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Abstract. Let σ = {σi | i ∈ I} be some partition of the set P of all primes,

and σ(n) = {σi | i ∈ I, σi ∩ π(n) ̸= ∅} for any integer n. A group G is

called σ-primary if either G = 1 or |σ(G)| = 1. A group G is σ-nilpotent if

(H/K)⋊ (G/CG(H/K)) is σ-primary for every chief factor H/K of G. In this

note, we prove that G is σ-nilpotent if and only if G is a σ-full group and

π(|xy|) = π(|x||y|) for any two elements x, y ∈ G such that σ(|x|)∩ σ(|y|) = ∅.
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1. Introduction

Throughout this note all considered groups are finite and G will always denote

a finite group. It is well-known that if G is nilpotent, then |ab| = |a||b| whenever
a, b ∈ G have co-prime orders, where |x| denotes the order of x in G. Conversely,

Baumslag and Wiegold [3] proved that G is nilpotent if |ab| = |a||b| for any a, b ∈
G with co-prime orders. Bastos and Shumyatsky [2] got a similar sufficient and

necessary condition for the nilpotency of the commutator subgroup G′. Bastos,

Monetta and Shumyatsky [1] proved that the kth term of the lower central series

of a finite group G is nilpotent if and only if |ab| = |a||b| for any k-commutators

a, b ∈ G of coprime orders. More results can be found in [6,7,8]. In this note, we

shall generalizes these results to finite σ-nilpotent groups.

Let the symbol π(n) denote the set of all primes dividing n; as usual, π(G) =

π(|G|), the set of all primes dividing the order of G. Let σ = {σi | i ∈ I} be some

partition of the set P of all primes, that is,

P =
⋃
i∈I

σi and σi ∩ σj = ∅ for all i ̸= j.
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We put σ(n) = {σi | σi ∩ π(n) ̸= ∅, i ∈ I} and σ(G) = σ(|G|). Without loss of a

generality, we always assume that σ(G) = {σ1, . . . , σt}.
A group G is called σ-primary [10] if either G = 1 or |σ(G)| = 1. G is σ-nilpotent

[4] if (H/K)⋊ (G/CG(H/K)) is σ-primary for every chief factor H/K of G.

A set S of Sylow subgroups of G is called a complete set of Sylow subgroups of

G if S contains exact one Sylow p-subgroup of G for every prime p ∈ π(G). By

analogy with it, we say that a set H = {H1, . . . ,Ht} of Hall subgroups of G, where

Hi is σ-primary (i = 1, . . . , t), is a complete Hall σ-set of G if gcd(|Hi|, |Hj |) = 1

for all i ̸= j and π(G) = π(H1)∪ · · · ∪π(Ht) (see [11,12,13]). Following [4], a group

G is a σ-full group if it possesses a complete Hall σ-set.

Our main results are as follows.

Theorem 1.1. Let G be a finite group. Then G is σ-nilpotent if and only if G is

a σ-full group and π(|xy|) = π(|x||y|) for any two elements x, y ∈ G such that

σ(|x|) ∩ σ(|y|) = ∅.

Applying Theorem 1.1, the following theorem is immediately as |xy| = |x||y|
implies that π(|xy|) = π(|x||y|).

Theorem 1.2. Let G be a finite group. Then G is σ-nilpotent if and only if G is

a σ-full group and |xy| = |x||y| for any two elements x, y ∈ G such that

σ(|x|) ∩ σ(|y|) = ∅.

Remark 1.3. Let G = A5 be the alternating group of degree 5 and

σ = {σ1 = {2, 3}, σ2 = {5}, . . .}.

Then G is a σ-full group. Let H1
∼= A4 be a Hall σ1-subgroup of G and H2 be

a Sylow 5-subgroup of G. Then H = {H1, H2} is a complete Hall σ-set of G.

However, G is not σ-nilpotent.

All unexplained notations and terminologies are standard and can be found in

[5,9,14].

2. Proof of Theorem

Lemma 2.1. [10] A group G is σ-nilpotent if and only if G has a complete Hall

σ-set H = {H1, . . . ,Ht} such that G = H1 × · · · ×Ht.

Proof of Theorem 1.1. Suppose that G is a σ-nilpotent group, then G has a

complete Hall σ-set H = {H1, . . . ,Ht} such that G = H1× · · ·×Ht by Lemma 2.1.
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Thus, G is a σ-full group and xy = yx for any two elements x, y ∈ G such that

σ(|x|) ∩ σ(|y|) = ∅. By well-known results, we get that |xy| = |x||y|. In particular,

π(|xy|) = π(|x||y|).
Conversely, suppose that G is a σ-full group and satisfies the theorem hypothesis.

Let H = {H1, . . . ,Ht} is a complete Hall σ-set of G. Without loss of a generality,

we can assume that Hi is a Hall σi-subgroup of G, respectively.

First, we claim that G = H1 · · ·Ht. We do this by counting the number of

elements on the right-hand side. Suppose that hi, ki are elements of Hi for i =

1, 2, . . . , t, and suppose that we have an equality

h1h2 · · ·ht = k1k2 · · · kt.

Write x = k1 · · · kt−1 and y = kth
−1
t ∈ Ht, then σ(|x|) ⊆ {σ1, . . . , σt−1} and

σ(|y|) ⊆ {σt}. Consequently, we see that σ(|x|) ∩ σ(|y|) = ∅. Thus, if y ̸= 1, then

π(|xy|) = π(|x||y|) by hypothesis. Let g = xy. Then π(|g|) ∩ σt ̸= ∅. On the other

hand, observe that

g = xy = k1k2 · · · kth−1
t = h1h2 · · ·ht−1.

Applying theorem hypothesis again, we know that π(|g|)∩σt = ∅ which is a contra-

diction. So we get y = 1 and hence ht = kt. By induction, we get hi = ki for any

i = 1, . . . , k. Thus, a count of the number of elements in the product H1H2 · · ·Ht

shows that there are as many of them as there are elements in G. Therefore, we

get that G = H1H2 · · ·Ht.

In the following, we show that every subgroup Hi is normal in G. For any

h ∈ H, g ∈ G, we have |hg| = |h|, in particular, π(|hg|) = π(|h|) ⊆ σ1. By above

arguments, we know that G = H1H2 · · ·Ht. So we can let

hg = h1h2 · · ·ht, where hi ∈ Hi for any i = 1, 2, . . . , t.

Since |hg| is a σ1-number, the hypothesis implies that

π(|h1||h2| · · · |ht|) = π(|hg|) = π(|h|) ⊆ σ1.

This leads to π(|h2|) = . . . = π(|ht|) = ∅ and hence h2 = . . . = ht = 1. So we get

hg = h1 ∈ H1. Therefore, H1 is normal in G. Moreover, we can get that every Hi

is normal in G. Hence G = H1 × H2 × · · · × Ht. Applying Lemma 2.1, we know

that G is σ-nilpotent. The proof of theorem is completed. □
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