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ABSTRACT. In this paper, we further study many new characterizations of
SEP elements in a ring with involution. Firstly, combining Moore-Penrose
invertible element, group invertible element, we find some PE elements to
characterize SEP elements and then further discover some equivalent condi-
tions for SEP elements especially around the element aa*a®a. Mainly, by
constructing some equations in a given set including a™,a*, (a#)*, ata,aat,
we obtain a lot of new characterizations of SEP elements. Next, we study
the expression forms of related bivariate equations to depict SEP elements.
Finally, we use nil-cleanity of the element aa*a*ta to link SEP elements with

PE elements.
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1. Introduction

The study of generalized inverse problems has expanded from linear operators
to operator algebras, C*-algebras, and semigroups and rings, the produced con-
ceptions like EP elements, PI elements, PE elements and so on play key roles in
the development of generalized inverse in a ring. Numerous challenges in systems
and control theory necessitate the addressing of associated equations. The paper
aims to discuss the solution of some related equations to further characterize SEP
elements.

An involution a — a¢* in a ring R is an anti-isomorphism of degree 2, that is,
(@*)* =a; (a+b)* = a* +b*; and (ab)* = b*a*. In this case, R is called a *-ring.

We know that a € R satisfying a® = a is called an idempotent element. The set
of all idempotent elements will be denoted by E(R).

An element a € R is called Hermitian if a* = a [14], and a is called a projection
if a> = a = a*. We denote the set of all projections of R by PE(R).
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An element a € R is called Moore-Penrose invertible if there exists x € R

satisfying the following equations:

axa = a, zar =z, (ax)* = ax, (xa)" = zq;
such an z is the uniquely determined Moore-Penrose inverse (or MP-inverse) of a
[3,4], denoted by @ = at. The set of all Moore-Penrose invertible elements of R
will be denoted by R™.
Let a € R. Then a is called group invertible if there exists x € R satisfying

ara =a, TAr =T, AT = Ta;

such an z is uniquely determined group inverse of a (see [5,8,9]), written z = a™.
Denote by R# the set of all group invertible elements of R.

An element a € R satisfying a = aa*a is called partial isometry of R [3,4]. Let
RPT denote the set of all partial isometries of R. Obviously, we have that a € R*
is a partial isometry if and only if a* = a™.

Let a € R*¥ N RT. If a# = a™, then a is called an EP element. We denote the
set of all EP elements in R by RFF. On the studies of EP, the readers can refer
to [1,4,6,7,10,14,15,16,17].

If a € RFP N RPT then a is said to be a strong EP element of R [3,4,14,19,20].
Let RSP denote the set of all SEP elements of R.

In [14,17], Mosic and Djordjevic give many characterizations of SEP elements,
we have learned some equivalent conditions for SEP elements. In [18], many new
characterizations of strongly EFP elements have been presented. Then many re-
searchers characterize SEP elements by constructing related equations. In [19], it
is known that @ € R# N Rt is SEP if and only if the equation yza* = yza® has
at least one solution in a given set x2 =: {(z,y)|z,y € Xa}. In [11], it is shown the
basic solution formula of the bivariate equation zat(a#)* = aa®y. In [2], Guan
uses core invertible elements to characterize and discuss the solution of za* = a®z.
In [12,13], the forms of solutions of parametric equations in a certain given set is
proved.

Motivated by these results, this paper mainly study the further characterizations
of SEP elements by PE elements.

2. Characterizing SEP elements by projections

Theorem 2.1. Let a € R*NRT. Thena € RSP if and only if aa*a®a € PE(R).
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Proof. “ = " If a € R%FP then a™ = a* = a¥, this gives that
aa*ata = aa*ata =a%a=ata € PE(R).
“ <=7 From the assumption, we have

aa*ata = aa*ata®a*ata,

and

aa*ata = (aa*aTa)* = ata®a* = ataaTd’a* = ata’a*aTa.

Multiplying the last equality on the right by (a#)*ata, one has a = a*a?. Hence
a € RFP and

+ .2

—+ * 4 * + 2 % + * 4 a:aa*a'

a=aa"a=a(a*aTa(a®)a")a = aa*aTa’a*ata(a®)*ata = aa*a
It follows that a € RL. Thus a € RFF. O

Noting that a € PE(R) if and only if a* € PE(R). Hence, Theorem 2.1 implies

the following corollary.
Corollary 2.2. Leta € R*NRT. Then a € R¥FF if and only if ata’a* € PE(R).
Since e € R is a projection if and only if e = ee*, this induces

Corollary 2.3. Let a € R* N RT. Then a € RSFF if and only if ata?a* =
ata’a*aa*aa.
Lemma 2.4. Let e € R. Then e € R7¢" if and only if e — ee* € RHe",

Proof. “ — 7 It is evident because e = e*.

“ <=7 Assume that e — ee* € R7e", Then

e—ee* =(e—ee*) =e" —ee”.

This gives e = e* and so e € R°", |
Lemma 2.4 and Corollary 2.2 imply the following theorem.

Theorem 2.5. Let a € R#* N RY. Then a € RSFY if and only if a*a’a* € E(R)

and ata’a* — ata’a*aa*ata € REe.
Theorem 2.6. Let a € R*NRY. Then a € R¥PT if and only if aa*a*a € PE(R).

Proof. “ = " Since a € RSFF a* = a# and aa*a*a € PE(R) by Theorem 2.1.
Hence, aa*a”a € PE(R).
“ <=7 Using the hypothesis, one gets

aa*a®a = (aa*a®a)* = (aa™)*aa* = ((aa™)*aa*)aa™ = (aa*a®a)aa™.
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Multiplying the equality on the left by a™ (a*)*a™, one yields a” = a”aa*t. Hence
a € RPP by [14, Theorem 1.2.1], this infers aa*ata = aa*a”a € PE(R). By
Theorem 2.1, a € RSFP. [

Since aa*ata = aa*a*(at)*, it follows that for a € RPL one gets aa*ata =

aa™a*(a™)*. Thus, Theorem 2.1 implies the following result.

Theorem 2.7. Let a € R* N RT. Then a € RSP if and only if aatat(a™)* €
PE(R).
Proof. We only show “ <= ". From the hypothesis, we have

aata®(a™)* = aatat(a)*(aaTat (aT)*)*.

Multiplying the equality on the left by aa*a(aa™)*, we get

a=(a")*aa™.

Hence, a* = aaTa™ by [14, Theorem 1.5.3], a € RFF. O

According to [14, Theorem 2.1.1], a € RFT if and only if aata® = a*. Thus we

have
Corollary 2.8. Leta € R*NR*. Thena € RSFL if and only if a* (a)* € PE(R).

Theorem 2.9. Let a € R* N RY. Then a € RSET if and only if a¥ (a*)* € E(R)
and a¥ (at)* — a¥ (at)*aT (a¥)* € RH®".

Proof. “ =" Assume that a € R¥®F. Then a* (a*)* € PE(R) by Corollary 2.8,
this implies
a*(a™)* € E(R) N RHe.
By Lemma 2.4, one gets a” (a*)* — a¥ (at)*a™ (a¥)* € RHeT,
“ <= " The condition a?(a*)* — a¥ (at)*a™ (a¥)* € RH®" gives
a*(a*)" — a*(a*) et (a¥)" = (a¥ (a*)" — ¥ (a*)"a" (a¥)")",
this induces
a*(a*)" = (a¥(a*)")".

Noting that a”(a*)* € E(R). Then a¥(a®)* € PE(R) and so a € RFF by
Corollary 2.8. O
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3. Some equivalent conditions for SEP elements

Lemma 3.1. Let a € R* N R*. Then
(1) (aa*a®a)” = aa” (a™)*ataa”;
(2) (aa*a®a)t = (a¥)*at;
(3) aa*ata € REY if and only if a € REY;
(4) aa*ata € REY if and only if aa* = (a¥)*a™t.

Proof. (1) and (2) can be verified routinely.
(3) “=="7 Since aa*ata € RFF (aa*ata)?” = (aa*ata)™. By (1) and (2), one
obtains

aa™ (a¥)*ataa® = (a™)*a™T.

Multiplying the equality on the left by a*a*a, one gets ataa® = a*. Hence,
a € RETY by [14, Theorem 1.2.1].
“ =" Assume that a € RFP. Then a™ = a#, it follows that

aa’ (a®)*aTaa® = aa” (a¥)*ataa™ = (a7)*aT = (a¥)*aT.

By (1) and (2), aa*a®a € RFF.
(4) “ =" Since aa*ata € R¥FT if and only if aa*ata € RPT and (aa*ata)* =

(aa*ata)™, it follows that
aa* = (aa*)* = (aa*ata)* = (aa*ata)t = (a¥)*a™.
“ <= " The condition aa* = (a*)*a™ leads to
ata?a* = ata(a®)*aT = (a¥)*at = aa*

and
+)* + 2 *(a+)* :a+a2'

a=aa*(a")" =a"a‘a

Hence, a € RFF | one has
(aa*ata)* = (aa®)* = aa* = (a¥)*a™ = aa® (a¥)*aTaa® = (aa*aa)*.
Thus aa*ata € RSP, O

Corollary 3.2. Let a € R* N R*. Then aa*ata € R if and only if aa*a =
(a¥)".

Proof. “ = 7 Since aa*ata € R a € RPP and aa* = (a”)*a* by Lemma
3.1. Hence,
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“ <=7 Using the assumption, one gets

(a®)* = aa*a = (aa*a)aTa = (a¥)*ata,
and
a* = ataa®.
Hence, a € RFF it follows that aa* = aa*aa™ = (a¥)*a*. By Lemma 3.1,
aa*ata € ROFP, O

Corollary 3.3. Let a € R* N RT. Then a € RYFT if and only if a € RY! and
aa*ata € ROFP,
Proof. “= " Since a € R°PF a € RP! and a* = a¥ = a*, this gives
(a®)* = a = aa*a.
By Corollary 3.2, aa*ata € RSEP.

“+=" Since a € R"!, aa*ata € RSP by Corollary 3.2, one gets

a=aata=aa*a = (a™)".

Hence, a € RSFP. O

Theorem 3.4. Let a € R# N RT. Then the following are equivalent:
1) a € RSEP’.
) aa®(a*)*ataa” = aa™;
) aa” (a™)*ataa” = ata;
4) ataa” (a™)*atTaa” = at;
) (a®)*ataa® = aa™;
) ataa” = a*.
Proof. (1) = (2) Since a € RFF aa*ata € RSFY by Corollary 3.3. Using
Lemma 3.1, one gets
aa” (a®)*aTaa® = (aa*a™a)* = (aa*aTa)" = (a¥)*at = aa™.
(2) = (3) From aa™(a”)*ataa® = aa*, one obtains
aat = (aa® (a®)*aTaa?)ata = aaTata.
Hence, a € RFP | this gives
aa® (a¥)*ataa® = aat = ata.
(3) => (4) The condition aa” (a*)*a*aa” = a*a gives

a+a = aa#a+a = aa#.
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Hence, a € RFP | which infers at = atata. Thus,
ataa” (a®)*ataa® = atata =at.
(4) = (5) From a* = a*aa™ (a?)*ataa®, one yields
at = ataa®,
so a € RFF and
at =ataa® (a®)*ataa® = ot (a®)*aTaa¥,
aat = aa®(a®)*aTaa® = aTa(a¥)*aTaa® = (™) aTaa®.
(5) = (6) Since aat = (a™)*ataa®, we get
a* = a*aa™ = a*(a”)*ataa® = ataa”.
(6) = (1) From the assumption a*aa® = a*, one has
aa* = aataaa® = aa¥.

Hence, a € RSP by [14, Theorem 1.5.3]. O

Theorem 3.5. Let a € R*NRY. Thena € RSFT if and only if (a¥a)*aa” = aa*.

Proof. “ = " Assume that a € R¥*F. Then (a*)*ataa” = aa™ by Theorem
3.4. Noting that a™ = a*. Then

(aa™)*aa® = (a¥)*a*aa® = (a*)*ata® = aat = aa*.
“ &= From the equality (aa”)*aa™ = aa*, one has
a* =ataa* = o (aa”)*aa” = aTaa®.
Hence, a € RSFP by Theorem 3.4. a

Lemma 3.6. Let a € R* N RT. Then (a¥a)*aa” € RFY with ((a*a)*aa®)t =
ata’atata.

Proof. It is a routine to verify. O

Theorem 3.7. Let a € R* N RY. Then a € R°FY if and only if ((a*a)*aa®)T =

aa*ata.
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Proof. “ =" Since a € R°FF, a € R¥? and aa” = aat = aa*. Hence,
((a*a)*aa®)t = (a¥aaa®)t = (aa™)" = (aa™) " = aa™ = aa* = aa*ata.
“ <=7 From the equality ((a#a)*aa®)* = aa*a*a, we get
(a”a)*aa” = (aa*ata)t = (a¥)*a™.
Multiplying the equality on the left by a*, we obtain

a*aa® =a™t.

Hence, a € RSP by [14, Theorem 1.5.3]. |

4. Characterizing SEP elements by the solution of equations in a given

set

Lemma 4.1. Let a € R* N RY. Then a € RSP if and only if (a*)*atat = at.

Proof. “ =" Since a € R¥E" (a™)* = a,a™ = a*. Hence

(aP)*aTat = aata® = a¥ =at.

and
(aa™)* = (aT)*aTa*(a®)* = (aT)*a™.
Hence, a € RFY by [14, Theorem 1.1.3] and a* = a*(aa?)* = a*(a™)*a™ = a*.
Thus a € RSFP. (]
Observing Theorem 3.4, we can construct the following equation:

aa™ (a?)*za® = . (4.1)

Theorem 4.2. Let a € R* N RY. Then a € RSP if and only if Eq.({.1) has at

least one solution in Q, = {a*,a*, (a¥)*,aTa,aa™}.

Proof. “ = " Since a € R¥¥P at = a* = a”. Obviously, Eq.(4.1) has at least
one solution in Q, = {a*,a*, (a¥)*,a*a,aa*t}.
“«=7 (1) If z = a* is the solution of Eq.(4.1), then

aa®(a*)*ata? =a™.
Multiplying the equality on the right by a*a, we obtain

aa® (a¥)*ata®ata = atata.
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Noting that a#a*a = a¥, so

Then, a = ataa, multiplying the equality on the right by a#a#, we obtain
a® = ataa”.
Hence, a € REF by [14, Theorem 1.2.1]. It follows that aa” (a¥)* = aa™(a™)* =
(at)*. From aa™ (a®)*ata” = at, we get
(aH)*atat =at.

Hence, a € R°FP by Lemma 4.1.
(2) If © = a* is the solution of Eq.(4.1), then

aa™ (a®)*a*a® = a*.

Multiplying the equality on the right by ata, one obtains a* = a*ata. We apply

the involution to the equality, and then we conclude a = ata?. Hence, a € RFF by

the proof of Theorem 4.2(1). This gives a” = a! and a* = aa™ (a™)*a*a? imply
a* = aa® (a™)*a*a” = (aa')(aa)*a” = (aal)(aa)*a” = (aa®)(aa™)a™.

It yields a* = a#. Thus a € RSFP.
(3) If x = (a™)* is the solution of Eq.(4.1), then

aa® (a™)* (a™)*a® = (a™)*.

Multiplying the equality on the right by a*a, we obtain (a#)* = (a¥)*a*a. Apply-
ing the involution on the equality, one yields a# = ataa?. Hence, a € RFF by [14,
Theorem 1.2.1]. From aa™ (a™)*(a?)*a® = (a¥)*, we get (a™)*(a™)*a™ = (a¥)*
and

a* =a*a*(a”)* = a*a*(a™)* (a¥)*at = a™.
Hence, a € RSP,

(4) If # = a™a is the solution of Eq.(4.1), then a € RSP by Theorem 3.4.
(5) If = aa™ is the solution of Eq.(4.1), then a € R¥FF from Theorem 3.4. O

Revising Eq.(4.1) as follows
aa™ (a?)*za™ = x. (4.2)

Theorem 4.3. Let a € R* N RY. Then a € RSFY if and only if Eq.({.2) has at

least one solution in x, U {ata} = {a,a”, at,a*, (a*)*, (a¥)*, ata}.
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Proof. “ =" Since a € R°PF ot = a* = a¥. Clearly, z = a* is a solution to
Eq.(4.2).
“<="7 (1) If z = a, then

aa™ (a®)*aa™ = a.

Multiplying the equality on the right by aa™, we obtain a = a%a™. Hence, a € RFF
by [14, Theorem 1.2.1]. From aa™ (a™)*aa™ = a, we get

a = aa” (a®)*aa™ = aa® (a™)*aa™ = (aT)*aa’ = (a¥)*aa™ = (a¥)*.

Hence, a € RSEP.
(2) If 2 = a¥, then
aa (a®)*a?at = a?.
Multiplying the equality on the right by aa™, we obtain a# = a”aa™t. Hence, a €
REP by [14, Theorem 1.2.1]. From aa™ (a*)*a”a™ = a¥, we get a* = (aT)*ata™.
Hence, a € RSP by Lemma 4.1.
(3) If z = a™, then
aa®(a¥)*aTat =at.
Multiplying the equality on the left by aa®, we obtain aa#a™ = a*. Hence, a €
REP by [14, Theorem 1.2.1]. Hence, z = a® = a¥, by (2), a € R¥FF.
(4) If x = a*, then aa™ (a™)*a*at = a*, e.g.,

aa®at = a*.
Hence, a € RFF by [14, Theorem 1.5.3].
(5) If z = (a™)*, then
aa® (a®)*(at)*at = (at)*.
Multiplying the equality on the right by aa™, we obtain (a™)* = (a™)*aa™. We take
* to the last equality, one yields a™ = aa*a*t. Hence, a € R¥? by [14, Theorem

1.2.1]. From aa™(a?)*(at)*a®™ = (a*)*, we get (at)*(at)*at = (a)*. Applying

the involution and Lemma 4.1, one yields a € RSFP.

(6) If z = (a™)*, then
aa™ (a®)*(a™)*a = (a¥)*.
Multiplying the equality on the left by aa®, we obtain
aa® (a™)* = (a¥)*.

By [14, Theorem 1.1.3], a € RFP. Hence, = (a¥)* = (a™)*, by (5), a € RSFP,
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(7) If = a*ta, then aa™ (a™)*ataa™ = a*ta, e.g.,
aa®(a¥)*aT =ata.
Multiplying the equality on the right by aa™, we obtain aa™ = aTa?a™. Hence,
a € REF by [14, Theorem 1.2.1]. From aa® (a#)*ataa® = a*a, we get (a*)*a™ =
ata. This gives
aa* = ((a™)*a™)" = (ata)" =aTa.

Hence, a € RSP by [14, Theorem 1.5.3]. O

Multiplying Eq.(4.1) on the left by a#, we get

a? () za® = a¥x. (4.3)

Theorem 4.4. Let a € R* N RT. Then a € RSEY if and only if Eq.(4.3) has at

least one solution in Q,\{a"a}.

RSEP ot = g* = a#. Obviously, = a* is a solution to

Proof. “= " Since a €
Eq.(4.3).
“«=7 (1) If z =a", then

a(a®)*ata® = a¥at.

Multiplying the equality on the right by a*a, we obtain

a#a+a+a = a#cﬁ.

Multiplying the last equality on the left by aTa?, we get atata = a*. Hence,
a € RFP. From a#(a¥)*ata” = a”at, we get
+(a*)*atat = atat.

a (a

This gives
(a™)*atat =aat(a")*aTat =aaTat =a™.
Hence, a € RSP by Lemma 4.1.
(2) If © = a*, then
a*(a?)*a*a® = a¥a*.
Multiplying the equality on the right by a*a, we obtain

a*a*aTa = a’a*.

Multiplying the equality on the left by ata?, we obtain

a*ata =aTa*(a¥a*ata) = ata®aTa* = a*.
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This infers a = ata?. Hence, a € RFF by [14, Theorem 1.2.1]. From a¥ (a¥)*a*a# =
a*a*, we get
at(aM)*a*a™ =aTa*,
e.g., atat = ata* = a¥a*. Hence, a € RSFP by [14, Theorem 1.5.3].
(3) If z = (a™)*, then

a® (a®)*(a¥)*a® = o™ (a¥)*.

Multiplying the equality on the right by a*a, we obtain
a?(a”)* = a¥ (a¥)*ata.
Multiplying the last equality on the left by a™a?, we obtain
(a®)* = (a™)*a"a.

This implies that a# = ataa®. Hence, a € REF by [14, Theorem 1.2.1]. From
a” (a™)*(a™)*a” = a” (a™)*, we get

a+(a*) (@*)at = at(at)”,
and

(a)*(aM)*a™ = aat(a)*(aT)*at = aa™ (aT)* = (aT)*.
Applying the involution, one gets (a*)*a*a™ = a*. Hence, a € RSP by Lemma
4.1.
(4) If z = aa™, then
a”(a¥)*aa*a” = a*aa’.

Multiplying the equality on the right by a¥a, we get
+ — otaatat

a#aa aa a  a.

Multiplying the last equality on the left by a™a, we obtain atata = a*. Hence,

a € REY. From a¥ (a¥)*aaTa¥ = a*aa™, we get

at(at)*a™ =at.
This gives
(a™)x =aa™(a")*a"a =aa"a = a.
Hence, a € RSEP. O
at (a®)'z = . (4.4)

Theorem 4.5. Let a € R* N RY. Then a € RSFP if and only if Eq.(4{.4) has at

least one solution in Q, \ {aa™}.
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Proof. “=" Since a € R°FF z =at = a* = a¥ is a solution to Eq.(4.4).
“«=7 (1) If z =a", then
a(a®)*aT =a™.
Multiplying the equality on the right by aa*ata, we get a¥*at = a*at. Hence,

a € RSEP by [14, Theorem 1.5.3].
(2) If © = a*, then

This gives

Hence, a € RSEP.

(3) If z = (a™)*, then

It follows that

Hence, a € R9FF by (2).
(4) If = ata, then

One gets
a?(a¥)*a* = a¥ (a®)*aTaa* = aTaa* = a*.

Hence, a € RSEF by (2). O

(a¥)*za® = x. (4.5)

Theorem 4.6. Let a € R* N RT. Then a € RSEY if and only if Eq.(4.5) has at

least one solution in x, U {aat} = {a,a”, at,a*, (a®)*, (a¥)*, aat}.

Proof. “ = " Since a € R¥FF a = (a™)*. Obviously, Eq.(4.5) has at least one
solution x = a in x,.
“<=7 (1) If z = a, then
(a™)*aa™ = a.
It follows that
a* = (aa™)*a®.
By multiplying the equality on the right by a™a, we arrive at a*ata = a*. Applying

the involution to both sides again leads to a*aa = a. Hence, a € REF by [14,
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Theorem 1.2.1]. From (a#)*aa” = a, we get (a*)* = (aT)*aa” = (a¥)*aa” = a,
then a € R”! by [14, Theorem 1.5.1]. Hence, a € R¥FF by [14, Theorem 1.5.3].
(2) If 2 = a¥, then

This gives
a=a"a® = (a¥)*a”a”a® = (a™)*aa®.
By (1), a € RSFP.

(3) If z = a™, then
(a®)*ata® =a™.

Multiplying the equality on the right by ata, we get aTa*a = at. Hence, a € RFP
by [14, Theorem 1.2.1]. Hence = a* = a¥, by (2), a € R°FF.
(4) If 2 = a*, then
(a®)*a*a® = a*.
By multiplying the equality on the right by a™a, we obtain
a*aTa =a".
Therefore, we conclude that a € R¥P. By [14, Theorem 1.1.3],
at = (a#)*a*a# = aa*a? = a”.
Hence, a € RSEP,
(5) If z = (a™)*, then
(a®)*(a*) a® = (a*)".
Applying the involution, one gets
(a®)*aTa® =a™t.
By (3), a € RSFP.
(6) If z = (a™)*, then
(@®)*(a®)*a® = (a™)".
Applying the involution, one obtains
(a®)*a*a? = a¥.
Hence a € RSEP by (2).
(7) If 2 = aa™, then (a™)*aata® = aa™. Noting that (a*)*aat = (a*)* and
a” = aa*a®. Then

a* = aata® = (a¥)*aaTa?a? = (a¥)*a¥ .

Hence a € RET by (2). O
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5. Characterize SEP elements by the solution of bivariate equations
From Eq.(4.5), we construct the following bivariate equations.
(a®)*za® = y. (5.1)

Theorem 5.1. Let a € R# N RT. Then the general solution to Eq.(5.1) is given

by
+o 00+

T =p-+u—aa uaa
,where p, u € R. (5.2)
y = (a¥)*pa”

Proof. First the formula (5.2) is the solution to Eq.(5.1). In fact,
(a®)*za® = (a®)*(p+ u — aaTuaa™)a® = (™) pa® = y.
Next, let
(5.3)
Y =1%o
be any solution to Eq.(5.1). Then

(a#)*xoa# = yo.

Choose p = aata*yoa?a™, and u = xy. Then

aatuaa™ = aaTroaat = aata* (o™ ) zoa™)a’at = aata*yoatat = p,

it follows that

+ 00t

To=p+ Ty — aa uaa+:p+ufaa uaa .

Also,
(a™)*pa® = (a™)*aaTa*yoa?ata® = (aa™)*yoaa™ = (aa™)*((a™)*zoa™)aa™ = (™) zoa™ = yo.

Hence, the general solution to Eq.(5.1) is provided by the formula (5.2). O

Theorem 5.2. Let a € R* N RT. Then a € R if and only if the general
solution to Eq.(5.1) is given by

oot

T =p-+u—aa uaa
,where p, u € R. (5.4)
y = (a¥)"pa’

Proof. “ = " Since a € RSPF we have a* = a¥. Obviously, the formula (5.2)
and the formula (5.4) are consistent. By Theorem 5.1, we are done.

“ <=7 For the condition, one gets

(a™)*(p + u — aatuaa™)a® = (a¥)*pa*,
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ie.,
(a™)"pa® = (a*)*pa*
for any p € R. Choosing p = a™, one gets
(aa™)*a? = a*.
Applying the involution on the equality, one has
(a™)*aa™ = a.
By Theorem 4.6, a € RSFP. O

Theorem 5.3. Let a € R* N RT. Then a € R if and only if the general
solution to Eq.(5.1) is given by

r=p+u-— aatuaa™
,where p, u € R. (5.5)

y = apa’™
Proof. “ = " Given that a € RSP we have a = (a™)*. Clearly, the formula
(5.2) can be expressed as the formula (5.5), as desired by Theorem 5.1.

“ <=7 From the condition, one obtains
a®)*(p+u — aatuaa™)a® = apa®
(a™)"(p pa’,

e.g.,

(a#)*pa* = apa*
for each p € R. Choosing p = a. Then (a*)*aa® = a. By Theorem 4.6, a €
RSEP. O

We change Eq.(5.1) as follows.
a(aa®)*za® =y. (5.6)

Theorem 5.4. Let a € R* N RY. Then the general solution to Eq.(5.6) is given

by

+oaat

r=p-+u—aa’uaa
,where p, u € R with a*p = aTaTap. (5.7)

y = apa”

Proof. Since

a(aa®)*za” = a(aa®™)* (p + u — aatuaa™)a® = a(aa”)*pa”

+

= a(aa™)*aatpa” = a(aa®)*aatatapa® = a(aa®)*atapa® = apa® =y,

the formula (5.7) is the solution to Eq.(5.6).
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Now let
r = X9
(5.8)
Y=Y

be any solution to Eq.(5.6). It follows a(aa™)*z¢a® = yo. Choose p = atyoa, and

u = xg — p. This gives

+ + +

o fp)aa+ =aaTzpaa™ — aataTygaaa™

aatuaa™ = aa™(

+ ot ++

atyoaaat = aatata(aa® ) zoa® aaa™

+

= aa™ (aa™)*zoa” aaa™ —aa —aatatypaaa

=aatatypaaat — aatatypaaat = 0.

Tuaa™. At the same time,

Hence t =p+ (o —p)=p+u=p+u—aa
apa® = a(atyoa)a” = a(ata(aa®) zoa®)aa” = a(aa®) zoa® = yo.
Consequently, the formula (5.7) offers the general solution to Eq.(5.6). O

Theorem 5.5. Let a € R* N RY. Then a € RSEP if and only if Eq.(5.1) has the
same solution as Eq.(5.6).

Proof. It is evident from Theorem 5.3 and Theorem 5.4. |

6. The solution to non-homogeneous bivariate equations

(a?)*za® —y=a™. (6.1)

Theorem 6.1. Let a € R# N RT. Then the general solution to Eq.(6.1) is given

by

o0t

,where p, u € R. (6.2)

rT=p+u—aa

y = (a®)*pa# —a*

uaa

Proof. Clearly, the formula (6.2) is the solution to Eq.(6.1).
Now assuming that

Tr = X9

Y=1Yo

represents any solution to Eq.(6.1), then we have
(a®)*zoa™ —yo = a™.
Choose p = a*(a™ + yo)a, and u = 29 — p. Then we have

aatzoaa™ = aata* ((a¥)*zoa®)a?at = aaTa* (yo + aT)a*aT = aatpaat.
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It follows that aaTuaa®™ = 0. Hence

00+

xo=p+(ro—p)=p+u=p+u—aauaa.

Also we have
(a®)*pa® = (a™)*a* (™ + yo)aa™ = aTaa® + (aa®)*yoaa™
= ataa® + (aa®)*((a¥)*2z0a® — a™)aa” = (a¥)*2oa® =yo +a™. O

This induces

Yo = (a#)*pa# —a’.

Hence the general solution to Eq.(6.1) is given by (6.2).

Theorem 6.2. Let a € R* N RT. Then a € R°EF if and only if the general
solution to Eq.(6.1) is given by

+o00+

,where p, u € R. (6.4)

r=p-+u—aa uaa

*

y=(a)pat —a

Proof. “ = ” Given that a € RSFF we have at = a* = a#. It’s evident that
the formula (6.2) can be expressed as the formula (6.4), as desired by Theorem 6.1.
“ <=7 The condition implies

(a®)*(p 4+ u — aaTuaa™)a® — ((a¥)*pa™ —a*) = a™
for p € R. Choose p = 0. Then one gets a* = a* which follows that a € R"'.
Choose p = a?. Then the equation becomes (a#)*a*a? = (a¥)*a#a™, and
aa” = a*ata* (a®)*a?a? = dPata* (o) a¥aT = aa”.

Thus a € REF by [14, Theorem 1.2.1]. Therefore we deduce a € RSFF. ]

Revised Eq.(6.1) as follows:

(a®)za™ —y =a*. (6.5)
Similar to the proof of Theorem 6.1, we have the following theorem.

Theorem 6.3. Let a € R* N RY. Then the general solution to Eq.(6.5) is given

by

+o0t

r=p+u—aauaa

,where p, u € R. (6.6)

*

y=(a)pat —a

Theorem 6.4. Let a € R* N RY. Then a € RSEY if and only if Eq.(6.5) has the

same solution as Eq.(6.1).
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Proof. “ =" Suppose that a € RSFF. Then the formula (6.4) and the formula

(6.6) are the same, by Theorem 6.2 and Theorem 6.3, we are done.

“ <=7 Indeed,
r=a
(6.7)
y= () —a
clearly represents a solution to Eq.(6.5).
By the assumption, it is also a solution to Eq.(6.1). Hence we obtain
(a®)*aa™ — (a¥)* +a* =a™.
Multiplying the equality on the right by aa™, one gets
(a™)*aa® = (a)*.
This gives a € RFF by [14, Theorem 1.1.3] and
at = (a®)*aa® — (a¥)* +a* = a".
Therefore a € RSEP. O

7. Using nil-cleanity of aa*a*a to characterize SEP elements

Theorem 7.1. Let a € R* N RY. Then a € RSFY if and only if aa*a*a = u + p,
where u? =0, p € PE(R), and pu = up = 0.

Proof. “==" Given that a € R°PF we know that aa*a*a € PE(R) by Theorem
2.1. Let’s choose v = 0 and p = aa*a™a. Then, we have aa*a™a = u + p, where
u? =0 and pu = up = 0.

“ <=7 From the assumption, we have

aa*aap = (u+ p)p = up + p* = p,

paa*ata = p(u+p) =pu+p° =p.

Furthermore, we find

+ * 4 2 % 4

0=u?= (aa*aTa—p)? = (aa*ata)? —aa*atap—paa*aTa+p = aa*aTa*a*aTa—p.

Thus, we conclude that aa*ata?a*ata = p = paa*a™a. Applying the involution to

the last equality, one gets

ata’a*ata’a* = p =aa*ata*a*aTa.
Then, we have

ata’a*aTa?a* = aTa?a*ata?a*ata.
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Multiplying a”a on the left of both sides, we get

aa*ata’a® = aa*ata’a*aTa.

To proceed, multiply the equality by (a*)*a*, we obtain ata?a* = aTa?a*ata.
Finally, multiplying a*a#a on the left, one gets a* = a*ata, thus, ataa = a.
Consequently, a € RFF. We have

aa*aa* = aa*ata?a*ata =p = aa*aTap = aa*p,

aa*aa*aa® = aa*p = p = aa*aa”,

+ +

a*aa*aa® = a"aa*aa*aa* = a"aaaa” = a*aa”,

it follows by applying the involution to the last equality, one yields
aa*aa*a = aa*a,

a*aa* = a™ (aa*aa*a)a™ = a*(aa*a)at = a*.

Hence a € RP!, and so a € RSFP. ([

Theorem 7.2. Let a € R* N RY. Then a € RSFT if and only if aa*a*a = u + p,
where u? =1, up = pu= —p and 1 — p = aa*, p € PE(R).

Proof. “=—" Since a € R°FF, we have aa*ata = aa* by Theorem 2.1. Choose
u=2aa" —1,p=1—aa™ € PE(R). Then

w =1, up=aat —1=—p, pu=aat —1=—p, 1 —p=aa™ =aa*.

Clearly, aa*a™a = u + p.

“ <=7 From the conditions, we have

aa*atap=(u+pp=up+p=-p+p=0,

paa*ata=plu+p)=p+pu=p—p=0,

and

2

+ +,2

1 =u? = (aa*aTa—p)? = aa*aa*a*ata—aa*aTap—paa*atatp = aa*ata*a*aTa+p.

After applying the involution to the last equality, we obtain

aa*ata’a*aTa = ata?a*ata’a*.

Similar to the proof of Theorem 7.1, we get a € RFF. This gives
+

aa®* =aa*a"a = u+p,

and

ac*aa* = (u+p)? =v +up+put+p=1-p—p+p=1—p=aa*.
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This leads to
a=aa*(a")* = aa*aa*(a

In summary, a € RSEP. O
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