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1. Introduction

Let R be a ring and X be an R-bimodule. An additive map δ : R −→ X is called

a derivation if it satisfies

δ(ab) = δ(a)b+ aδ(b), a, b ∈ R. (1)

If the equality (1) only hold in the case where b = a, then δ is called a Jordan

derivation. We denote by [a, b], the commutator ab − ba. Each mapping of the

form a 7−→ [a, x], where x ∈ X, will be called an inner derivation. Clearly, every

derivation is Jordan derivation, however, there exists Jordan derivations which are

not derivations, see [3,7].

Recall that a ring R is called prime if aRb = 0 implies that a = 0 or b = 0,

and it is called semiprime if aRa = 0 implies a = 0. A classical result of Herstein

[6] states that every Jordan derivation from a 2-torsion free prime ring into itself

is a derivation and it was extended to 2-torsion free semiprime rings by Brešar [2].

Johnson [7] proved that every continuous Jordan derivation δ from a C∗-algebra A

into any Banach A-bimodule X is a derivation. Of course, the continuity of δ can be

removed, see [9]. Zhang [11] proved that every Jordan derivation on nest algebras

is an inner derivation. In [5], the authors proved that each Jordan derivation on a

triangular ring is a derivation.
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Let R and S be rings, X be an S-bimodule and let σ, τ : R −→ S be additive

maps. A biadditive map µ : R×R −→ X is said to be a (σ, τ)-Hochschild 2-cocycle

if

σ(a)µ(b, c)− µ(ab, c) + µ(a, bc)− µ(a, b)τ(c) = 0, a, b, c ∈ R.

A (σ, τ)-Hochschild 2-cocycle map µ is called symmetric if µ(a, b) = µ(b, a) for all

a, b ∈ R.

An additive map δ : R −→ X is said to be a (σ, τ)-generalized derivation if there

exists a (σ, τ)-Hochschild 2-cocycle µ such that for all a, b ∈ R,

δ(ab) = δ(a)τ(b) + σ(a)δ(b) + µ(a, b),

and it is called a (σ, τ)-generalized Jordan derivation if

δ(a2) = δ(a)τ(a) + σ(a)δ(a) + µ(a, a), a ∈ R.

The concept of (σ, τ)-generalized derivation associated with a (σ, τ)-Hochschild 2-

cocycle was introduced by Zhou [12], as an extension of generalized derivation

associated with a Hochschild 2-cocycle µ. Indeed, if R = S and σ = τ = id, the

identity map on R, then (σ, τ)-generalized derivation is simply called a generalized

derivation which was introduced by Nakajima [8]. Moreover, if µ = 0, then they

are the usual derivations and Jordan derivations, respectively.

Next we show that the class of (σ, τ)-generalized derivations is large. Indeed, it

contains τ -multipliers, (σ, τ)-derivations and all another type of generalized deriva-

tions.

We mention that in the next example σ, τ : R −→ S are ring homomorphisms.

Example 1.1. (i) Suppose that δ satisfies δ(ab) = δ(a)τ(b)+σ(a)d(b), where

d : R −→ X is a (σ, τ)-derivation. Then the map µ1 : R × R −→ X via

µ1(a, b) = σ(a)(d− δ)(b) is biadditive and it is (σ, τ)-Hochschild 2-cocycle.

Moreover, for all a, b ∈ R,

δ(ab) = δ(a)τ(b) + σ(a)δ(b) + µ1(a, b).

Thus, δ is a (σ, τ)-generalized derivation associated with µ1.

(ii) Suppose that δ : R −→ X is a left τ -multiplier, that is, δ(ab) = δ(a)τ(b).

Then by the equality δ(ab) = δ(a)τ(b) + σ(a)δ(b) + σ(a)(−δ)(b), we have

a (σ, τ)-Hochschild 2-cocycle biadditive map µ2 : R × R −→ X defined by

µ2(a, b) = σ(a)(−δ)(b). Thus, a left τ -multiplier is also a (σ, τ)-generalized

derivation.
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(iii) Let δ satisfy the relation δ(ab) = δ(a)σ(b) + τ(a)δ(b) for all a, b ∈ R. Then

the map µ3 : R×R −→ X defined by

µ3(a, b) = δ(a)
(
σ(b)− τ(b)

)
+
(
τ(a)− σ(a)

)
δ(b),

is (σ, τ)-Hochschild 2-cocycle and

δ(ab) = δ(a)τ(b) + σ(a)δ(b) + µ3(a, b).

Hence a (τ, σ)-derivation is also a (σ, τ)-generalized derivation.

The following theorem was proved by Nakajima in [8].

Theorem 1.2. Suppose that R is a 2-torsion free ring and δ : R −→ R is a

generalized Jordan derivation associate with Hochschild 2-cocycle µ. If R satisfies

one of the following conditions, then δ is a generalized derivation.

(i) R is a non-commutative prime ring,

(ii) There exist a, b ∈ R such that [a, b] is a non-zero divisor,

(iii) R is commutative and µ is symmetric.

The aim of this paper is to generalize Theorem 1.2 for (σ, τ)-generalized Jordan

derivations from a ring R into an S-bimodule X. Note that our approach is quite

different from that in [8].

Throughout this paper, R and S are rings, X is an S-bimodule and σ, τ : R −→ S

are ring homomorphisms.

2. Main results

In this section, we characterize (σ, τ)-generalized Jordan derivations δ : R −→ X

and prove under special hypothesis that such maps necessary are (σ, τ)-generalized

derivations.

For all a, b ∈ R, we introduce the notation

D(a, b) = δ(ab)− δ(a)τ(b)− σ(a)δ(b)− µ(a, b).

Using the same approach as in the proof of [8, Lemmas 2 and 4], we have

Lemma 2.1. Let R and S be rings and X be a 2-torsion free S-bimodule. If

δ : R −→ X is a (σ, τ)-generalized Jordan derivation, then

(i) δ(ab+ ba) = δ(a)τ(b) + σ(a)δ(b) + µ(a, b) + δ(b)τ(a) + σ(b)δ(a) + µ(b, a),

(ii) δ(aba) = δ(a)τ(ba) + σ(a)δ(b)τ(a) + σ(ab)δ(a) + σ(a)µ(b, a) + µ(a, ba),

(iii) δ(abc+ cba) = δ(a)τ(bc) + σ(a)δ(b)τ(c) + σ(ab)δ(c) + σ(a)µ(b, c) + µ(a, bc)

+δ(c)τ(ba) + σ(c)δ(b)τ(a) + σ(cb)δ(a) + σ(c)µ(b, a) + µ(c, ba),
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(iv) D(a, b)τ(c)[τ(a), τ(b)] + [σ(a), σ(b)]σ(c)D(a, b) = 0,

(v) D(a, b)[τ(a), τ(b)] = 0, and [σ(a), σ(b)]D(a, b) = 0.

For the proof of the main theorem, we need the following lemma.

Lemma 2.2. [4, Lemma 4] Let G and H be additive groups and let R be a 2-torsion

free ring. Let f : G ×G −→ H and h : G ×G −→ R be biadditive maps. Suppose

that for each pair a, b ∈ G either f(a, b) = 0 or h(a, b)2 = 0. Then either f(a, b) = 0

for all a, b ∈ G, or h(a, b)2 = 0 for all a, b ∈ G.

Remark 2.3. [4, Remark 5] It is worth noting that if a ring S and a nonzero

S-bimodule X are such that xSa = 0 with x ∈ X, a ∈ S implies that x = 0 or

a = 0, then S is prime. Indeed, suppose that aSb = 0 for some a, b ∈ S. Then for

any nonzero x ∈ X we have (xSa)Sb = 0, and hence it follows that a = 0 or b = 0.

Moreover, if X is 2-torsion free, then S is 2-torsion free. To see this let 2a = 0

for some a ∈ S. Then 2xSa = 0 for all x ∈ X and so a = 0.

Our first main theorem is stated as follows and serves as a generalization of

Theorem 1.2(i).

Theorem 2.4. Let R be any ring, S be a noncommutative ring and X be a 2-torsion

free S-bimodule. Suppose that either

(i) τ is onto and xSa = 0 with x ∈ X, a ∈ S implies that x = 0 or a = 0, or

(ii) σ is onto and aSx = 0 with x ∈ X, a ∈ S implies that x = 0 or a = 0.

In this case each (σ, τ)-generalized Jordan derivation δ from R into X is a (σ, τ)-

generalized derivation.

Proof. We only prove the case where τ is onto and xSa = 0 with x ∈ X, a ∈ S

implies that x = 0 or a = 0. The case (ii) can be discussed analogously.

Multiply the relation (iv) in Lemma 2.1 from the right by [τ(a), τ(b)]. According

to (v) in Lemma 2.1, for all a, b ∈ R, we obtain

D(a, b)τ(c)[τ(a), τ(b)]2 = 0.

Since τ is onto, our assumption implies that for each pair a, b ∈ R either D(a, b) = 0

or [τ(a), τ(b)]2 = 0. It is by Remark 2.3 that S is 2-torsion free. Applying Lemma

2.2 for the mapping f(a, b) = D(a, b) and h(a, b) = [τ(a), τ(b)], we get either

D(a, b) = 0 for all a, b ∈ R or [τ(a), τ(b)]2 = 0 for all a, b ∈ R.

Suppose thatD(a, b) ̸= 0 for some a, b ∈ R. Then [τ(a), τ(b)]2 = 0 for every a, b ∈
R. Since τ is onto, we conclude that [x, y]2 = 0 for all x, y ∈ S. By Remark 2.3, S

is a prime ring. Then it follows from [10, Lemma] that S is commutative, which is
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contradiction. Consequently, D(a, b) = 0 for all a, b ∈ R and hence δ : R −→ X is

a (σ, τ)-generalized derivation. □

Take R = S = X in Theorem 2.4, we get the following result.

Corollary 2.5. Suppose that R is a 2-torsion free noncommutative prime ring. If

τ is surjective (or σ is surjective), then every (σ, τ)-generalized Jordan derivation

δ on R is a (σ, τ)-generalized derivation.

If σ = τ = id in Corollary 2.5, then we obtain the next corollary.

Corollary 2.6. [8, Theorem 6] If R is a 2-torsion free noncommutative prime ring,

then every generalized Jordan derivation δ : R −→ R is a generalized derivation.

The condition that xSa = 0 with x ∈ X, a ∈ S implies that x = 0 or a = 0, in

Theorem 2.4 is essential. The following example illustrates this fact.

Example 2.7. Let

R =

{[
z1 z2

0 z3

]
: z1, z2, z3 ∈ C

}
.

We make X = C an R-bimodule by defining

aλ = z3λ, λa = λz1, λ ∈ C, a ∈ R.

Define δ : R −→ X via δ(a) = z2 for all a ∈ R. Then

δ(a2) = δ(a)a+ aδ(a)

for all a ∈ R. Therefore, δ is a generalized Jordan derivation associated with

Hochschild 2-cocycle µ = 0. However, δ is not a generalized derivation.

Note that the condition λRa = 0 with λ ∈ X = C, a ∈ R does not imply that

λ = 0 or a = 0.

It is proved in [1, Theorem 1] that if R is a 2-torsion free semiprime ring, τ

is surjective and τ(Z(R)) = Z(R), where Z(R) is the center of R, then each left

Jordan τ -multiplier δ : R −→ R is a left τ -multiplier. For another characterization

of τ -multipliers, see [13,14] and the references therein.

Next we consider this result in two different cases. In the first case we assume

that R is commutative and outline a new simple proof for it as follows.

Theorem 2.8. Let R be a 2-torsion free commutative semiprime ring. If τ is

surjective, then each left Jordan τ -multiplier δ : R −→ R is a left τ -multiplier.
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Proof. By our assumption,

δ(a2) = δ(a)τ(a), a ∈ R.

Replacing a by a+ b, we get

2δ(ab) = δ(a)τ(b) + δ(b)τ(a), a, b ∈ R. (2)

Interchanging b by bc in (2), we obtain

2δ(abc) = δ(a)τ(bc) + δ(bc)τ(a). (3)

Plugging (2) into (3) to get

4δ(abc) = 2δ(a)τ(b)τ(c) +
(
δ(b)τ(c) + δ(c)τ(b)

)
τ(a). (4)

Similarly,

4δ(bac) = 2δ(b)τ(a)τ(c) +
(
δ(a)τ(c) + δ(c)τ(a)

)
τ(b). (5)

Comparing (4) and (5) and using the fact that τ(a)τ(b) = τ(b)τ(a) for all a, b ∈ R,

we arrive at (
δ(a)τ(b)− δ(b)τ(a)

)
τ(c) = 0, a, b, c ∈ R. (6)

Multiplying the relation (6) from the right by
(
δ(a)τ(b)− δ(b)τ(a)

)
, we get(

δ(a)τ(b)− δ(b)τ(a)
)
τ(c)

(
δ(a)τ(b)− δ(b)τ(a)

)
= 0.

Since R is semiprime and τ is surjective, we conclude that δ(a)τ(b)− δ(b)τ(a) = 0

for all a, b ∈ R. Thus, it follows from (2) that δ(ab) = δ(a)τ(b) for all a, b ∈ R and

hence δ is a left τ -multiplier. □

In the second case we consider the noncommutative situation and relaxing the

condition τ(Z(R)) = Z(R), but we assume the stronger condition that R is prime.

Corollary 2.9. Suppose that R is a 2-torsion free noncommutative prime ring. If

τ is surjective, then each left Jordan τ -multiplier δ : R −→ R is a left τ -multiplier.

Proof. Take σ = µ = 0 in Corollary 2.5. □

Let R be a commutative ring, σ = τ and µ is a symmetric (σ, τ)-Hochschild

2-cocycle map. Then by Lemma 2.1(i), every (σ, τ)-generalized Jordan derivation

δ : R −→ R is a (σ, τ)-generalized derivation. The following result improve this

conclusion.

Recall that an S-bimodule X is said to be symmetric if ax = xa for all a ∈ S

and x ∈ X.
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Theorem 2.10. Let R be a commutative ring and S be any ring. Let X be a 2-

torsion free symmetric S-bimodule with the property that xa = 0 with x ∈ X, a ∈ S

implies that x = 0 or a = 0. If µ is symmetric, then each (σ, τ)-generalized Jordan

derivation δ : R −→ X is a (σ, τ)-generalized derivation.

Proof. Let δ : R −→ X be a (σ, τ)-generalized Jordan derivation. Then

δ(a2) = δ(a)τ(a) + σ(a)δ(a) + µ(a, a), a ∈ R. (7)

Replacing a by a2 in Lemma 2.1(i), we get

2δ(a2b) = δ(a2)
(
τ(b) + σ(b)

)
+ δ(b)

(
σ(a2) + τ(a2)

)
+ µ(a2, b) + µ(b, a2), (8)

for all a, b ∈ R. By (7) and (8),

2δ(a2b) =δ(a)τ(a)τ(b) + σ(a)δ(a)τ(b) + µ(a, a)τ(b)

+δ(a)τ(a)σ(b) + σ(a)δ(a)σ(b) + µ(a, a)σ(b)

+δ(b)σ(a)σ(a) + δ(b)τ(a)τ(a) + µ(a2, b) + µ(b, a2).

On the other hand, according to (ii) in Lemma 2.1, we have

2δ(a2b) =2δ(a)τ(b)τ(a) + 2σ(a)δ(a)τ(b) + 2σ(a)σ(b)δ(a)

+2σ(a)µ(b, a) + 2µ(a, ba).

Comparing the above two expressions, we obtain(
δ(a)τ(b) + σ(a)δ(b)− δ(a)σ(b)− τ(a)δ(b)

)(
σ(a)− τ(a)

)
+
(
µ(a, a)τ(b) + µ(a2, b)− µ(a, ba)

)
− µ(a, ba)

+
(
σ(b)µ(a, a) + µ(b, a2)− σ(a)µ(b, a)

)
− σ(a)µ(b, a) = 0. (9)

Since µ is a (σ, τ)-Hochschild 2-cocycle map, we have the following relation:

(i) σ(a)µ(b, a) + µ(a, ba) = µ(ab, a) + µ(a, b)τ(a),

(ii) µ(a, a)τ(b) + µ(a2, b)− µ(a, ab) = σ(a)µ(a, b),

(iii) σ(b)µ(a, a) + µ(b, a2)− µ(b, a)τ(a) = µ(ba, a).

Since R is commutative and µ is symmetric, by (i) we get

σ(a)µ(b, a) = µ(a, b)τ(a), a, b ∈ R,

and hence (iii) implies that

σ(b)µ(a, a) + µ(b, a2)− σ(a)µ(b, a) = µ(ba, a), a, b ∈ R. (10)

Plugging the relation (ii) and (10) into (9), we get(
δ(a)τ(b) + σ(a)δ(b)− δ(a)σ(b)− τ(a)δ(b)

)(
σ(a)− τ(a)

)
= 0. (11)
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By our assumption, it follows from (11) that for each a ∈ R either σ(a) = τ(a) or

for all b ∈ R,

δ(a)τ(b) + σ(a)δ(b) = δ(a)σ(b) + τ(a)δ(b).

In other words, R is the union of its subsets A = {a ∈ R : σ(a) = τ(a)} and

B = {a ∈ R : δ(a)τ(b) + σ(a)δ(b) = δ(a)σ(b) + τ(a)δ(b), for all b ∈ R}.

Clearly, each of A and B are additive subgroups of R. But a group cannot be the

union of two proper subgroups, therefore A = R or B = R.

IfA = R, then σ = τ and hence from (i) in Lemma 2.1, it follows that δ : R −→ X

is a (σ, τ)-generalized derivation.

If B = R, then for all a, b ∈ R, we have

δ(a)τ(b) + σ(a)δ(b) = δ(a)σ(b) + τ(a)δ(b).

Thus, by using (i) in Lemma 2.1, we see that δ is a (σ, τ)-generalized derivation. □

Corollary 2.11. Let R be a commutative prime ring (i.e., a commutative inte-

gral domain) and δ : R −→ R be a (σ, τ)-generalized Jordan derivation. If µ is

symmetric, then δ is a (σ, τ)-generalized derivation.

Proof. Take R = S = X in Theorem 2.10. □

The next example shows that selecting an appropriate (σ, τ)-Hochschild 2-cocycle

µ plays a crucial role. Moreover, it shows that the primeness of R can be omitted

from Corollary 2.11 whether σ = τ .

Example 2.12. Let

R =

{[
z1 z2

0 z1

]
: z1, z2 ∈ C

}
.

Then R is a commutative ring. Suppose that δ : R −→ R is an additive map defined

by δ(x) = xm+mx, where

m =

[
0 1

0 0

]
.

Let σ, τ : R −→ R be additive maps with

σ(a) = τ(a) =

[
z1 0

0 z1

]
, a ∈ R.

Define µ1, µ2 : R×R −→ R via

µ1(a, b) = −σ(a)δ(eA)τ(b), µ2

([
z1 z2

0 z1

]
,

[
w1 w2

0 w1

])
=

[
0 −z1w1

0 0

]
.
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Then both µ1 and µ2 are (σ, τ)-Hochschild 2-cocycle and they are symmetric. Since

δ(a2) = δ(a)τ(a) + σ(a)δ(a) + µ1(a, a),

for all a ∈ R and σ = τ , δ is a (σ, τ)-generalized derivation associated with µ1, but

δ is not a (σ, τ)-generalized Jordan derivation associated with µ2.
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