i=1[v, bi]bi, ∀v ∈ V is an orthogonal projection

on S. Particularly, we have V = S⊕S⊥ where S = im(p) and S⊥ = ker(p). Hence,

we obtain the following corollary which extends Theorem 2.12.

Corollary 3.6. Let V be an n-dimensional sesquilinear space and S ⊂ V be a

non-zero subspace of V . Then V = S ⊕ S⊥ if and only if S is non-degenerate.

Further consequences is shown in the following corollary which answers one of

the open problems mentioned in the introduction section.

Corollary 3.7. Let V be an n-dimensional sesquilinear space and B = {b1, . . . , bk}
be an orthonormal subset, i.e., [bi, bi] = 1 and [bi, bj ] = 0, ∀i ̸= j. Then B can be

extended into an orthonormal basis of V .

Proof. Define S = Span(B), then S is a non-degenerate subspace. Hence V =

S ⊕ S⊥. Since any non-degenerate subspace has an orthonormal basis, the proof is

complete if we can show that S⊥ is also non-degenerate. Suppose on the contrary,

that is, S⊥ being degenerate, then there exists x ∈ S⊥ non-zero element that is

orthogonal to all elements in S⊥. Since x is also orthogonal to all elements in S,

we obtain x is orthogonal to all elements in V , a contradictory statement to the

fact that V is non-degenerate. Thus S⊥ is a non-degenerate subspace. □
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Remark 3.8. We can generalized Corollary 3.7 as follows: Suppose S, T be non-

degenerate subspaces of a sesquilinear space V with S ⊆ T . If B is an orthonormal

basis of S, then B can be extended to an orthonormal basis of T .

4. Extended Gram-Schmidt process

In this section we upgrade the Gram-Schmidt Process to transform a linearly

independent subset of a finite dimensional sesquilinear space to an orthogonal subset

with equal generated subspaces. Further, if the subspace generated by the given

linearly independent subset is non-degenerate, the obtained orthogonal subset is

orthonormal.

On inner product spaces over real or complex number fields, Gram-Schmidt Pro-

cess is an algorithm to construct an orthonormal subset from a given linearly inde-

pendent subset. The basic principle of Gram-Schmidt Process is the construction

of a chain of orthonormal subsets recursively by utilizing orthogonal projections on

subspaces generated by the obtained orthonormal subsets. Our proposed Extended

Gram-Schmidt Process (EG-SP) maintains this principle by modifying the utilized

orthogonal projections and paying attention to the obtained vectors when they are

used to construct the orthogonal projections. EG-SP will transform a linearly in-

dependent subset of a sesquilinear space to an orthogonal subset whose generated

subspace is equal to the subspace generated by the given independent subset.

Extended Gram-Schmidt Process

Let V be a sesquilinear space over the field F with sesquilinear product [·, ·] and
B = {b1, b2, . . . , bk} be a linearly independent subset of V .

Let B1 = B.

(1) Construction vector o1

If [b1, b1] ̸= 0, define o1 to be the unit vector correspondence to b1.

Otherwise, we divide into two cases.

If [b1, bi] = 0 for all i ∈ {2, 3, . . . , k}, define o1 = b1.

Otherwise, there is i ∈ {2, 3, . . . , k} such that [b1, bi] ̸= 0. In this case, there

exists µ ∈ F such that [b1 + µbi, b1 + µbi] ̸= 0. Let o1 be the unit vector

correspondence to b1 + µbi.

(2) Construction p1, a linear operator on S1 = span(B1)

Let O1 = {o1}, U1 = span(O1). Let p1 be the linear operator on S1 =

span(B1) defined as

p1(s) = [s, o1]o1, ∀s ∈ S1.

Note that, if U1 is non-degenerate, p1 is the orthogonal projection operator

on the space U1, otherwise p1 is the zero mapping on S1.
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(3) Construction subset B2

For any i ∈ {2, . . . , k}, replace bi with vi = bi − p1(bi).

Clear that the subset B2 = {b2, . . . , bk} is linearly independent such that

S1 = U1 ⊕ S2

where S2 = span(B2). Moreover, U1 and S2 are orthogonal.

(4) Repeat the above process on the subset Bi to get vector oi and subset

Bi+1 for i ≥ 2 until we get O = {o1, o2, . . . , ok} an orthogonal linearly

independent subset such that span(O) = span(B).

Remark 4.1. Below are some important facts about EG-SP.

(1) The above EG-SP produces an orthogonal and linearly independent subset

O such that span(O) = span(B). As a consequence, every nonzero subspace

of a sesquilinear space has an orthogonal basis.

(2) If the subspace span(B) is non-degenerate, then point 1. of EG-SP will

produce a unit vector oi, for i = 1, 2, . . . , k. Hence, the obtained subset O

will be orthonormal. Conversely, if the obtained subset O is orthonormal,

then the subspace span(B) is non-degenerate. Hence, EG-SP can be used

to evaluate the non-degeneracy property of a subspace.

(3) EG-SP is nothing but Gram-Schmidt Process when we apply it to a linearly

independent subset of an inner product space over real or complex fields.

Consider the following table to see the difference between EG-SP and Gram-

Schmidt.

Properties EG-SP Gram-Schmidt

Space Sesquilinear Space Inner Product Space

Output

Transform linearly independent

set to orthogonal set and it be-

comes orthonormal if and only

if the spanning set is non-

degenerate

Always transform independent

set into orthonormal set

Workflow
Considering non-zero norm vec-

tor in the algorithm

No need to considering non-zero

norm vector in the algorithm

Table 1. Comparison table between EG-SP and Gram-Schmidt

The following two examples illustrate the application of EG-SP to obtain an

orthonormal basis for a non-degenerate subspace.
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Example 4.2. Consider F = Z7[i], the extension field of the field Z7 with ir-

reducible polynomial x2 + 1 and V = F 5 is the dot product space over F . Let

S be the subspace of V generated by linearly independent subset B = {b1, b2}

where b1 =
(
0 1− i 2 + i 0 0

)T

and b2 =
(
0 1 1 1 2

)T

. Clear

that b1 and b2 are self-orthogonal vectors. However, ⟨b1, b2⟩ = 3. Since b1 − b2 =(
0 −i 1 + i −1 −2

)T

is a unit vector, let o1 = b1 − b2 and v2 = b2 −

⟨b2, o1⟩o1 =
(
0 1− 4i 5 + 4i −3 −6

)T

. Clear that ⟨v2, v2⟩ = 5. Now

it is left to normalize the vector v2 by multiplying v2 with 6 − 3i, we get o2 =(
0 −6 + i 2i 3 + 2i 6 + 4i

)T

and ⟨o2, o2⟩ = 1. Thus we get O = {o1, o2}
is an orthonormal basis of S and we conclude that S in non-degenerate.

Example 4.3. Consider V = F 5 the dot product space over the field F = Z7[i], the

extension field of Z7 with irreducible polynomial x2 + 1. Let S be a subspace of V

which has a basis B = {b1, b2, b3} where b1 =
(
1 + 2i 1− i 0 0 0

)T

, b2 =(
0 1 1 1 2

)T

, and b3 =
(
1 2i −1 i 0

)T

. We obtain all vectors

b1, b2 and b3 are self-orthogonal vectors. First, we have to find o1. Since ⟨b1, b2⟩ ̸= 0,

consider b1 − b2 =
(
1 + 2i −i −1 −1 −2

)T

with norm 5. Normalize it,

we get o1 =
(
5 + 2i −3− 6i −6 + 3i −6 + 3i 2 + 6i

)T

. Define

v2 = b2 − ⟨b2, o1⟩o1 =
(
3 + 5i −2 + 3i 4 + 3i 4 + 3i 1 + 6i

)T

,

we obtain |v2| = 1. Define

v3 = b3 − ⟨b3, o1⟩o1 =
(
−3 + 2i 2 + 2i −1 + 5i −i 3i

)T

,

we also obtain |v3| = 1. Now, we are working on the subset B2 = {v2, v3}. Since
v2 is a unit vector, define o2 = v2. Further, define

w3 = v3 − ⟨v3, o2⟩o2 =
(
5 + 3i −2 + 2i 3 + 3i 4 + 4i 1− i

)T

,

we obtain the norm of w3 is 3. Now it is left to normalize the vector w3 and we get

the corresponding unit vector of w3 is

o3 =
(
6 + 6i 1 + 5i 4 + 2i 3 + 5i 3 + i

)T

.

Finally, we get that O = {o1, o2, o3} is an orthonormal basis of S.

As we have mentioned before, the presence of an orthonormal basis of a subspace

can be used to evaluate non-degeneracy property of the subspace. We can also

examine the non-degeneracy property of a subspace through the Gram matrix. The

above EG-SP can also be used to examine the degeneracy property of a subspace

as shown in the following example.
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Example 4.4. Consider V = F 5 the dot product space over F = Z7[i], the

extension field of Z7 with irreducible polynomial x2 + 1, and let S be the sub-

space of V generated by a linear independent subset B = {b1, b2, b3} where b1 =(
1 2i −1 i 1

)T

, b2 =
(
0 0 0 1 + 2i 1− i

)T

, and

b3 =
(
1 + 2i 1− i 0 0 0

)T

. We have b1 is a unit vector and b2, b3 are

self-orthogonal vectors. So, let o1 = b1. Define

v2 = b2 − ⟨b2, o1⟩o1 =
(
−3 + 2i −4− 6i 3− 2i −1− i −2 + i

)T

and

v3 = b3 − ⟨b3, o1⟩o1 =
(
2 + 2i 1 + i −1 i 1

)T

.

Now we are working on the subset B2 = {v2, v3}. Since v2 is a unit vector, let

o2 = v2 and construct

w3 = v3 − ⟨v3, o2⟩o2 =
(
1 + 2i 1− i 0 1− i 2 + i

)T

.

Now we get B3 = {w3}, but w3 is a self-orthogonal vector. Hence we define o3 = w3

and we obtain that O = {o1, o2, o3} is an orthogonal basis of S.

Note that o3 is self-orthogonal in O, so it is orthogonal to all elements in O. As

a consequence, o3 is a non-zero vector in S that orthogonal to all elements in S.

Thus, we conclude that S is a degenerate subspace.

5. Conclusion

In this paper we showed that Gram-Schmidt Process can be generalized to the

class of finite dimensional sesquilinear spaces over finite fields to transform any lin-

early independent subset to an orthogonal subset with the generated subspaces are

equal. Further, the obtained orthogonal subset is orthonormal when the generated

subspace is non-degenerate. Those results were derived in the restriction that the

characteristic of the underlying fields are odd prime order. Hence, it is of interest

for further studies, what and how are the generalization of the obtained results in

the context of spaces over finite fields having characteristic 2.
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