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ABSTRACT. In this work we state a result that relates the cohomology groups
of a Lie algebra g and a current Lie algebra g ® S, by means of a short exact
sequence similar to the universal coefficients theorem for modules, where S
is a finite dimensional, commutative and associative algebra with unit over a
field F. Using this result we determine the cohomology group of g ® S where

g is a semisimple Lie algebra.
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1. Introduction

Let g be a Lie algebra with bracket [-, -] and let S be an associative and com-
mutative algebra over a field F with product (s,t) — st, for all s,¢ in S. The
skew-symmetric and bilinear map [-, - |ygs defined on g® S, by

[T ®s,y®tlges = [r,y] ®st, forall z,ycg, and s,t €S,

yields a Lie algebra in g ® S, which is called the current Lie algebra of g by S.
Let p: g — gl(V) be a representation of g on a vector space V, then V is said
to be a g-module. The representation p can be extended to a representation R of

g ® S on the vector space V ® S by means of
Rz®s)(vat)=p(x)(v)®st, foral z,y e g, veV, s teS. (1)
Let O(g; V) =C%g; V)®...®CP(g; V)®. .. be the space of cochains from g into V/,

where C%(g, V) = V and CP(g; V) is the space of the alternating p-multilinear maps
of g with values in V. For any g-mdule V and p > 0, let d: CP(g; V) — CP*i(g; V)
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be the differential map given by

p+1
A1, apn) = > (1) play) (M, @5, )

7=t (2)
+ Z(—l)j+k)\([mj,xk],x1, Y S TREERE . TR  Tp+1)s p >0,

i<k
where A isin CP(g; V) and 1, ..., 2Zp41 arein g. For p = 0, we let d(v)(z) = p(z)(v)
where v is in V and z is in g.

The aim of this work is to set a result that relates the cohomology groups H(g®
S;V®S) and H(g; V), similar to the Universal coefficient theorems for modules
(see [2, Chapter VI, §3, Theorem 3.3]).

To achieve our goal, in Proposition 3.2 we introduce a map T between the set of
cochains of g and cochains of g ® S, that is sort like a functor except that 7 (Id) is
not the identity map Id (see §2 and Remark 3.1). Next we prove that there exists a
surjective linear map « between H(g® S;V ®S) and H(g; V) ® S (see Proposition
4.2). In Theorem 4.3 we determine the kernel of o and we state a result that relates
the cohomology groups H(g®S;V ®S) and H(g; V') ® S by means of a short exact
sequence.

It is a well known result that if V' is an irreducible g-module and g is semisimple,
then #H(g; V) = {0} (see [4, Theorem 24.1]). In order to illustrate the results of
this work, we use this and the fact that 7(Id) # Id to determine the cohomology
group H(g® S;V ®S), where g is a semisimple Lie algebra and V' is an irreducible
g-module (see Proposition 4.5).

The results obtained in this work are focused at knowing the cohomology group
H(g®S;V ®S), based on the cohomology group H(g; V). Results in the literature
include those given in [6] for the first and second cohomology groups of a current
Lie algebra g ® S with coefficients in a module V ® A, where V is a g-module
and A is an S-module. Other results are given in [7] (Theorem 2.1) for the second
cohomology group of g®S with coefficients in the trivial module and S has no unit.
A description of the cohomology group H(g®S; V), where V is a trivial g®S§ is given
in [5]. It seems that one of the first results with this focus appears in [1], where
it is shown that cohomology of g ® S, where S is a local algebra, can be reduced
to cohomology of g. On the other hand, it is unknown if there exists a criterion
for recognizing whether an arbitrary Lie algebra is a current Lie algebra. A step
in this direction can be found in [3], where examples in 4-dimensional current Lie
algebras are given. All vector spaces considered in this work are finite dimensional

over a unique field F of zero characteristic.
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2. The map L:C(goS§;V) — C(g; V)
The proof of the following result is standard and we omit it.

Proposition 2.1. Let V and S be finite dimensional vector spaces over F. Let
{s1,...,8m} be a basis of S. For any X in V ® S, there are unique elements
V1,y...,Um In V such that X =v1 ® 51+ ... 4+ U Q S

Let g ® S be the current Lie algebra of g by S, where S is an m-dimensional
commutative and associative algebra with unit 1 over . We use the same symbol
for the bracket on g ® S and the bracket on g, i.e., [t ® s,y ®t] = [z,y] ® st for all
x,y in g and s,tin S.

We fix a basis {s1,...,8n} of S, where 57 = 1. Let X1,..., X, bein g®S and A
in CP(g®S;V®S), where p > 0. Since A(Xy,..., X)) liesin V®S, by Proposition
2.1, we write A(X4,..., X)) as follows:

A(Xl,...,Xp) :Al(Xl,...,Xp)®$1+...+Am(X1,...,Xp)®Sm, (3)

where A (X1, -+, X,) belongs to V for all j. As Aisin CP(g®S;V ®S), the map
(X1,...,Xp) = Aj(X4,...,Xp) belongs to C?(g ® S; V). We denote this map by
Ajforall1 <57 <m.

Let {w1,...,wm} C S* be the dual basis of {s1,..., s, }. For each j, the bilinear
map (v, s) — w;(s)v yields the linear map &; : VoS =V, v® s — w;(s)v. By
Proposition 2.1, we can write any X in V®S,as X =v1 ®s1+...+ U ® S, then
v; = @;(X). Similarly, if A isin CP(g® S;V ® S), where p > 0, by (3) it follows
Aj=0joAforalll <j<m.

For each j, define the map x; : C(g®S;V®S) - C(g® S;V) by

Xj(A)=@;0A, for AeCP(gaS;V®S), p>0, and

Xi(v®s)=wj(v®s), forveV andseS. @
Then for any A in CP(g® S;V ® S), where p > 0, we have
FAXq, .. . Xp)=M(Xy. ... Xp)®s1+. . .+ AL (Xy, -, Xp) @S,
then A; = x;(A) foreach 1 <j<m. ©)
Let £:C(g®@8;V) — C(g; V) be the map defined by
L(v) =wv, forallv eV, and
(6)

L) (z1,...,2p) =M1 ®1,...,2,® 1),
where A is in CP(g® S;V), and x1,...,2, are in g. Let D be the differential in
Clge8;V®S) (see (2)). In the next result, we will prove that D, d, £ and x; can

be inserted into a commutative diagram.
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Proposition 2.2. For each j, the following diagram is commutative

CPgR SV ®S) ———s CP(ga S; V) Cr(g; V) (7)

3 |

CPH(g2 8V e S) s OPH(g2 S: V) S CPH (g V)

That is doL ox; = Lo x;oD. By (5), this is equivalent to
L((DA);) =dL(A;), foreachl < j<m. (8)

Proof. Let A be in CP(g® S;V ® S) as in (5). Applying (5) to DA, we ob-
tain (DA); = x,;(DA) for all j. Then (8) holds if and only if the diagram (7) is
commutative, that is

L((DA);)=L(x;(DA))=Lox;oDA, and

d(L(Aj)) =dL(x;oA) =doLox,(A).
We shall prove that £((DA);) = d(£(A;)). Let X; = z; ® 1, where x; belongs to
gforall 1 <i<p+ 1. By (2), we have

(9)

p+1
DAXy, ..., Xpp1) =Y (1) R(X)(A(Xy, .., X5, o, Xpp1))

=1 (10)
Y (D)TFRAXG Xi] X1y X K Xpg)-

i<k
Applying (5) to A in (10) above, it follows
DA(X1,..., Xpi1)

p+1 m

7;; D' R(XG) (A (X, Xy, Xp1) ©55) (11)
=17

+ZZ DA (X0 Xi), X1y, Xy, X ooy Xpy1) @55
i<kj=1

Let us analyze each of the terms
R(X;) (Aj(Xq,...,X;,..., X,11)®s;), and
A (X X, X1, Xy X Xy ) ®;
given in (11). Applying the representation R (see (1)) and L (see (6)), we obtain
R(X;) (Aj(Xq,..., X5, .0,

= plzi) (A (X, XG0 X)) @ s (12)

= p(s) (L(Aj) (21,5, Tpg1)) © 85

Xpi1) ® 85)
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as Aj(Xl, [P ,X;, ‘e ,Xp+1):£(Aj)(l‘1, ceey Ty ,$p+1). In addition,
Aj([Xi,Xk],Xl,...,X;,...,X,;,...,Xp_,_l) (13)
=LAj)([xi,or), .2, g, Tpgr), foralll <5 <m,
as [X;, Xi|=[zi,xx]®1. We substitute (12)-(13) in (11), to get
DA(Xl,...7Xp+1) :DA(I1®17,IP®1)
p+1 m 4
= S ) (LA @y Tp4)) O
2. 2. (14
i=1 j
+ZZ DFEL(A) ([, 28], - STy Ty, Tpg1) @ S
i<k g=1
In (14) we gather the terms corresponding at each s; and we obtain
DA(z1®1,...,2,®1) = Zd Y (@1, Tpr1) @ S5 (15)
On the other hand, applying (5) to D A, we obtain
DAz, ®1,...,2,®1) :Z J(@mel. . T,01)®s; (16)

j=1
By (6), DA)j(z1®1,...,2,® 1) =L((DA);) (z1,...,2p). Then from (15) and
(16), it follows L ((D A)j) = dL(A;) for each 1 < j < m. Therefore by (9), the

diagram (7) is commutative. O

3. The map 7 :C(g) > C(g®S)

Let C(g) be the set of cochains of g, i.e., C(g) = {C(g; V)|V is a g-module}. We
define amap 7 : C(g) = C(g ® S) by

T(CP(g; V) =CP(gS;V®S), forp>0, and (17)
T(V) =V®S, where V isa g-module.

From now on, we assume that z,z1,...,2p11 are in g; s,¢,t1,...,tp41 are in S; u
isin U,visin V, wis in W; U,V,W are finite dimensional g-modules. We also
consider any cochain A as in (5). For t1,...,t, in S, we write t = t1 - - -,,.

Given a linear map f : V — W, where V, W are in C(g), we shall define a linear
map T(f) : TU) — T(V). We shall consider four cases.
Case 1: Let f: CP(g; V) — CP(g; W) be a linear map. We define the linear map

T(f): CP(gaS;VRs) = CP(geS;W e S) by

THM (1@t 2y @) = Zf(ﬁ(/\j)) (21, mp) @558 (18)



104 ROSENDO GARCIA-DELGADO

Observe that by (5), we can write A as

A(:L‘l Ry, Xy ®tp) = ZAj(xl ®t1,...,$p®tp) X S,
j=1
where A; belongs to CP(g ® S, V) for all j. Since L£(A;) belongs to C?(g,V), it
makes sense to consider f(L£(A;)) in (18) above.
Case 2: Now consider p =0, f : V — W alinear map and v®s in C°(go8S; V®S) =
VoS Wedefine 7(f): VS —>Wae®S by

THwes)=fv)©s. (19)

In this case we also denote T(f) by f® S.
Case 3: Let f : V — CP(g; W) be a linear map. We define the linear map 7 (f) :
VesS—CP(gesS;Ves) by

T(Hw@s) (1 @t1,...,2p Dty) = f0)(21,...,2p) D L. (20)

Case 4: Let f: CP(g;V) — W be a linear map. We define the linear map T (f) :
CPgasS;VesS) »>WaeS by

THA) = FLA)) @514+ [(L(AR)) @ sm. (21)

Remark 3.1. If Id is the identity map on C?(g; V'), then 7 (Id) is not the identity
map on CP(g®S;V ® S). Indeed, let A be in CP(g ® S;V ® S). By definition of
L and (18), it follows

Id (,C(A])) (1’1, ce ,xp)®5j Z

NE

TIAA)(A) (21 &1, . .., 2, ®t,) =

. " (22)
= Z L(A;)(z1, ... ,xp)®sjf:ZAj(:r1®l, L 2,®@1)®@s; L.
j=1 j=1
Then T (Id)(A) = A if and only if
A(.’I}l ®t1,...7.'1,‘p®tp) :ZAJ(Z‘l@l,,xp@l)@Sj? (23)
j=1

As we mentioned in the introduction, we will determine the cohomology group
H(g® S;V ®S), where V is an irreducible g-module and g is a semisimple Lie
algebra (see Proposition 4.5). Apart from the fact that in this case H(g; V') = {0},
we find this case interesting to apply our results since the condition given in (23),

is exactly the fact that helps to determine the cohomology group H(g® S;V ® S).

In the next result, we prove that T preserves the composition of maps.
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Proposition 3.2. The cochain complexes maps [ : CP(g;V) — CP(g;V) and g :
CP(g; V) — CP(g; W) yield a map T (go f) from CP(g@8S; URS) to CP(g@8; W®S)
satistying T(f o g) =T (f) o T (g).

We shall verify that if f : &4 — V and g : V — W are maps in C(g), then
T(gof)=T(g)oT(f): TMU)— T(W). Several cases should be considered and
we only will prove one of them. The proof of the remaining cases uses the same

arguments.

Claim 1. Let f : CP(g;U) — CP(g; V) and g : CP(g; V') — CP(g; W) be maps, then
T(gof)=T(g)oT(f) is a map between CP(g@ S;U ® S) and CP(g@ S; W ® S).

Proof. Let A be in C?(g@S;U®RS), and ©=T (f)(A). By (18), we have
T(@)O) w1 ®tr,--ay @ty) = > g(L(O)))(w1,..,3) @558, (24)
j=1

where ©; = @; o T(f)(A) (see (5)). We claim that £(0;) = f(L(A;)). Indeed,
using the definition of £ and applying (18) to 7 (f)(A), we get

E(@j)($17...71’p) = @j(.’IJl ®1,...,.’Ep® ].)
=00 T(HA) (@1 ®1,...,2,®1)

= Z‘}j ( f(E(Ak)) (zla cee 7117p) & Sk> = f([,(AJ))(ZL‘l, ce ,a:p).
k

Then £(0;) = f(L(A;)), for all j. Substituting this in (24), we obtain

T(9)oT(f)(N)(@1®t1,...,2p®t,) => (g0 FLA)) (@1, ..., 2p) @5, L,
j=1
= T(g o f)(A)(CC1 Qty1,- - ,l'p®tp).
In the last step above we use (18). Thus T (go f)=T(g) o T(f). O

Proposition 3.3. Let f : C(g;V) — C(g;W) be a map of complexes, that is
dof = fod and f(CP(g;V)) C CP(g; W) for allp>0. Then T(f) : C(g®@ S;V ®
S) = C(g®S; W ®S8) is a map of complexes.

Proof. To shorten the length of expressions, we will use the notation:
xt=(21®¢%1,...,Tpt1 Qtpt1),
(xt)i= (@1 ®t1,...,2; @ty Tpp1 Qlpy1),
(xt)ij = (21 ®@t1,...,2; ;... (T @15, ., Tpt @ tpt1), (25)
X=(Z1,...,Tpt1), Xi = (T1,.0 5T Tpp1),

Xij = (xl,...,x;,...,x;,...,:pp_,_l).
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Let Abein CP(g@S;V®S), p > 0. We shall prove that Do7 (f)(A) = T(f)oDA.
Indeed, first we apply D to T(f)(A):

p+1
DT(f)(A)(xt) =D (=) Rw: @ ;) (T(£)(A)) ((xt),)

=1 (26)
Y DT (25 @ b, 25 ® 5], (xt), ;).

1<j
We write A and B to denote the first and second term in (26), respectively, i.e.,
DT(f)(A)(xt)=A+B. Applying (18) to T(f)(A) in A, we obtain

p+1 m

A =SS (DT R © 1) (FIE(AR)) () @ i i) (27)

1=1 k=1
wheret; =ty -+ -t;_1tir1 - tpe1. In (27) above, we apply R(z;®t;) to f(L(Ag))(x;)®
spti (see (1)), and we get

p+1 m

A= (D) pla) (f (£(A)) (%) @ s, (28)

i=1 k=1
because t=t;t;. Regarding to B, we fix i < j; by (25), we have
THA) ([zi @ ti, x5 @ 1], (x8)i )
(

=T (f)(A) ([zz,xj](@t tj, w1 @ty 1;Q0, ..., ;@15 ... ,asp+1®tp+1)
Zf ) ([, 5], %i ) @ st (we use (18))
k=1
because t = (tit;)(ty - t;--- t; - tps1). Hence,
B= ZZ D) £ (L(AR)) ([6, 25], %4 5) @ s . (29)
i<j k=1

From (28) and (29), it follows:
DT(f)(A)(xt)=A+B=3 d(f(L(Ar) (x) ® sil. (30)

By hypothesis, f is a map of complex, then fod = dof. By (8), d(L(Ax)) =
L((DA)g), then by (30), we get

DT Zf x) ® sit

=Y FULDAW) (x) @ st = T(f)(DA)(xt). (We use (18).)

k=1
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As A is arbitrary, it follows DoT (f)=T(f) o D. The proof of the case p = 0 uses

the same arguments. O

4. The map a: H(gS;VeS) > H(g; V) ®S

Let V be a g-module. We denote the group of cocycles and coboundaries of
C(g;V), by Z and B, respectively. The cohomology group of g with coefficients in
V is denoted by H(g; V). The quotient C(g;V')/B is denoted by Z’ and C(g;V)/Z
is denoted by B'.

By [4, Chapter IV, §23|, Z and B are g-modules, then Z’, B’ and H(g; V) are g-
modules. Moreover, as in the classical and standard way, the g-modules Z, B, Z’, B/
and H(g; V) will be regarded as modules with zero differentiation (see [2, Chapter
Iv, §1)).

Lemma 4.1. Forp=0, H(g@S;V ®8) = H(g; V) ® S.

Proof. For p =0, we have Z° = H%(g; V). Let ¥ be an element in H°(g ® S;V ®
S)CV®S. Wewrite 9 =v1 ® 81+ ... + U, ® S, where v; belongs to V for all
1 < j < m (see Proposition 2.1). Then

0=D@)(z®1) =R(x®1)(?)

= p(@)(01) ® 51+ -+ L) (O) © 5 (31)
=d(v)(z)®s1+ ...+ d(vm)(T) @ Sm.

Whence d(v;) = 0 and v; belongs to H"(g; V) for all j, which implies that © belongs
to H%(g; V) ® S. Hence, H(g @ S;V @ S) Cc H(g; V) @ S.

Let ¥ be in HO(g; V) ® S € V ® S. By Proposition 2.1, there are v, ..., v, in
HO(g; V) such that o = v1 @81+ ..+ 0, @ Spm. As each v; belongs to H%(g;v) = Z°,
then d(v;) = 0. Thus,

D(@)(z ®5) = R(z @ 5)(0) = Y R(z @ 5)(v; ® s)
Jj=1
m m
= p(@)(v;) ®ss; =Y d(v;)(w) @ s5; = 0.
, =

Jj=

=

Hence D(9) = 0, and ¥ is in HO(g ® S;V ® S). Therefore H(g @ S;V ®@ S) =
Ho(g; V)@ S. O

Let ¢ : Z — C(g; V) be the inclusion map. By (20), we get amap 7 (1) : 28 —
ClgeS;V®S). Since Z® S has zero differential, we can define a map ® from
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Z®Sinto H(gS;VRS), by
P: 2RSS — HEISVES)
z = T)(@)+BgasS;Ves).
Consider 7’ : C(g;V) — Z’ defined by n'(A\) = A + B. By (21), we get a map
Tr):CeaS;VeS) —» 2’ ®S. As 2’ ® S has zero differential, we can define a
map ¥ from H(g® S;V ® S) into 2’ @ S by

(32)

U: H(ERS;VRS) — 2Z2'’S8

(33)

A+ B(gas;VesS) — T ) (A=) (L(A;)+B)®s;.

VR

7j=1

We shall prove that ¥ is well-defined. Let o be in C(g® S;V ® S). Using (8) and
(21), as well as 7’ od = 0, we obtain
T(m")YDo)=7"(L(Dc)1)@s1+ ... +7 (L(D0)m)) @ $m
=7 (dL(c1) @81+ ...+ 7 (AdL(0Ww)) ® 8 = 0.
Then B(g® S;V ®S) C Ker(T (7)), hence ¥ is well-defined.
Let m# : Z — H(g;V) be the projection map and ¢/ : H(g;V) — Z’ be the

inclusion map. In the next result we will prove that there exists a surjective linear

map « between H(g® S;V ®S) and H(g; V) ® S.

Proposition 4.2. Let g® S be the current Lie algebra of g by S.

(i) For any g-module V, there exists a unique surjective linear map «:H(g ®
S;V®8)—=H(g;V)®S that makes commutative the diagram

T®S
208 —— " g V)eS (34)

«
P RS

Z'®S

HgoS;Ves)

(ii) Let f : C(g;V) — C(g; W) be a map of complexes and consider H(f) :
H(g; V) — H(g; W) the map induced by f, i.e., H(f)(A+ B) = f(\) + B.

Then the following diagram is commutative

H(T(f))
HERS;VRS) ————— H@ES;WeS) (35)

avl law
H(H)DS=T(H(F))
H(gV)@S H(gW) oS

where H(T (f)) is the map induced by T (f).
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Proof. (i) Let  : B — Z be the inclusion map and ¢ : Z’ — B’ be the map defined
by ((A+ B) = A+ Z. We have the following short exact sequences

J ¢

0 —— H(g;V) z' B’ 0,

n ™

0 B Zz H(g; V) — 0.

Since § is finite dimensional, the following sequences are exact
/RS (®S
0 —H(gV)S —2'0S — B S ——0,

S T
0—>BwS % 208 ™% 3 V)08 —— 0.

Whence, 7 ® S is surjective and «/ ® S is injective. Since ' o = 7’ 0 ¢, Proposition

3.2 leads to the commutativity of the following diagram:

Z®S T UGV eS (36)
m)i lu@s
T(x') )
Cla®S;Ves) 2'®S

By (32) and (33), we have the commutative diagram

0 (37)
29S8 S HgV) S 0
@l \LL'@S
HeoS;Ves) — 2'e8

If o and o' make commutative the diagram (37), then (' ® S)oa = (V/ ® S)od/.

As /' ® S is injective, it follows o = o'.
Claim 2. Forp=0,a: H(gS;V®S) — H(g,V) ® S is the identity map.

Proof. For p =0, T(1) =t ® S because 1 : Z° — C°(g; V) and V = C%(g; V) (see
(19)). Then Im(7(+)) =Im(t ®S) =2 @S =H(g; V) 2 S=H' (g S;V ® S).
Hence, by (32), ®: Z2°® S — H(g®@ S;V ® S) is the identity map.

Similarly for p = 0, ' : C(g; V) — 2’ is the identity, as C°(g,V) = V and 2=
V. Since both V and Z’ have zero differential, by (19), T (7') = Idy ®S = Idygs
is the identity on V ®S. Therefore, U0 : H%(g2S;V ©S)— Z’° ® S is the inclusion
(see (33)).
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For p=0,the map 7® S : Z2°® S — H(g;V) ® S is the identity, as Z° =
HO(g, V). Similarly, / © S : HO(g; V) ® S — 2° ® S is the inclusion map, as
2" =C%g,V)/B(g,V) = V.

In summary, for p = 0, we have that ®° and 7 ® S are the identity maps while
U0 and / ® S are the inclusion maps. Since any map that makes commutative (34)

is unique, we deduce that « is the identity for p = 0. O

Now we shall consider p > 0. If Im(¥) C Im (// ® S) = Ker (( ® S), then there
exists a map a between H(g®S; V@ S) and H(g; V) ® S. We shall now prove this

assertion.
Claim 3. The composition (( ® S) o ¥ is zero.

Proof. For p > 0, let A be in CP(g® S;V ® S) such that DA = 0. By (8), L(A;)
belongs to Z for all j. By (19) and (33), we have

(R8)oV(A+BeeS;VRS))
=(C®8) (LA)+B)@s1+ ...+ (LAL) +B) @ sp,)
=(LA)+2)@s1+ ...+ (LAm) + 2) @ 51, = 0.

Then the composition (¢ ® S) o ¥ is zero for p > 0. Using a similar argument, it is
proved that ((® S)o ¥ =0 for p = 0. O

Claim 4. There exists a linear map a : H(gQS;VRS) — H(g; V) ®S that makes

commutative the diagram (34).

Proof. Since Im(¥) C Ker(( ® §) = Im(/ ® S) (see Claim 3), for each A in
H(g®S;V ®S), there exists 0 in H(g; V) ® S such that ¥(A) = (/ ® S) (#). Since
(' ® 8 is injective, # is unique.

Define a: H(g®@ S;V ®S) — H(g; V) ® S, by a(A) =0, then ¥ = (// @ S) o a.
Since /@S is injective, Ker(a) = Ker(¥). As (37) is commutative, (¢/®S)o(ao @)=
(! ®S8)o(r®S). Hence, o ® =7 ® S and a makes commutative the diagram

(34). O
Claim 5. Themap a: H(g® S;V®S) = H(g; V) ® S is surjective.

Proof. Let 6 be in H(g; V) ® S. Since 7 ® S is surjective, there exists pin Z2® S
such that (71 ® S) () = 6. Let A = ®(u), then a(A) = (o ®)(p) = (T®S) (1) = 6.

Whence, « is surjective. O

For p > 0, we shall give an explicit description of the map . Let A+B(gS;V®
S)bein H(gRS; V®S), where Aisin CP(gS;VRS). As a(A+B(goS;V®Ss))
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belongs to H(g; V) ® S, by Proposition 2.1, there are p; in Z such that
aA+B(goS;VeS)=(u1+B)@s1+ -+ (im + B) @ s (38)

By (34), (/ ® 8) oa = ¥, and using (21) and (33) it follows that:
(V@8)oa(A+B(gaS;Ves) =Y A+Beos;Ves))

(39)
=(LAMA)+B)®@s1+ ...+ (LAR) + B) @ sm-
Applying /' ® S to (38) we get
(' ®@8)oa(A+BgesS;Ves))
(40)

=(/®S8) (Z(u]+8 ®sj) Z (1; + B) @ s;.
j=1

j=1
From (39) and (40), it follows pu; + B = L(A;) + B for all j. Hence, by (38), we
obtain
aA+B(gaS;VesS)=(LNM)+B)@si+...+ (L(An) +B) @ sp,.  (41)
(ii) We shall prove that if f : C(g; V) — C(g; W) is a map of complexes, then
the following diagram is commutative:

H(T(f))
HeS;VesS) —>HEaS;,WeSs) (42)

i T(H(F)) i
H(gV) oS ———————=H(g;W)® S

where T(H(f)) = H(f) ® S. Let f': Z'(g; V) — Z'(g; W) be the map induced
by f, ie, ff(A+B) = f(A\) + B. Then 7' o f = f' on’. Since diagram (34) is
commutative, (33) implies that:
(' @8) o (aw o H(T(f))
=((V®8)oaw) o H(T(f)) =V oH(T(f)) =T(f)o V.
By (19), T(f") = f'®S and by (34), ¥ = (/ ® S) ocay. In addition, T(/') =/ ®8
and since f is a map of complexes, it follows that ' o H(f) = f' o /. Hence:
T(f)o¥=T(f)o(T(\)oay)=(T(f)oT())oay
=T (f'o)oay =T (VoH(f)) ocay (44)
=((VoH(f)) @S)oay = (' @S) o (H(f)®S)oay).

As / ® S is injective, from (43) and (44), we deduce that aw o H(T(f)) =
(H(f) ® 8) o ay. Whence, the diagram (42) is commutative. O

(43)
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Let R? = {0} and for each p > 0, define R? as the subspace of CP(g®@ S;V ®8)
generated by all the cochains © satisfying ©(z1 ® 1,...,2, ®1) = 0. Let R =
®p>0RP and define Q by

Q=Z@eS;VRS) NR+BES;V®S))/BlgesS;Vas). (45)
Now we shall state the main result of this work.

Theorem 4.3. Let g be a Lie algebra and let S be an m-dimensional, associative
and commutative algebra with unit, over a field F. Let g ® S be the current Lie
algebraof g by S. Let o : H(g®S;V®S) — H(g; V)RS be the map of Proposition
4.2. Then the following short sequence is exact

L

0 Q HegRS;VeS) —s H(g;V)®S — 0, (46)

where ¢ is the inclusion map and Q is the subspace defined in (45).

Proof. By (3), observe that a cochain © belongs to R if and only if ©,(z1 ®
1,...,2,®1) = L(O;)(x1,...,2p) =0, for all j. Then © is in R if and only if O,
belongs to Ker(£) for all j.

In the proof of Claim 4, we showed that Ker(a) = Ker(¥). We claim that
Ker(¥) = Q. First we assume that p > 0. Let A+ B(g® S;V ® S) be in Ker(¥).
We will find a cochain © in R such that A+B(g®S;V®S) =0+B(gesS;Ves).
Indeed, by (33), we have

‘1/(1\+B(9®S;V®5))=i(ﬁ(/\j)+B)®Sj =0. (47)

j=1
Then £(A;) belongs to B for all j. Hence, there exists 6; in C?~!(g; V) such that
L(A;) = db;. For each j, define A; in CP~1(geS; V) by

Aj(x1 ®t1,.. ., Tpo1 Qtp_1) =wq (b1 tp_1) 0 (z1,. .., Tp_1).
Then L£(A;) = 0; (see (6)). Let A in CP~1(g® S;V @ S) be defined by
AXy, oo Xpo1)=A1(X1, o, Xpm1) @514 A (X, -, Xpo1) @ S
where X1,..., X, are in g® S. From (8), we have
L(A;)=do; =d(L(A;) = L(DA);), foralll1<j<m.

Then there exists ©; in Ker(£) such that A; = (DA); +©;. Let © in C?(g ®
S;V ®S) be defined by

@(Xl,...,Xp) :el(Xl,...,Xp)®Sl+...+6m(X1,...7Xp)®Sm,
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for all Xq,...,X, in g® 8. Since A; = (DA); + 0, for each j, A = DA+ 0O
(see (5)). Since ©; belongs to Ker(L), © belongs to R and A+B(g@ S; Ve S)=
O+B(g®S;V ®S) belongs to Q.

Since DA =0, DO = 0. Therefore A+ B(gS;V®S)=0+BgeS;Vas)
belongs to Q, which proves that Ker(a) C Q.

Now we affirm O C Ker(a). Let O + B(g® S;V ® S) be in Q, where O is in
ZEeS;VRS)NR. AsO(z1®1,...,2, ®1) = 0, then ©; belongs to Ker(L)
for all j. By (47), we have that © + B(g ® S;V ® S) belongs to Ker(¥) = Ker(a).
Then Ker(a) = Q. Since « is surjective, we deduce that the short exact sequence
(46) is exact for p > 0.

For p = 0, we have Q" = {0}, because by hypothesis, R’ = {0}. In Lemma 4.1,
we showed that H(g® S;V ®S) = H%(g; V) ® S while in Claim 2, we proved that
«a is the identity. Therefore, Ker(a) = {0} = Q% and the sequence (46) is exact for
p=0. [l

Corollary 4.4. Let g be a Lie algebra and let S be a finite dimensional, associative
and commutative algebra with unit over a field F. Let V be a g-module. Then
H(g® S;V ®S) is isomorphic to H(g; V) ® S if and only if

ZPgS, VRS) NRP C B (g S;V®S), forallp>0. (48)

Proof. By Theorem 4.3, we know Ker(«) = Q. By (45), it is clear that Q = {0}
if and only if (48) holds. Observe that for p = 0, Q° = 0 by definition. Moreover,
we proved that H(g ® S;V ® S) = H%(g; V) ® S (see Lemma 4.1) and that « is
the identity map (see Claim 2). O

4.1. Current Lie algebras over semisimple Lie algebras. In the next result,
we will determine the cohomology group H(g ® S;V ® S), where g is a semisimple
Lie algebra and V is an irreducible g-module. It is a well known result that in this
case H(g; V) = {0} (see [4, Theorem 24.1]). We shall use this fact in proving the

following:

Proposition 4.5. Let g be a semisimple Lie algebra and V' an irreducible g-module.
Let S be a finite dimensional, associative and commutative algebra with unit over
a field F of zero characteristic. Then H(g® S;V® S)=0.

Proof. As H(g; V) = {0}, by Theorem 4.3, we get H(g® S;V ® S) = Q. Now we
shall verify this result without using Theorem 4.3.

Let A+ B(g®S;V®S)bein H(g®S;V®S). Then DA =0and &;0DA =
(DA); = 0 for all j. By Proposition 2.2, 0 = L((DA);) = d(£(A;)), which
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implies that £(A;) belongs to Z = B. Hence, there exists p; in C(g; V') such that
L(A;) =dp;. Then by (6), we have

Aj(z1®1,...,2p,®1) =dpj(z,...,2p), foralll<j<m. (49)

Let Qin C(g® S;V ® S) be defined by
Q1 @t1,...,xp @ tp) Zﬂ] (21,...,2p) @ 851, (50)

where t = t1---ty. We claim that

m

DQ(z1 ®t1,...,Tp Dtp) Zd,u] T1,...,T )®sjf. (51)

Indeed, if we write  as in (5), we obtain

QU @ty @ty) =Y Qi1 Dty,..., 2, Dty) @ 5. (52)

Using (50), (52) and the definition of £, it follows L£(;)(x1,...,2p) = Q,(x1 ®
1,...,2, @ 1) =p;(z1,...,xp), then L(2;)=p;. From (50), this implies that

Qw1 @ty @tp) =Y Q21 @1,...,2,01) ® st. (53)
j=1

On the other hand, by (8), we get
L((DQ);)=dL() =dp; forall 1 <j<m. (54)

By Remark 3.1 and (53), we deduce that 7 (Id)(2) = Q. Then by Proposition 3.3,
DQ=DT7(Id)(2) = T(Id)(D Q). Hence by (18) and (54),

Qa1 @ ta,..., 2y @t,) = TADMD Q) (21 @ L1, ..., 2y @ 1,))

:Zﬁ((DQ)j)(ml,...7xp)®sj?=Zduj(ml,...,wp)@)sjf,

Jj=1 j=1
which proves (51). Let © = A — D Q. By (49) and (51), we obtain

Oz ®1,...,2,®1)=Az1®1,...,2,®1) = DQz1 ®1,...,2,® 1)
Z (1®1,...,2,01)Qs; — Zd,ujarl,...,xp)(@sj:O.

Then © + B(g® S;V ®S) belongs to Q and H(gR S;V ® S) = Q. O
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