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Abstract. In this paper, we further study many new characterizations of

SEP elements in a ring with involution. Firstly, combining Moore-Penrose

invertible element, group invertible element, we find some PE elements to

characterize SEP elements and then further discover some equivalent condi-

tions for SEP elements especially around the element aa∗a+a. Mainly, by

constructing some equations in a given set including a+, a∗, (a#)∗, a+a, aa+,

we obtain a lot of new characterizations of SEP elements. Next, we study

the expression forms of related bivariate equations to depict SEP elements.

Finally, we use nil-cleanity of the element aa∗a+a to link SEP elements with

PE elements.
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1. Introduction

The study of generalized inverse problems has expanded from linear operators

to operator algebras, C∗-algebras, and semigroups and rings, the produced con-

ceptions like EP elements, PI elements, PE elements and so on play key roles in

the development of generalized inverse in a ring. Numerous challenges in systems

and control theory necessitate the addressing of associated equations. The paper

aims to discuss the solution of some related equations to further characterize SEP

elements.

An involution a 7−→ a∗ in a ring R is an anti-isomorphism of degree 2, that is,

(a∗)∗ = a; (a+ b)∗ = a∗ + b∗; and (ab)∗ = b∗a∗. In this case, R is called a ∗-ring.
We know that a ∈ R satisfying a2 = a is called an idempotent element. The set

of all idempotent elements will be denoted by E(R).

An element a ∈ R is called Hermitian if a∗ = a [14], and a is called a projection

if a2 = a = a∗. We denote the set of all projections of R by PE(R).
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An element a ∈ R is called Moore-Penrose invertible if there exists x ∈ R

satisfying the following equations:

axa = a, xax = x, (ax)∗ = ax, (xa)∗ = xa;

such an x is the uniquely determined Moore-Penrose inverse (or MP-inverse) of a

[3,4], denoted by x = a+. The set of all Moore-Penrose invertible elements of R

will be denoted by R+.

Let a ∈ R. Then a is called group invertible if there exists x ∈ R satisfying

axa = a, xax = x, ax = xa;

such an x is uniquely determined group inverse of a (see [5,8,9]), written x = a#.

Denote by R# the set of all group invertible elements of R.

An element a ∈ R satisfying a = aa∗a is called partial isometry of R [3,4]. Let

RPI denote the set of all partial isometries of R. Obviously, we have that a ∈ R+

is a partial isometry if and only if a∗ = a+.

Let a ∈ R# ∩ R+. If a# = a+, then a is called an EP element. We denote the

set of all EP elements in R by REP . On the studies of EP , the readers can refer

to [1,4,6,7,10,14,15,16,17].

If a ∈ REP ∩RPI , then a is said to be a strong EP element of R [3,4,14,19,20].

Let RSEP denote the set of all SEP elements of R.

In [14,17], Mosic and Djordjevic give many characterizations of SEP elements,

we have learned some equivalent conditions for SEP elements. In [18], many new

characterizations of strongly EP elements have been presented. Then many re-

searchers characterize SEP elements by constructing related equations. In [19], it

is known that a ∈ R# ∩ R+ is SEP if and only if the equation yxa∗ = yxa# has

at least one solution in a given set χ2
a =: {(x, y)|x, y ∈ χa}. In [11], it is shown the

basic solution formula of the bivariate equation xa+(a#)∗ = aa+y. In [2], Guan

uses core invertible elements to characterize and discuss the solution of xa∗ = a#○x.

In [12,13], the forms of solutions of parametric equations in a certain given set is

proved.

Motivated by these results, this paper mainly study the further characterizations

of SEP elements by PE elements.

2. Characterizing SEP elements by projections

Theorem 2.1. Let a ∈ R#∩R+. Then a ∈ RSEP if and only if aa∗a+a ∈ PE(R).
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Proof. “ =⇒ ” If a ∈ RSEP , then a+ = a∗ = a#, this gives that

aa∗a+a = aa#a+a = a#a = a+a ∈ PE(R).

“ ⇐= ” From the assumption, we have

aa∗a+a = aa∗a+a2a∗a+a,

and

aa∗a+a = (aa∗a+a)∗ = a+a2a∗ = a+aa+a2a∗ = a+a2a∗a+a.

Multiplying the last equality on the right by (a#)∗a+a, one has a = a+a2. Hence

a ∈ REP and

a = aa+a = a(a∗a+a(a#)∗a+)a = aa∗a+a2a∗a+a(a#)∗a+a = aa∗a+a2 = aa∗a.

It follows that a ∈ RPI . Thus a ∈ RSEP . □

Noting that a ∈ PE(R) if and only if a∗ ∈ PE(R). Hence, Theorem 2.1 implies

the following corollary.

Corollary 2.2. Let a ∈ R#∩R+. Then a ∈ RSEP if and only if a+a2a∗ ∈ PE(R).

Since e ∈ R is a projection if and only if e = ee∗, this induces

Corollary 2.3. Let a ∈ R# ∩ R+. Then a ∈ RSEP if and only if a+a2a∗ =

a+a2a∗aa∗a+a.

Lemma 2.4. Let e ∈ R. Then e ∈ RHer if and only if e− ee∗ ∈ RHer.

Proof. “ =⇒ ” It is evident because e = e∗.

“ ⇐= ” Assume that e− ee∗ ∈ RHer. Then

e− ee∗ = (e− ee∗)∗ = e∗ − ee∗.

This gives e = e∗ and so e ∈ RHer. □

Lemma 2.4 and Corollary 2.2 imply the following theorem.

Theorem 2.5. Let a ∈ R# ∩ R+. Then a ∈ RSEP if and only if a+a2a∗ ∈ E(R)

and a+a2a∗ − a+a2a∗aa∗a+a ∈ RHer.

Theorem 2.6. Let a ∈ R#∩R+. Then a ∈ RSEP if and only if aa∗a#a ∈ PE(R).

Proof. “ =⇒ ” Since a ∈ RSEP , a+ = a# and aa∗a+a ∈ PE(R) by Theorem 2.1.

Hence, aa∗a#a ∈ PE(R).

“ ⇐= ” Using the hypothesis, one gets

aa∗a#a = (aa∗a#a)∗ = (aa#)∗aa∗ = ((aa#)∗aa∗)aa+ = (aa∗a#a)aa+.
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Multiplying the equality on the left by a#(a+)∗a+, one yields a# = a#aa+. Hence

a ∈ REP by [14, Theorem 1.2.1], this infers aa∗a+a = aa∗a#a ∈ PE(R). By

Theorem 2.1, a ∈ RSEP . □

Since aa∗a+a = aa∗a∗(a+)∗, it follows that for a ∈ RPI , one gets aa∗a+a =

aa+a+(a+)∗. Thus, Theorem 2.1 implies the following result.

Theorem 2.7. Let a ∈ R# ∩ R+. Then a ∈ RSEP if and only if aa+a+(a+)∗ ∈
PE(R).

Proof. We only show “ ⇐= ”. From the hypothesis, we have

aa+a+(a+)∗ = aa+a+(a+)∗(aa+a+(a+)∗)∗.

Multiplying the equality on the left by aa∗a(aa#)∗, we get

a = (a+)∗aa+.

Hence, a∗ = aa+a+ by [14, Theorem 1.5.3], a ∈ RSEP . □

According to [14, Theorem 2.1.1], a ∈ REP if and only if aa+a+ = a#. Thus we

have

Corollary 2.8. Let a ∈ R#∩R+. Then a ∈ RSEP if and only if a#(a+)∗ ∈ PE(R).

Theorem 2.9. Let a ∈ R# ∩R+. Then a ∈ RSEP if and only if a#(a+)∗ ∈ E(R)

and a#(a+)∗ − a#(a+)∗a+(a#)∗ ∈ RHer.

Proof. “ =⇒ ” Assume that a ∈ RSEP . Then a#(a+)∗ ∈ PE(R) by Corollary 2.8,

this implies

a#(a+)∗ ∈ E(R) ∩RHer.

By Lemma 2.4, one gets a#(a+)∗ − a#(a+)∗a+(a#)∗ ∈ RHer.

“ ⇐= ” The condition a#(a+)∗ − a#(a+)∗a+(a#)∗ ∈ RHer gives

a#(a+)∗ − a#(a+)∗a+(a#)∗ = (a#(a+)∗ − a#(a+)∗a+(a#)∗)∗,

this induces

a#(a+)∗ = (a#(a+)∗)∗.

Noting that a#(a+)∗ ∈ E(R). Then a#(a+)∗ ∈ PE(R) and so a ∈ RSEP by

Corollary 2.8. □
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3. Some equivalent conditions for SEP elements

Lemma 3.1. Let a ∈ R# ∩R+. Then

(1) (aa∗a+a)# = aa#(a#)∗a+aa#;

(2) (aa∗a+a)+ = (a#)∗a+;

(3) aa∗a+a ∈ REP if and only if a ∈ REP ;

(4) aa∗a+a ∈ RSEP if and only if aa∗ = (a#)∗a+.

Proof. (1) and (2) can be verified routinely.

(3) “ =⇒ ” Since aa∗a+a ∈ REP , (aa∗a+a)# = (aa∗a+a)+. By (1) and (2), one

obtains

aa#(a#)∗a+aa# = (a#)∗a+.

Multiplying the equality on the left by a∗a+a, one gets a+aa# = a+. Hence,

a ∈ REP by [14, Theorem 1.2.1].

“ ⇐= ” Assume that a ∈ REP . Then a+ = a#, it follows that

aa#(a#)∗a+aa# = aa#(a+)∗a+aa+ = (a+)∗a+ = (a#)∗a+.

By (1) and (2), aa∗a+a ∈ REP .

(4) “ =⇒ ” Since aa∗a+a ∈ RSEP if and only if aa∗a+a ∈ REP and (aa∗a+a)∗ =

(aa∗a+a)+, it follows that

aa∗ = (aa∗)∗ = (aa∗a+a)∗ = (aa∗a+a)+ = (a#)∗a+.

“ ⇐= ” The condition aa∗ = (a#)∗a+ leads to

a+a2a∗ = a+a(a#)∗a+ = (a#)∗a+ = aa∗

and

a = aa∗(a+)∗ = a+a2a∗(a+)∗ = a+a2.

Hence, a ∈ REP , one has

(aa∗a+a)∗ = (aa∗)∗ = aa∗ = (a#)∗a+ = aa#(a#)∗a+aa# = (aa∗a+a)#.

Thus aa∗a+a ∈ RSEP . □

Corollary 3.2. Let a ∈ R# ∩ R+. Then aa∗a+a ∈ RSEP if and only if aa∗a =

(a#)∗.

Proof. “ =⇒ ” Since aa∗a+a ∈ RSEP , a ∈ REP and aa∗ = (a#)∗a+ by Lemma

3.1. Hence,

aa∗a = (a#)∗a+a = (a+)∗a+a = (a+)∗ = (a#)∗.
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“ ⇐= ” Using the assumption, one gets

(a#)∗ = aa∗a = (aa∗a)a+a = (a#)∗a+a,

and

a# = a+aa#.

Hence, a ∈ REP , it follows that aa∗ = aa∗aa+ = (a#)∗a+. By Lemma 3.1,

aa∗a+a ∈ RSEP . □

Corollary 3.3. Let a ∈ R# ∩ R+. Then a ∈ RSEP if and only if a ∈ RPI and

aa∗a+a ∈ RSEP .

Proof. “ =⇒ ” Since a ∈ RSEP , a ∈ RPI and a+ = a# = a∗, this gives

(a#)∗ = a = aa∗a.

By Corollary 3.2, aa∗a+a ∈ RSEP .

“ ⇐= ” Since a ∈ RPI , aa∗a+a ∈ RSEP , by Corollary 3.2, one gets

a = aa+a = aa∗a = (a#)∗.

Hence, a ∈ RSEP . □

Theorem 3.4. Let a ∈ R# ∩R+. Then the following are equivalent:

(1) a ∈ RSEP ;

(2) aa#(a#)∗a+aa# = aa+;

(3) aa#(a#)∗a+aa# = a+a;

(4) a+aa#(a#)∗a+aa# = a+;

(5) (a#)∗a+aa# = aa+;

(6) a+aa# = a∗.

Proof. (1) =⇒ (2) Since a ∈ RSEP , aa∗a+a ∈ RSEP by Corollary 3.3. Using

Lemma 3.1, one gets

aa#(a#)∗a+aa# = (aa∗a+a)# = (aa∗a+a)+ = (a#)∗a+ = aa+.

(2) =⇒ (3) From aa#(a#)∗a+aa# = aa+, one obtains

aa+ = (aa#(a#)∗a+aa#)a+a = aa+a+a.

Hence, a ∈ REP , this gives

aa#(a#)∗a+aa# = aa+ = a+a.

(3) =⇒ (4) The condition aa#(a#)∗a+aa# = a+a gives

a+a = aa#a+a = aa#.
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Hence, a ∈ REP , which infers a+ = a+a+a. Thus,

a+aa#(a#)∗a+aa# = a+a+a = a+.

(4) =⇒ (5) From a+ = a+aa#(a#)∗a+aa#, one yields

a+ = a+aa#,

so a ∈ REP and

a+ = a+aa#(a#)∗a+aa# = a+(a#)∗a+aa#,

aa+ = aa+(a#)∗a+aa# = a+a(a#)∗a+aa# = (a#)∗a+aa#.

(5) =⇒ (6) Since aa+ = (a#)∗a+aa#, we get

a∗ = a∗aa+ = a∗(a#)∗a+aa# = a+aa#.

(6) =⇒ (1) From the assumption a+aa# = a∗, one has

aa∗ = aa+aaa# = aa#.

Hence, a ∈ RSEP by [14, Theorem 1.5.3]. □

Theorem 3.5. Let a ∈ R#∩R+. Then a ∈ RSEP if and only if (a#a)∗aa# = aa∗.

Proof. “ =⇒ ” Assume that a ∈ RSEP . Then (a#)∗a+aa# = aa+ by Theorem

3.4. Noting that a+ = a∗. Then

(aa#)∗aa# = (a#)∗a∗aa# = (a#)∗a+a# = aa+ = aa∗.

“ ⇐= ” From the equality (aa#)∗aa# = aa∗, one has

a∗ = a+aa∗ = a+(aa#)∗aa# = a+aa#.

Hence, a ∈ RSEP by Theorem 3.4. □

Lemma 3.6. Let a ∈ R# ∩ R+. Then (a#a)∗aa# ∈ REP with ((a#a)∗aa#)+ =

a+a2a+a+a.

Proof. It is a routine to verify. □

Theorem 3.7. Let a ∈ R# ∩R+. Then a ∈ RSEP if and only if ((a#a)∗aa#)+ =

aa∗a+a.
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Proof. “ =⇒ ” Since a ∈ RSEP , a ∈ REP and aa# = aa+ = aa∗. Hence,

((a#a)∗aa#)+ = (a#aaa#)+ = (aa#)+ = (aa+)+ = aa+ = aa∗ = aa∗a+a.

“ ⇐= ” From the equality ((a#a)∗aa#)+ = aa∗a+a, we get

(a#a)∗aa# = (aa∗a+a)+ = (a#)∗a+.

Multiplying the equality on the left by a∗, we obtain

a∗aa# = a+.

Hence, a ∈ RSEP by [14, Theorem 1.5.3]. □

4. Characterizing SEP elements by the solution of equations in a given

set

Lemma 4.1. Let a ∈ R# ∩R+. Then a ∈ RSEP if and only if (a+)∗a+a+ = a+.

Proof. “ =⇒ ” Since a ∈ RSEP , (a+)∗ = a, a+ = a#. Hence

(a+)∗a+a+ = aa+a# = a# = a+.

“ ⇐= ” From (a+)∗a+a+ = a+, we have

a∗ = a+aa∗ = (a+)∗a+a+aa∗ = (a+)∗a+a∗,

and

(aa#)∗ = (a+)∗a+a∗(a#)∗ = (a+)∗a+.

Hence, a ∈ REP by [14, Theorem 1.1.3] and a∗ = a∗(aa#)∗ = a∗(a+)∗a+ = a+.

Thus a ∈ RSEP . □

Observing Theorem 3.4, we can construct the following equation:

aa#(a#)∗xa# = x. (4.1)

Theorem 4.2. Let a ∈ R# ∩ R+. Then a ∈ RSEP if and only if Eq.(4.1) has at

least one solution in Ωa = {a+, a∗, (a#)∗, a+a, aa+}.

Proof. “ =⇒ ” Since a ∈ RSEP , a+ = a∗ = a#. Obviously, Eq.(4.1) has at least

one solution in Ωa = {a+, a∗, (a#)∗, a+a, aa+}.
“ ⇐= ” (1) If x = a+ is the solution of Eq.(4.1), then

aa#(a#)∗a+a# = a+.

Multiplying the equality on the right by a+a, we obtain

aa#(a#)∗a+a#a+a = a+a+a.
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Noting that a#a+a = a#, so

a+a+a = a+.

Then, a = a+aa, multiplying the equality on the right by a#a#, we obtain

a# = a+aa#.

Hence, a ∈ REP by [14, Theorem 1.2.1]. It follows that aa#(a#)∗ = aa#(a+)∗ =

(a+)∗. From aa#(a#)∗a+a# = a+, we get

(a+)∗a+a+ = a+.

Hence, a ∈ RSEP by Lemma 4.1.

(2) If x = a∗ is the solution of Eq.(4.1), then

aa#(a#)∗a∗a# = a∗.

Multiplying the equality on the right by a+a, one obtains a∗ = a∗a+a. We apply

the involution to the equality, and then we conclude a = a+a2. Hence, a ∈ REP by

the proof of Theorem 4.2(1). This gives a# = at and a∗ = aa#(a#)∗a∗a# imply

a∗ = aa#(a#)∗a∗a# = (aat)(aat)∗a# = (aat)(aat)∗a# = (aa#)(aa#)a#.

It yields a∗ = a#. Thus a ∈ RSEP .

(3) If x = (a#)∗ is the solution of Eq.(4.1), then

aa#(a#)∗(a#)∗a# = (a#)∗.

Multiplying the equality on the right by a+a, we obtain (a#)∗ = (a#)∗a+a. Apply-

ing the involution on the equality, one yields a# = a+aa#. Hence, a ∈ REP by [14,

Theorem 1.2.1]. From aa#(a#)∗(a#)∗a# = (a#)∗, we get (a#)∗(a#)∗a+ = (a#)∗

and

a∗ = a∗a∗(a#)∗ = a∗a∗(a#)∗(a#)∗a+ = a+.

Hence, a ∈ RSEP .

(4) If x = a+a is the solution of Eq.(4.1), then a ∈ RSEP by Theorem 3.4.

(5) If x = aa+ is the solution of Eq.(4.1), then a ∈ RSEP from Theorem 3.4. □

Revising Eq.(4.1) as follows

aa#(a#)∗xa+ = x. (4.2)

Theorem 4.3. Let a ∈ R# ∩ R+. Then a ∈ RSEP if and only if Eq.(4.2) has at

least one solution in χa ∪ {a+a} = {a, a#, a+, a∗, (a+)∗, (a#)∗, a+a}.
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Proof. “ =⇒ ” Since a ∈ RSEP , a+ = a∗ = a#. Clearly, x = a∗ is a solution to

Eq.(4.2).

“ ⇐= ” (1) If x = a, then

aa#(a#)∗aa+ = a.

Multiplying the equality on the right by aa+, we obtain a = a2a+. Hence, a ∈ REP

by [14, Theorem 1.2.1]. From aa#(a#)∗aa+ = a, we get

a = aa#(a#)∗aa+ = aa#(a+)∗aa+ = (a+)∗aa+ = (a#)∗aa+ = (a#)∗.

Hence, a ∈ RSEP .

(2) If x = a#, then

aa#(a#)∗a#a+ = a#.

Multiplying the equality on the right by aa+, we obtain a# = a#aa+. Hence, a ∈
REP by [14, Theorem 1.2.1]. From aa#(a#)∗a#a+ = a#, we get a+ = (a+)∗a+a+.

Hence, a ∈ RSEP by Lemma 4.1.

(3) If x = a+, then

aa#(a#)∗a+a+ = a+.

Multiplying the equality on the left by aa#, we obtain aa#a+ = a+. Hence, a ∈
REP by [14, Theorem 1.2.1]. Hence, x = a+ = a#, by (2), a ∈ RSEP .

(4) If x = a∗, then aa#(a#)∗a∗a+ = a∗, e.g.,

aa#a+ = a∗.

Hence, a ∈ REP by [14, Theorem 1.5.3].

(5) If x = (a+)∗, then

aa#(a#)∗(a+)∗a+ = (a+)∗.

Multiplying the equality on the right by aa+, we obtain (a+)∗ = (a+)∗aa+. We take

∗ to the last equality, one yields a+ = aa+a+. Hence, a ∈ REP by [14, Theorem

1.2.1]. From aa#(a#)∗(a+)∗a+ = (a+)∗, we get (a+)∗(a+)∗a+ = (a+)∗. Applying

the involution and Lemma 4.1, one yields a ∈ RSEP .

(6) If x = (a#)∗, then

aa#(a#)∗(a#)∗a+ = (a#)∗.

Multiplying the equality on the left by aa#, we obtain

aa#(a#)∗ = (a#)∗.

By [14, Theorem 1.1.3], a ∈ REP . Hence, x = (a#)∗ = (a+)∗, by (5), a ∈ RSEP .
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(7) If x = a+a, then aa#(a#)∗a+aa+ = a+a, e.g.,

aa#(a#)∗a+ = a+a.

Multiplying the equality on the right by aa+, we obtain aa+ = a+a2a+. Hence,

a ∈ REP by [14, Theorem 1.2.1]. From aa#(a#)∗a+aa+ = a+a, we get (a+)∗a+ =

a+a. This gives

aa∗ = ((a+)∗a+)+ = (a+a)+ = a+a.

Hence, a ∈ RSEP by [14, Theorem 1.5.3]. □

Multiplying Eq.(4.1) on the left by a#, we get

a#(a#)∗xa# = a#x. (4.3)

Theorem 4.4. Let a ∈ R# ∩ R+. Then a ∈ RSEP if and only if Eq.(4.3) has at

least one solution in Ωa\{a+a}.

Proof. “ =⇒ ” Since a ∈ RSEP , a+ = a∗ = a#. Obviously, x = a+ is a solution to

Eq.(4.3).

“ ⇐= ” (1) If x = a+, then

a#(a#)∗a+a# = a#a+.

Multiplying the equality on the right by a+a, we obtain

a#a+a+a = a#a+.

Multiplying the last equality on the left by a+a2, we get a+a+a = a+. Hence,

a ∈ REP . From a#(a#)∗a+a# = a#a+, we get

a+(a+)∗a+a+ = a+a+.

This gives

(a+)∗a+a+ = aa+(a+)∗a+a+ = aa+a+ = a+.

Hence, a ∈ RSEP by Lemma 4.1.

(2) If x = a∗, then

a#(a#)∗a∗a# = a#a∗.

Multiplying the equality on the right by a+a, we obtain

a#a∗a+a = a#a∗.

Multiplying the equality on the left by a+a2, we obtain

a∗a+a = a+a2(a#a∗a+a) = a+a2a#a∗ = a∗.



132 XINRAN WANG, YAN JI AND JUNCHAO WEI

This infers a = a+a2. Hence, a ∈ REP by [14, Theorem 1.2.1]. From a#(a#)∗a∗a# =

a#a∗, we get

a+(a+)∗a∗a+ = a+a∗,

e.g., a+a+ = a+a∗ = a#a∗. Hence, a ∈ RSEP by [14, Theorem 1.5.3].

(3) If x = (a#)∗, then

a#(a#)∗(a#)∗a# = a#(a#)∗.

Multiplying the equality on the right by a+a, we obtain

a#(a#)∗ = a#(a#)∗a+a.

Multiplying the last equality on the left by a+a2, we obtain

(a#)∗ = (a#)∗a+a.

This implies that a# = a+aa#. Hence, a ∈ REP by [14, Theorem 1.2.1]. From

a#(a#)∗(a#)∗a# = a#(a#)∗, we get

a+(a+)∗(a+)∗a+ = a+(a+)∗,

and

(a+)∗(a+)∗a+ = aa+(a+)∗(a+)∗a+ = aa+(a+)∗ = (a+)∗.

Applying the involution, one gets (a+)∗a+a+ = a+. Hence, a ∈ RSEP by Lemma

4.1.

(4) If x = aa+, then

a#(a#)∗aa+a# = a#aa+.

Multiplying the equality on the right by a+a, we get

a#aa+ = a#aa+a+a.

Multiplying the last equality on the left by a+a, we obtain a+a+a = a+. Hence,

a ∈ REP . From a#(a#)∗aa+a# = a#aa+, we get

a+(a+)∗a+ = a+.

This gives

(a+)∗ = aa+(a+)∗a+a = aa+a = a.

Hence, a ∈ RSEP . □

a#(a#)∗x = x. (4.4)

Theorem 4.5. Let a ∈ R# ∩ R+. Then a ∈ RSEP if and only if Eq.(4.4) has at

least one solution in Ωa \ {aa+}.
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Proof. “ =⇒ ” Since a ∈ RSEP , x = a+ = a∗ = a# is a solution to Eq.(4.4).

“ ⇐= ” (1) If x = a+, then

a#(a#)∗a+ = a+.

Multiplying the equality on the right by aa∗a+a, we get a#a+ = a∗a+. Hence,

a ∈ RSEP by [14, Theorem 1.5.3].

(2) If x = a∗, then

a#(a#)∗a∗ = a∗.

This gives

a#a+ = a#(a#)∗a∗a+ = a∗a+.

Hence, a ∈ RSEP .

(3) If x = (a#)∗, then

a#(a#)∗(a#)∗ = (a#)∗.

It follows that

a#(a#)∗a∗ = a#(a#)∗(a#)∗a∗a∗ = (a#)∗a∗a∗ = a∗.

Hence, a ∈ RSEP by (2).

(4) If x = a+a, then

a#(a#)∗a+a = a+a.

One gets

a#(a#)∗a∗ = a#(a#)∗a+aa∗ = a+aa∗ = a∗.

Hence, a ∈ RSEP by (2). □

(a#)∗xa# = x. (4.5)

Theorem 4.6. Let a ∈ R# ∩ R+. Then a ∈ RSEP if and only if Eq.(4.5) has at

least one solution in χa ∪ {aa+} = {a, a#, a+, a∗, (a+)∗, (a#)∗, aa+}.

Proof. “ =⇒ ” Since a ∈ RSEP , a = (a#)∗. Obviously, Eq.(4.5) has at least one

solution x = a in χa.

“ ⇐= ” (1) If x = a, then

(a#)∗aa# = a.

It follows that

a∗ = (aa#)∗a#.

By multiplying the equality on the right by a+a, we arrive at a∗a+a = a∗. Applying

the involution to both sides again leads to a+aa = a. Hence, a ∈ REP by [14,



134 XINRAN WANG, YAN JI AND JUNCHAO WEI

Theorem 1.2.1]. From (a#)∗aa# = a, we get (a+)∗ = (a+)∗aa# = (a#)∗aa# = a,

then a ∈ RPI by [14, Theorem 1.5.1]. Hence, a ∈ RSEP by [14, Theorem 1.5.3].

(2) If x = a#, then

(a#)∗a#a# = a#.

This gives

a = a#a2 = (a#)∗a#a#a2 = (a#)∗aa#.

By (1), a ∈ RSEP .

(3) If x = a+, then

(a#)∗a+a# = a+.

Multiplying the equality on the right by a+a, we get a+a+a = a+. Hence, a ∈ REP

by [14, Theorem 1.2.1]. Hence x = a+ = a#, by (2), a ∈ RSEP .

(4) If x = a∗, then

(a#)∗a∗a# = a∗.

By multiplying the equality on the right by a+a, we obtain

a∗a+a = a∗.

Therefore, we conclude that a ∈ REP . By [14, Theorem 1.1.3],

a∗ = (a#)∗a∗a# = aa#a# = a#.

Hence, a ∈ RSEP .

(5) If x = (a+)∗, then

(a#)∗(a+)∗a# = (a+)∗.

Applying the involution, one gets

(a#)∗a+a# = a+.

By (3), a ∈ RSEP .

(6) If x = (a#)∗, then

(a#)∗(a#)∗a# = (a#)∗.

Applying the involution, one obtains

(a#)∗a#a# = a#.

Hence a ∈ RSEP by (2).

(7) If x = aa+, then (a#)∗aa+a# = aa+. Noting that (a#)∗aa+ = (a#)∗ and

a# = aa+a#. Then

a# = aa+a# = (a#)∗aa+a#a# = (a#)∗a#a#.

Hence a ∈ RSEP by (2). □
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5. Characterize SEP elements by the solution of bivariate equations

From Eq.(4.5), we construct the following bivariate equations.

(a#)∗xa# = y. (5.1)

Theorem 5.1. Let a ∈ R# ∩ R+. Then the general solution to Eq.(5.1) is given

by x = p+ u− aa+uaa+

y = (a#)∗pa#
, where p, u ∈ R. (5.2)

Proof. First the formula (5.2) is the solution to Eq.(5.1). In fact,

(a#)∗xa# = (a#)∗(p+ u− aa+uaa+)a# = (a#)∗pa# = y.

Next, let x = x0

y = y0
(5.3)

be any solution to Eq.(5.1). Then

(a#)∗x0a
# = y0.

Choose p = aa+a∗y0a
2a+, and u = x0. Then

aa+uaa+ = aa+x0aa
+ = aa+a∗((a#)∗x0a

#)a2a+ = aa+a∗y0a
2a+ = p,

it follows that

x0 = p+ x0 − aa+uaa+ = p+ u− aa+uaa+.

Also,

(a#)∗pa# = (a#)∗aa+a∗y0a
2a+a# = (aa#)∗y0aa

# = (aa#)∗((a#)∗x0a
#)aa# = (a#)∗x0a

# = y0.

Hence, the general solution to Eq.(5.1) is provided by the formula (5.2). □

Theorem 5.2. Let a ∈ R# ∩ R+. Then a ∈ RSEP if and only if the general

solution to Eq.(5.1) is given byx = p+ u− aa+uaa+

y = (a#)∗pa∗
, where p, u ∈ R. (5.4)

Proof. “ =⇒ ” Since a ∈ RSEP , we have a∗ = a#. Obviously, the formula (5.2)

and the formula (5.4) are consistent. By Theorem 5.1, we are done.

“ ⇐= ” For the condition, one gets

(a#)∗(p+ u− aa+uaa+)a# = (a#)∗pa∗,
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i.e.,

(a#)∗pa# = (a#)∗pa∗

for any p ∈ R. Choosing p = a∗, one gets

(aa#)∗a# = a∗.

Applying the involution on the equality, one has

(a#)∗aa# = a.

By Theorem 4.6, a ∈ RSEP . □

Theorem 5.3. Let a ∈ R# ∩ R+. Then a ∈ RSEP if and only if the general

solution to Eq.(5.1) is given byx = p+ u− aa+uaa+

y = apa#
, where p, u ∈ R. (5.5)

Proof. “ =⇒ ” Given that a ∈ RSEP , we have a = (a#)∗. Clearly, the formula

(5.2) can be expressed as the formula (5.5), as desired by Theorem 5.1.

“ ⇐= ” From the condition, one obtains

(a#)∗(p+ u− aa+uaa+)a# = apa#,

e.g.,

(a#)∗pa# = apa#

for each p ∈ R. Choosing p = a. Then (a#)∗aa# = a. By Theorem 4.6, a ∈
RSEP . □

We change Eq.(5.1) as follows.

a(aa#)∗xa# = y. (5.6)

Theorem 5.4. Let a ∈ R# ∩ R+. Then the general solution to Eq.(5.6) is given

by x = p+ u− aa+uaa+

y = apa#
, where p, u ∈ R with a+p = a+a+ap. (5.7)

Proof. Since

a(aa#)∗xa# = a(aa#)∗(p+ u− aa+uaa+)a# = a(aa#)∗pa#

= a(aa#)∗aa+pa# = a(aa#)∗aa+a+apa# = a(aa#)∗a+apa# = apa# = y,

the formula (5.7) is the solution to Eq.(5.6).
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Now let x = x0

y = y0
(5.8)

be any solution to Eq.(5.6). It follows a(aa#)∗x0a
# = y0. Choose p = a+y0a, and

u = x0 − p. This gives

aa+uaa+ = aa+(x0 − p)aa+ = aa+x0aa
+ − aa+a+y0aaa

+

= aa+(aa#)∗x0a
#aaa+−aa+a+y0aaa

+ = aa+a+a(aa#)∗x0a
#aaa+−aa+a+y0aaa

+

= aa+a+y0aaa
+ − aa+a+y0aaa

+ = 0.

Hence x = p+ (x0 − p) = p+ u = p+ u− aa+uaa+. At the same time,

apa# = a(a+y0a)a
# = a(a+a(aa#)∗x0a

#)aa# = a(aa#)∗x0a
# = y0.

Consequently, the formula (5.7) offers the general solution to Eq.(5.6). □

Theorem 5.5. Let a ∈ R# ∩R+. Then a ∈ RSEP if and only if Eq.(5.1) has the

same solution as Eq.(5.6).

Proof. It is evident from Theorem 5.3 and Theorem 5.4. □

6. The solution to non-homogeneous bivariate equations

(a#)∗xa# − y = a+. (6.1)

Theorem 6.1. Let a ∈ R# ∩ R+. Then the general solution to Eq.(6.1) is given

by x = p+ u− aa+uaa+

y = (a#)∗pa# − a+
, where p, u ∈ R. (6.2)

Proof. Clearly, the formula (6.2) is the solution to Eq.(6.1).

Now assuming that x = x0

y = y0
(6.3)

represents any solution to Eq.(6.1), then we have

(a#)∗x0a
# − y0 = a+.

Choose p = a∗(a+ + y0)a, and u = x0 − p. Then we have

aa+x0aa
+ = aa+a∗((a#)∗x0a

#)a2a+ = aa+a∗(y0 + a+)a2a+ = aa+paa+.
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It follows that aa+uaa+ = 0. Hence

x0 = p+ (x0 − p) = p+ u = p+ u− aa+uaa+.

Also we have

(a#)∗pa# = (a#)∗a∗(a+ + y0)aa
# = a+aa# + (aa#)∗y0aa

#

= a+aa# + (aa#)∗((a#)∗x0a
# − a+)aa# = (a#)∗x0a

# = y0 + a+. □

This induces

y0 = (a#)∗pa# − a+.

Hence the general solution to Eq.(6.1) is given by (6.2).

Theorem 6.2. Let a ∈ R# ∩ R+. Then a ∈ RSEP if and only if the general

solution to Eq.(6.1) is given byx = p+ u− aa+uaa+

y = (a#)∗pa+ − a∗
, where p, u ∈ R. (6.4)

Proof. “ =⇒ ” Given that a ∈ RSEP , we have a+ = a∗ = a#. It’s evident that

the formula (6.2) can be expressed as the formula (6.4), as desired by Theorem 6.1.

“ ⇐= ” The condition implies

(a#)∗(p+ u− aa+uaa+)a# − ((a#)∗pa+ − a∗) = a+

for p ∈ R. Choose p = 0. Then one gets a+ = a∗ which follows that a ∈ RPI .

Choose p = a#. Then the equation becomes (a#)∗a#a# = (a#)∗a#a+, and

aa# = a3a+a∗(a#)∗a#a# = a3a+a∗(a#)∗a#a+ = aa+.

Thus a ∈ REP by [14, Theorem 1.2.1]. Therefore we deduce a ∈ RSEP . □

Revised Eq.(6.1) as follows:

(a#)∗xa+ − y = a∗. (6.5)

Similar to the proof of Theorem 6.1, we have the following theorem.

Theorem 6.3. Let a ∈ R# ∩ R+. Then the general solution to Eq.(6.5) is given

by x = p+ u− aa+ua+a

y = (a#)∗pa+ − a∗
, where p, u ∈ R. (6.6)

Theorem 6.4. Let a ∈ R# ∩R+. Then a ∈ RSEP if and only if Eq.(6.5) has the

same solution as Eq.(6.1).
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Proof. “ =⇒ ” Suppose that a ∈ RSEP . Then the formula (6.4) and the formula

(6.6) are the same, by Theorem 6.2 and Theorem 6.3, we are done.

“ ⇐= ” Indeed, x = a

y = (a#)∗ − a∗
(6.7)

clearly represents a solution to Eq.(6.5).

By the assumption, it is also a solution to Eq.(6.1). Hence we obtain

(a#)∗aa# − (a#)∗ + a∗ = a+.

Multiplying the equality on the right by aa+, one gets

(a#)∗aa# = (a#)∗.

This gives a ∈ REP by [14, Theorem 1.1.3] and

a+ = (a#)∗aa# − (a#)∗ + a∗ = a∗.

Therefore a ∈ RSEP . □

7. Using nil-cleanity of aa∗a+a to characterize SEP elements

Theorem 7.1. Let a ∈ R# ∩R+. Then a ∈ RSEP if and only if aa∗a+a = u+ p,

where u2 = 0, p ∈ PE(R), and pu = up = 0.

Proof. “ =⇒ ” Given that a ∈ RSEP , we know that aa∗a+a ∈ PE(R) by Theorem

2.1. Let’s choose u = 0 and p = aa∗a+a. Then, we have aa∗a+a = u + p, where

u2 = 0 and pu = up = 0.

“ ⇐= ” From the assumption, we have

aa∗a+ap = (u+ p)p = up+ p2 = p,

paa∗a+a = p(u+ p) = pu+ p2 = p.

Furthermore, we find

0 = u2 = (aa∗a+a−p)2 = (aa∗a+a)2−aa∗a+ap−paa∗a+a+p = aa∗a+a2a∗a+a−p.

Thus, we conclude that aa∗a+a2a∗a+a = p = paa∗a+a. Applying the involution to

the last equality, one gets

a+a2a∗a+a2a∗ = p = aa∗a+a2a∗a+a.

Then, we have

a+a2a∗a+a2a∗ = a+a2a∗a+a2a∗a+a.
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Multiplying a#a on the left of both sides, we get

aa∗a+a2a∗ = aa∗a+a2a∗a+a.

To proceed, multiply the equality by (a#)∗a+, we obtain a+a2a∗ = a+a2a∗a+a.

Finally, multiplying a+a#a on the left, one gets a∗ = a∗a+a, thus, a+aa = a.

Consequently, a ∈ REP . We have

aa∗aa∗ = aa∗a+a2a∗a+a = p = aa∗a+ap = aa∗p,

aa∗aa∗aa∗ = aa∗p = p = aa∗aa∗,

a∗aa∗aa∗ = a+aa∗aa∗aa∗ = a+aa∗aa∗ = a∗aa∗,

it follows by applying the involution to the last equality, one yields

aa∗aa∗a = aa∗a,

a∗aa∗ = a+(aa∗aa∗a)a+ = a+(aa∗a)a+ = a∗.

Hence a ∈ RPI , and so a ∈ RSEP . □

Theorem 7.2. Let a ∈ R# ∩R+. Then a ∈ RSEP if and only if aa∗a+a = u+ p,

where u2 = 1, up = pu = −p and 1− p = aa∗, p ∈ PE(R).

Proof. “ =⇒ ” Since a ∈ RSEP , we have aa∗a+a = aa+ by Theorem 2.1. Choose

u = 2aa+ − 1, p = 1− aa+ ∈ PE(R). Then

u2 = 1, up = aa+ − 1 = −p, pu = aa+ − 1 = −p, 1− p = aa+ = aa∗.

Clearly, aa∗a+a = u+ p.

“ ⇐= ” From the conditions, we have

aa∗a+ap = (u+ p)p = up+ p = −p+ p = 0,

paa∗a+a = p(u+ p) = p+ pu = p− p = 0,

and

1 = u2 = (aa∗a+a−p)2 = aa∗a+a2a∗a+a−aa∗a+ap−paa∗a+a+p = aa∗a+a2a∗a+a+p.

After applying the involution to the last equality, we obtain

aa∗a+a2a∗a+a = a+a2a∗a+a2a∗.

Similar to the proof of Theorem 7.1, we get a ∈ REP . This gives

aa∗ = aa∗a+a = u+ p,

and

aa∗aa∗ = (u+ p)2 = u2 + up+ pu+ p = 1− p− p+ p = 1− p = aa∗.
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This leads to

a = aa∗(a+)∗ = aa∗aa∗(a+)∗ = aa∗a.

In summary, a ∈ RSEP . □
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