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Abstract. We present an extremely elementary construction of the simple

Lie algebras over C in all of their minuscule representations, using the vertices

of various polytopes. The construction itself requires no complicated combina-

torics and essentially no Lie theory other than the definition of a Lie algebra;

in fact, the Lie algebras themselves appear as by-products of the construction.
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Introduction

The simple Lie algebras over the complex numbers are objects of key importance

in representation theory and mathematical physics. These algebras fall into four

infinite families (An, Bn, Cn, Dn) and five exceptional types (E6, E7, E8, F4 and

G2). The classical (i.e., non-exceptional) types of Lie algebras are easily defined

in terms of Lie algebras of matrices; such representations are called the natural

representations of the Lie algebras. However, it is not so easy to give similar

descriptions of the exceptional algebras in a way that makes it easy to carry out

calculations with them. Another natural question is whether one can give easy

descriptions of other representations of the classical Lie algebras, such as the spin

representations of algebras of types Bn and Dn, which are traditionally constructed

in terms of Clifford algebras (see [2, §13.5]).

There are several combinatorial approaches to the representation theory of the

simple Lie algebras over C. Two of these include Littelmann’s description of repre-

sentations in terms of paths, and the crystal basis approach of Kashiwara and the

Kyoto school. Both these approaches are very versatile but can be combinatorially

complicated. Recent work of the author shows how to construct certain Lie algebra

representations using combinatorial structures called “full heaps”, whose theory is
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developed in [7,8]. This in turn builds on work of Stembridge [14] on minuscule el-

ements and their heaps, and on work of Wildberger [15] on constructing minuscule

representations for simply laced simple Lie algebras over C (although the paper [15]

does not contain proofs). The approach of the present paper grew out of an attempt

to explain the full heap representations in as simple a way as possible, and it does

not require any complicated combinatorial constructions. The simple Lie algebras

of types E8, F4 and G2 have no minuscule representations and do not appear to

fit directly into our framework, so we do not consider them here. It may well be

possible to treat type G2 by modifying the arguments here, just as the methods of

[15] may be adapted to treat type G2 in an ad hoc way (see [16]).

The polytopes we consider in this paper are convex subsets of Rn whose vertices

(i.e., 0-skeletons) have integer coordinates; such polytopes are sometimes called

“lattice polytopes”. These include the hypercube, the hyperoctahedron (which is

the dual of the hypercube) and the polytopes known as 221 and 321 in Coxeter’s

notation [5]; the latter two polytopes have 27 and 56 vertices respectively. All these

polytopes are highly symmetrical, and the symmetry groups have been known for

a long time. The reason that these polytopes are relevant in Lie theory is that the

set of weights for the minuscule representations of simple Lie algebras over C form

the vertices of one of the aforementioned polytopes. This is not obvious, but it is

not a complete surprise either: Manivel [13, Introduction] for example mentions in

passing that the weights of the 56-dimensional representation of e7 correspond to

the vertices of 321.

Our approach in this paper is to start with the vertices of the polytope and use

them to construct representations of Lie algebras without first constructing the Lie

algebras themselves. All the minuscule representations of simple Lie algebras over

C may be constructed in this way, and the construction is remarkably simple. In

§2, we introduce the notion of a “minuscule system”, which involves two subsets

of Rn, denoted by Ψ and ∆. The set Ψ is said to be a minuscule system with

respect to the simple system ∆ if two conditions are satisfied (see Definition 2.1).

These conditions are very elementary and easy to check, and whenever they hold,

the set ∆ defines a set of linear operators on a vector space with dimension |Ψ|
(Definition 2.2). If one makes a judicious choice of Ψ and ∆, then these linear

operators turn out to be the representations of the Chevalley generators of a simple

Lie algebra over C acting in one of its minuscule representations with respect to an

obvious basis (the basis can be shown to be the crystal basis in the sense of [12], by

adapting the argument of [7, §8]). We will show that all minuscule representations
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can be constructed in exactly this way. The dimension of the space containing Ψ

and ∆ is in some cases much smaller than the dimension of the representation being

constructed and the dimension of the corresponding Lie algebra.

In all our examples here, Ψ and ∆ are finite sets, and the set ∆ is recognizable

as either the set of simple roots for a simple Lie algebra, or as the set of simple

roots together with α0 = −θ, where θ is the highest root. In the latter case,

we obtain finite dimensional representations of certain derived affine Kac–Moody

algebras. Formulating the results in terms of affine algebras can be more natural,

as the affine algebras have a greater degree of symmetry. Another advantage is

that it is easier to see how the modules behave under restriction; for example, the

56-dimensional module for the Lie algebra of type E7, after inflation to a module

for the derived affine algebra, can be restricted to a module for the Lie algebra of

type A7 which is the direct sum of two nonisomorphic 28-dimensional irreducible

submodules. Once this observation is made, our approach here to e7 is seen to be

very natural.

The layout of this paper is as follows. In §1, we recall some of the basic theory of

representations of Lie algebras. Minuscule systems are defined in §2, and developed

in §3. Our main result is Theorem 3.2, and the linear operators used in it are de-

fined in Definition 2.2. Sections 4–6 are devoted to examples of minuscule systems.

§4 describes the representations of e6 and e7 arising from the polytopes 221 and

321 respectively. §5 describes various representations arising from the hypercube,

including the spin representations of the Lie algebras of types Bn and Dn. The

minuscule representations of type An−1 are obtained by restricting the spin repre-

sentation in type Bn to a subalgebra. §6 describes representations arising from the

hyperoctahedron, including the natural representations of the Lie algebras of types

Cn and Dn. In §7, we explore connections with algebraic geometry. We give some

concluding remarks are given in §8, including a discussion of the construction of

Chevalley bases for the Lie algebra.

1. Background on Lie algebras

A Lie algebra is a vector space g over a field k equipped with a bilinear map

[ , ] : g× g → g (the Lie bracket) satisfying the conditions

[x, x] = 0,

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0,

for all x, y, z ∈ g. (These conditions are known respectively as antisymmetry and

the Jacobi identity.)
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If g1 and g2 are Lie algebras over a field k, then a homomorphism of Lie algebras

from g1 to g2 is a k-linear map φ : g1 → g2 such that φ([x, y]) = [φ(x), φ(y)] for all

x, y ∈ g1. An isomorphism of Lie algebras is a bijective homomorphism.

If V is any vector space over k then the Lie algebra gl(V ) is the k-vector space

of all k-linear maps T : V → V , equipped with the Lie bracket satisfying

[T, U ] := T ◦ U − U ◦ T,

where ◦ is composition of maps.

A representation of a Lie algebra g over k is a homomorphism ρ : g → gl(V ) for

some k-vector space V . In this case, we call V a (left) module for the Lie algebra

g (or a g-module, for short) and we say that V affords ρ. If x ∈ g and v ∈ V , we

write x.v to mean ρ(x)(v). The dimension of a module (or of the corresponding

representation) is the dimension of V . If ρ is the zero map, then the representation

ρ and the module V are said to be trivial.

A submodule of a g-module V is a k-subspace W of V such that x.w ∈ W for

all x ∈ g and w ∈ W . If V has no submodules other than itself and the zero

submodule, then V is said to be irreducible.

If V1 and V2 are g-modules, then a k-linear map f : V1 → V2 is called a homo-

morphism of g-modules if f(x.v) = x.f(v) for all x ∈ g and v ∈ V1. An isomorphism

of g-modules is an invertible homomorphism of g-modules.

A subspace h of g is called a subalgebra of g if [h, h] ⊆ h. If, furthermore, we have

[g, h] ⊆ h (or, equivalently, [h, g] ⊆ h) then h is said to be an ideal of g. If g has no

ideals other than itself and the zero ideal, then g is said to be simple. The derived

algebra, g′, of g is the subalgebra generated by all elements {[x1, x2] : x1, x2 ∈ g}.
It can be shown that g′ is an ideal of g.

Definition 1.1. Let A be an n × n matrix with integer entries. Following [11,

§1.1], we call A = (aij) a generalized Cartan matrix if it satisfies the following three

properties:

(i) aii = 2 for all 1 ≤ i ≤ n;

(ii) aij ≤ 0 for all i 6= j;

(iii) aij = 0 ⇒ aji = 0.

We call the matrix A symmetrizable if there exists an invertible diagonal matrix

D and a symmetric matrix B such that A = DB.

The next result is a well known presentation for the derived algebra of a Kac–

Moody algebra corresponding to a symmetrizable Cartan matrix.
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Theorem 1.2. Let A be a symmetrizable generalized Cartan matrix. The derived

Kac–Moody algebra g = g′(A) corresponding to A is the Lie algebra over C generated

by the elements {ei, fi, hi : i ∈ ∆} subject to the defining relations

[hi, hj ] = 0,

[hi, ej ] = Aijej ,

[hi, fj ] = −Aijfj ,

[ei, fj ] = δijhi,

[ei, [ei, · · · [ei,︸ ︷︷ ︸
1−Aij times

ej ] · · · ]] = 0,

[fi, [fi, · · · [fi,︸ ︷︷ ︸
1−Aij times

fj ] · · · ]] = 0,

where δ is the Kronecker delta.

Proof. This is a special case of [11, Theorem 9.11]. ¤

Remark 1.3. In this paper, we are mostly interested the case where A is of finite

type (as defined in [11, §4.3]). In this case, the resulting algebra g is simple.

Suppose for the rest of §1 that g is an algebra satisfying the hypotheses of

Theorem 1.2. Let h be the subalgebra of g spanned by the elements {hi : i ∈ ∆}.
Let h∗ = Hom(h,C) be the dual vector space of h, and let {ωi : i ∈ ∆} be the basis

of h∗ dual to {hi : i ∈ ∆}. Let V be a g-module. An element v ∈ V is called a

weight vector of weight λ ∈ h∗ if for all h ∈ h, we have h.v = λ(h)v. The weights

ωi are known as fundamental weights. If the weight vector v is annihilated by the

action of all of the elements ei (respectively, all of the elements fi), then we call v

a highest weight vector (respectively, a lowest weight vector).

The following result is well known.

Proposition 1.4. (i) Let g be a simple Lie algebra over C. If λ is a non-

negative Z-linear combination of the fundamental weights ωi then up to

isomorphism there is a unique finite dimensional irreducible g-module L(λ)

of the form g.vλ, where vλ is of weight λ and is the unique nonzero highest

weight vector of L(λ). The modules L(λ) are pairwise nonisomorphic and

exhaust all finite dimensional irreducible modules of g.

(ii) Suppose that V is a finite dimensional g-module containing a nonzero high-

est weight vector vλ of weight λ, and that dim(V ) = dim(L(λ)). Then

V ∼= L(λ).
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Proof. Part (i) is a special case of [2, Theorem 10.21]. For part (ii), it follows from

the proof of [2, Proposition 10.13] that any g-module g.vλ generated by a highest

weight vector of weight λ is a quotient of the Verma module M(λ). The Verma

module has a unique maximal submodule, J(λ) (see [2, Theorem 10.9]) and we

have L(λ) = M(λ)/J(λ) by definition. It follows that g.vλ has a quotient module

isomorphic to L(λ). The assumption about dimensions allows this only if V ∼= L(λ)

(and g.vλ = V ). ¤

If λ is a fundamental weight, the corresponding module L(λ) is called a funda-

mental module. If, furthermore, λ has the property that

2
λ.a
a.a

≤ 1

for all positive roots a, then λ and its associated module and representation are said

to be minuscule. (See [1, 2.11.15] for more details of the definition.) The purpose

of this paper is to provide a uniform and very elementary construction of these

modules. We now list the minuscule modules, their weights and their dimensions;

more information on this may be found in [2, §13]. Our indexing of the weights in

this paper is based on that of Kac [11], and in some cases, this differs from Carter’s

notation in [2].

For the simple Lie algebra of type An, all the fundamental modules

L(ω1), . . . , L(ωn)

are minuscule, and we have

dim(L(ωi)) =
(

n + 1
i

)
.

In this case, L(ω1) is the natural module, and L(ωi) is the i-th exterior power of

L(ω1).

For the simple Lie algebra of type Bn (for n ≥ 2), the only minuscule module is

the spin module, L(ωn), which has dimension 2n.

For the simple Lie algebra of type Cn (for n ≥ 2), the only minuscule module is

the natural module, L(ω1), which has dimension 2n.

For the simple Lie algebra of type Dn (for n ≥ 4), there are three minuscule

modules. These are the natural module L(ω1), of dimension 2n, and the two spin

modules L(ωn−1) and L(ωn), each of which has dimension 2n−1.

The simple Lie algebra of type E6 has two minuscule modules, L(ω1) and L(ω5),

each of which has dimension 27.

The simple Lie algebra of type E7 has one minuscule module, L(ω6), which has

dimension 56.
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The simple Lie algebras of types E8, F4 and G2 have no minuscule modules.

2. Minuscule systems

Definition 2.1. Let Ψ and ∆ be subsets of vectors in Rn for some n ∈ N, where Rn

is equipped with the usual scalar product and 0 6∈ ∆. We say that Ψ is a minuscule

system with respect to the simple system ∆ if the following conditions are satisfied

for every v ∈ Ψ and a ∈ ∆.

(i) We have 2v.a = ca.a for some c = c(v,a) ∈ {−1, 0, +1}.
(ii) Let c = c(v,a) be as in (i). Then we have v + a ∈ Ψ if and only if c = −1,

and we have v − a ∈ Ψ if and only if c = 1. (In particular, if c = 0, then

neither vector v ± a lies in Ψ.)

Definition 2.2. Let Ψ be a minuscule system with respect to the simple system ∆,

and let k be a field. We define VΨ to be the k-vector space with basis {bv : v ∈ Ψ}.
For each a ∈ ∆, we define k-linear endomorphisms Ea, Fa, Ha of VΨ by specifying

their effects on basis elements, as follows:

Ea(bv) =





bv+a if v + a ∈ Ψ;

0 otherwise;

Fa(bv) =





bv−a if v − a ∈ Ψ;

0 otherwise;

Ha(bv) = c(v,a)bv = 2
v.a
a.a

bv.

Definition 2.3. Let Ψ be a minuscule system with respect to the simple system

∆. We define the generalized Cartan matrix, A, of ∆ to be the |∆| × |∆| matrix

whose (a,b) entry is given by

Aa,b = 2
a.b
a.a

.

Although we have apparently given two meanings to the term “generalized Car-

tan matrix” (the above meaning and Definition 1.1), they coincide in all the exam-

ples of this paper. A formulation very similar to Definition 2.3 may be found in

[11, §2.3].

3. Results on minuscule systems

The following lemma is the key ingredient for our main result, and links the

Serre presentation given in Theorem 1.2 to the linear operators arising from the

polytope.
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Lemma 3.1. Using the notation of Definition 2.2, we have the following identities

in End(VΨ), where a,b ∈ ∆:

Ha ◦ Eb = Eb ◦Ha + Aa,bEb, (1)

Ha ◦ Ea = Ea = −Ea ◦Ha, (2)

Ha ◦ Fb = Fb ◦Ha −Aa,bFb, (3)

Ha ◦ Fa = −Fa = −Fa ◦Ha, (4)

Ea ◦ Fb = Fb ◦ Ea = 0 if Aa,b < 0, (5)

Ea ◦ Fb = Fb ◦ Ea if Aa,b = 0, (6)

Ea ◦ Ea = 0, (7)

Ea ◦ Eb = Eb ◦ Ea if Aa,b = 0, (8)

Ea ◦ Eb ◦ Ea = 0 if Aa,b = −1, (9)

Fa ◦ Fa = 0, (10)

Fa ◦ Fb = Fb ◦ Fa if Aa,b = 0, (11)

Fa ◦ Fb ◦ Fa = 0 if Aa,b = −1, (12)

Proof. We prove (1) by acting each side of the equation on a basis vector bv. If

Eb(bv) = 0, then both sides are trivial, so we may assume this is not the case,

meaning that v + b ∈ Ψ. It follows that, in the notation of Definition 2.1, we have

c(v,b) = −1 and c(v + b,b) = 1. In turn, this means that

Ha ◦ Eb(bv) = Ha(bv+b) = 2
(v + b).a

a.a
bv+b

and that

Eb ◦Ha(bv) = 2
v.a
a.a

Eb(bv) = 2
v.a
a.a

bv+b.

Subtracting, we have

(Ha ◦ Eb − Eb ◦Ha)(bv) = 2
b.a
a.a

bv+b = Aa,bEb(bv),

which proves (1).

If b = a, then the above argument shows that

Ha ◦ Ea(bv) = Ha(bv+a) = c(v + a,a)bv+a = Ea(bv).

Part (2) follows from this and the fact that Aa,a = 2.

The proof of (3) (respectively, (4)) follows by adapting the argument used to

prove (1) (respectively, (2)).
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We now prove that Ea ◦ Fb = 0 if Aa,b < 0. By (1) and (2), we have

EaFb = HaEaFb

= EaHaFb + 2EaFb

= EaFbHa + (2−Aa,b)EaFb.

Rearranging, this gives

EaFbHa = (Aa,b − 1)EaFb.

Suppose that EaFb 6= 0, and let bv be a basis element for which Ea ◦ Fb(bv) 6= 0.

This implies that Ha(bv) = (Aa,b − 1)bv, but this is a contradiction to Definition

2.1 (i), because c(v,a) = Aa,b − 1 ≤ −2. This shows that Ea ◦ Fb = 0, and the

proof that Fb ◦ Ea = 0 is very similar, proving (5).

We next turn to (6). Let us first suppose that Ea ◦ Fb(bv) 6= 0 for some basis

element v. (This means that Ea ◦ Fb(bv) = bv−b+a and that v − b + a ∈ Ψ.) By

(2) and (3), we have

Ea ◦ Fb(bv) = −Ea ◦Ha ◦ Fb(bv)

= −Ea ◦ Fb ◦Ha(bv).

It follows that Ha(bv) = −bv, and that c(v,a) = −1. In turn, this implies that

v + a ∈ Ψ and Ea(bv) = bv+a 6= 0. Since v − b + a ∈ Ψ, we have

Fb ◦ Ea(bv) = bv+a−b = Ea ◦ Fb(bv).

It follows that if Ea ◦Fb 6= 0, then Ea ◦Fb = Fb ◦Ea. The converse statement also

follows by a similar argument. This in turn implies that Ea ◦ Fb = 0 if and only if

Fb ◦ Ea = 0, which completes the proof of (6).

The proofs of (8) and (11) follow the same line of argument as the proof of (6).

To prove (7), we show that Ea ◦Ea(bv) = 0 for all basis elements bv. As before,

we may reduce to the case where Ea(bv) 6= 0, meaning that v+a ∈ Ψ, c(v,a) = −1

and c(v + a,a) = 1. The latter fact implies that Ea(bv+a) = 0, which completes

the proof. The proof of (10) follows the same argument.

We now prove (9). As in the proof of (7), the proof reduces to showing that

Ea ◦ Eb ◦ Ea(bv) = 0

in the case where c(v,a) = −1. Using (1) and (2), we then have

Ea ◦ Eb ◦ Ea(bv) = −Ea ◦Ha ◦ Eb ◦ Ea(bv)

= −Ea ◦ Eb ◦ (Ha ◦ Ea(bv)) + Ea ◦ Eb ◦ Ea(bv)

= 0,
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as required. The proof of (12) follows the same argument as the proof of (9). ¤

We are now ready to state our main result.

Theorem 3.2. Let Ψ be a minuscule system with respect to the simple system

∆, and let A be the generalized Cartan matrix of ∆. Assume that A is a sym-

metrizable generalized Cartan matrix in the sense of Definition 1.1, and let g be

the corresponding derived Kac–Moody algebra. Then the C-vector space VΨ has the

structure of a g-module, where ei (respectively, fi, hi) acts via the endomorphism

Ei (respectively, Fi, Hi).

Proof. We need to show that the defining relations of Theorem 1.2 are satisfied.

Since the operators Ha are simultaneously diagonalizable with respect to the

basis {bv : v ∈ Ψ}, they commute, and so we have [hi, hj ] = 0.

Lemma 3.1 (1) establishes the relations between the hi and the ej , and Lemma

3.1 (3) establishes the relations between the hi and the fj . Lemma 3.1 (5) and (6)

prove that [ei, fj ] = 0 if i 6= j.

We now prove that [ei, fi] = hi, for which we need to show that

Ei ◦ Fi − Fi ◦ Ei = Hi.

It is enough to evaluate each side of the equation on a basis element bv. If c(v, i) = 0

then all terms act as zero. If c(v, i) = 1 then Ei ◦ Fi(bv) = bv, Hi(bv) = bv, and

Fi ◦ Ei(bv) = 0, thus satisfying the equation. The case c(v, i) = −1 is dealt with

by a similar argument.

Next we prove that the Serre relation

[ei, [ei, · · · [ei,︸ ︷︷ ︸
1−Aij times

ej ] · · · ]] = 0

is satisfied. If Aij = 0, this states that [ei, ej ] = 0, which is immediate from Lemma

3.1 (8). If Aij = −1, this states that

[ei, [ei, ej ]] = 0,

or in other words,

Ei ◦ Ei ◦ Ej − Ei ◦ Ej ◦ Ei + Ej ◦ Ei ◦ Ei = 0,

which is immediate from Lemma 3.1 (7) and (9). The only other possibility is that

Aij ≤ −2. In this case, every term of the corresponding identity in terms of Ei

and Ej involves an Ei ◦Ei, which is zero by Lemma 3.1 (7), and this completes the

proof.
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A similar argument shows that the Serre relation involving the fi is also satisfied.

¤

The following result provides some methods of constructing new minuscule sys-

tems from known ones, and these will be useful in the sequel.

Proposition 3.3. Let Ψ ⊂ Rn be a minuscule system with respect to the simple

system ∆. Let Ψ′ and ∆′ be nonempty subsets of Ψ and ∆, respectively.

(i) Suppose that for every v ∈ Ψ′ and a ∈ ∆′, the following conditions are

satisfied.

(a) If c(v,a) = −1 then v + a ∈ Ψ′.

(b) If c(v,a) = 1 then v − a ∈ Ψ′.

Then Ψ′ is a minuscule system with respect to ∆′.

(ii) If Ψ′ = Ψ and ∅ 6= ∆′ ⊂ ∆ then Ψ′ is a minuscule system with respect to

∆′.

(iii) Let n ∈ Rn and l ∈ R. Suppose that the sets

Ψ(n, l) = {v ∈ Ψ : v.n = l}
and

∆(n) = {a ∈ ∆ : a.n = 0}
are nonempty. Then Ψ(n, l) is a minuscule system with respect to the simple

system ∆(n).

Proof. Definition 2.1 applied to Ψ′ and ∆′ follows immediately from the hypotheses

of (i). Part (ii) is an immediate consequence of (i).

Part (iii) follows from (i) and the observation that if v ∈ Ψ(n, l) and a ∈ ∆(n)

then (v ± a).n = l ± 0 = l. ¤

Definition 3.4. If Ψ′ and ∆′ satisfy the hypotheses of Proposition 3.3 (i), we will

call the pair (Ψ′,∆′) a minuscule subsystem of (Ψ, ∆).

We now explain how minuscule systems associated with a Lie algebra also sup-

port actions of the corresponding Weyl group.

Definition 3.5. Let n ∈ N and 0 6= α ∈ V = Rn. The reflection sα associated to

α is the linear map sα : V → V given by

sα(v) = v − 2
v.α

α.α
α.

If Ψ ⊂ Rn is a minuscule system with respect to the simple system ∆, then we

define the Weyl group W = WΨ,∆ of (Ψ, ∆) to be the group of automorphisms of

Rn generated by the set {sa : a ∈ ∆}.
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It is not hard to check that this agrees with the usual notion of the Weyl group

associated to a simple Lie algebra over C (see [11, (1.1.2), §3.7]). It is well known

[10, §1.1] that the Weyl group action respects the scalar product on V .

Proposition 3.6. If Ψ is a minuscule system with respect to the simple system ∆,

then W = WΨ,∆ acts on Ψ.

Proof. It is enough to show that if a ∈ ∆ and v ∈ Ψ, then sa(v) ∈ Ψ. By the

definitions of sa and c = c(v,a), we have sa(v) = v − ca, which lies in Ψ by

Definition 2.1. ¤

4. The Hesse polytope

In §4, we introduce some examples of minuscule systems related to the polytope

known in Coxeter’s notation as 321. This polytope does not have a consistent name

in the literature; we will follow Conway and Sloane in calling 321 the Hesse polytope,

as this name does not appear to have any other connotations. The Hesse polytope

has 56 vertices, whose coordinates are given by the set ΨE7 of Definition 4.1. Note

that we have multiplied Conway and Sloane’s coordinates for the vertices by 4, in

order to make them integers and to retain compatibility with du Val’s coordinates

[6, §7].

The Schläfli polytope, which is called 221 in Coxeter’s notation, also plays a role

in the examples of this section involving the Lie algebra of type E6. It has 27

vertices, whose coordinates can be given by either of the sets Ψ(n,±8) appearing

in Proposition 4.3. More details on the inclusion of the Schläfli polytope in the

Hesse polytope may be found in [3, §9].

Definition 4.1. Let ε0, ε1, . . . , ε7 ∈ R8 be such that εi has a 1 in position i + 1,

and zeros elsewhere. For 0 ≤ i, j ≤ 7, define the vector vi,j = v{i,j} = vj,i ∈ R8 by

vi,j := 4(εi + εj)−
(

7∑

i=0

εi

)
.

(For example, we have v0,1 = (3, 3,−1,−1,−1,−1,−1,−1).) Let ΨE7 consist of

the 56 vectors {±vi,j : 1 ≤ i < j ≤ 8}.
It is convenient for later purposes to introduce the sets K0 = {0, 1, 2, 3} and

K7 = {4, 5, 6, 7}.
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Lemma 4.2. Let ΨE7 be as in Definition 4.1, and let

∆E
(1)
7 = {α0, α1, . . . , α7},

where αi = 4(εi − εi+1) if 0 ≤ i < 7, and α7 = (−2,−2,−2,−2, 2, 2, 2, 2). Then

ΨE7 is a minuscule system with respect to the simple system ∆E
(1)
7 .

Proof. Suppose first that a = αi for some i < 7, and let v ∈ ΨE7 . Write v =∑7
j=0 λjεj . The proof is a case by case check according to the values of λi and

λi+1. There are three cases to check.

The first possibility is that λi = λi+1. This implies that v.αi = 0. The coef-

ficients of εi and of εi+1 in v + a differ by 8, which means that v + a 6∈ Ψ, and

a similar argument shows that v − a 6∈ Ψ. The conditions of Definition 2.1 are

therefore satisfied.

The second possibility is that (λi, λi+1) ∈ {(−3, 1), (−1, 3)}, that is, λi+1 =

λi + 4. This implies that, v.a = −16 and a.a = 32. This satisfies Definition 2.1

(i) with c = −1. In this case, v − a 6∈ Ψ, because the coefficients of εi and εi+1 in

v − a do not lie in the set {±3,±1}. However, the vector v + a is obtained from

v by exchanging the coefficients of εi and εi+1, which means that v + a ∈ Ψ. This

satisfies Definition 2.1 (ii).

The third possibility is that (λi, λi+1) ∈ {(3,−1), (1,−3)}, that is, λi+1 = λi−4.

An analysis like that of the previous paragraph shows that c = 1, v + a 6∈ Ψ, and

v − a ∈ Ψ, as required.

It remains to show that Definition 2.1 is satisfied with a = α7. To check this,

we use the sets K0, K7 of Definition 4.1. Let v = ±vi,j . As before, there are three

cases to check.

The first possibility is that {i, j} 6⊆ Kl for some l ∈ {0, 1}. (Informally, this

means that the two occurrences of 3 (or −3) in v do not occur in the same half of

the vector.) This implies that v.α7 = 0. Furthermore, neither of the two vectors

v ± α7 lies in Ψ, because in each of them, one of the basis vectors εi appears with

coefficient ±5. Definition 2.1 is therefore satisfied in this case.

The second possibility is that either v = +vi,j with {i, j} ⊂ K0, or that v =

−vi,j with {i, j} ⊂ K7. In each case, v.α7 = −16 and v + α7 ∈ Ψ. However, in

each case, we have v − α7 6∈ Ψ, because two basis vectors appear in v − α7 with

coefficient ±5. Since α7.α7 = 32, Definition 2.1 is satisfied with c = −1.

The third possibility is that either v = +vi,j with {i, j} ⊂ K7, or that v = −vi,j

with {i, j} ⊂ K0. An analysis like that of the above paragraph shows that Definition

2.1 is satisfied with c = 1, v−α7 ∈ Ψ, and v+α7 6∈ Ψ. This completes the proof. ¤
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Proposition 4.3. Let Ψ = ΨE7 be as in Definition 4.1, and let ∆ = ∆E
(1)
7 be as

in Lemma 4.2.

(i) The 56-dimensional C-vector space VΨ has the structure of a g-module,

where g is the derived affine Kac–Moody algebra of type E
(1)
7 .

(ii) Let Ψ′ = Ψ and ∆′ = ∆\{α0}. Then Ψ′ is a minuscule system with respect

to the simple system ∆′, and VΨ′ is a module for the simple Lie algebra e7

over C of type E7. It is an irreducible module with highest weight vector

−v0,7 and lowest weight vector v0,7 (as in Definition 4.1).

(iii) Let n = v0,7. Then we have a disjoint union

Ψ = Ψ(n, 24) ∪̇ Ψ(n, 8) ∪̇ Ψ(n,−8) ∪̇ Ψ(n,−24).

For l ∈ {24, 8,−8,−24}, Ψ(n, l) is a minuscule system with respect to the

simple system ∆(n) = ∆\{α0, α6}, and VΨ(n,l) is a module for the simple

Lie algebra e6 over C of type E6. The two modules VΨ(n,±24) are triv-

ial one-dimensional modules for e6, whereas the two modules VΨ(n,±8) are

nonisomorphic 27-dimensional irreducible modules. The module VΨ(n,8) has

highest weight v1,7 and lowest weight v0,6. The module VΨ(n,−8) has highest

weight −v0,6 and lowest weight −v1,7.

(iv) For l ∈ {24, 8,−8,−24}, Ψ(n, l) is a minuscule system with respect to the

simple system ∆(n) ∪ {α}, where α = 4(ε7 − ε0). This makes VΨ(n,l) into

a module for the derived affine Kac–Moody algebra g of type E
(1)
6 .

Proof. By Lemma 4.2, Ψ is a minuscule system with respect to the simple system

∆. One may check directly (using [11, §2.3]) that the associated matrix A is the

symmetrizable generalized Cartan matrix of type E
(1)
7 of [11]. Theorem 3.2 then

establishes (i).

For (ii), we know that Ψ′ is a minuscule system with respect to the simple

system ∆′ by Proposition 3.3 (ii). The matrix A in this case is the symmetrizable

(generalized) Cartan matrix of type E7 of [11]. It follows from Theorem 3.2 that

VΨ′ is a module for e7. Direct checks show that −v0,7 is annihilated by all the

operators Ei, v0,7 is annihilated by all the operators Fi, and −v0,7 is annihilated

by all the operators Hi except H6, in which case we have H6(−v0,7) = −v0,7. Since

VΨ′ has the same dimension as L(ω6) and contains a highest weight vector of weight

ω6, the modules VΨ′ and L(ω6) are isomorphic and irreducible by Proposition 1.4.

We next establish the decomposition of Ψ described in (iii). We have Ψ(n, 24) =

{v0,7} and Ψ(n,−24) = {−v0,7}. The set Ψ(n, 8) consists of the vectors

{v0,i : 1 ≤ i ≤ 6} ∪ {vi,7 : 1 ≤ i ≤ 6} ∪ {−vi,j : 1 ≤ i < j ≤ 6},
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and we have Ψ(n,−8) = −Ψ(n, 8). It is easy to check that Ψ is the disjoint union

of these four sets. Proposition 3.3 (iii) shows that Ψ(n, l) is a minuscule system

with respect to ∆(n), and Theorem 3.2 shows that the modules VΨ(n,l) are modules

for e6 (after the generalized Cartan matrix has been recognized as symmetrizable

of type E6). The assertions about dimensions and weight vectors are easy to check.

A quick calculation shows that

Hi.v1,7 =





v1,7 if i = 1,

0 if i ∈ {2, 3, 4, 5, 7}

and

Hi.(−v0,6) =




−v0,6 if i = 5,

0 if i ∈ {1, 2, 3, 4, 7}.
This shows that VΨ(n,8) (respectively, VΨ(n,−8) has the same dimension as, and a

nonzero weight vector of the same weight as L(ω1) (respectively, L(ω5)). Proposi-

tion 1.4 now shows that the two modules VΨ(n,±8) are irreducible and nonisomor-

phic.

To prove (iv), we need to check that Definition 2.1 is satisfied with a = α. This

follows by imitating the case analysis for the case i < 7 in Lemma 4.2, using the

fact that n.α = 0. ¤

5. The hypercube

In §5, we consider examples relating to the polytope known as the the hypercube

or measure polytope; in Coxeter’s notation it is denoted γn. The set Ψ defined in

Lemma 5.1 is our standard set of coordinates for the 2n vertices of the hypercube.

We will show how the hypercube may be used to construct the spin represen-

tations of the simple Lie algebras of types Bn and Dn. By passing to appropriate

subsystems, we obtain all the fundamental representations of the simple Lie algebra

of type An as a by-product.

Lemma 5.1. Let n ≥ 3, let ε0, . . . , εn−1 ∈ Rn be the usual basis for Rn, and let Ψ

be the set of 2n vectors of the form

(±2,±2, . . . ,±2).

Let ∆ = {α0, α1, . . . , αn}, where α0 = −4(ε0 + ε1), αn = 4εn−1, and αi = 4(εi−1−
εi) for 0 < i < n. Then Ψ is a minuscule system with respect to the simple system

∆.
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Proof. We check that Definition 2.1 holds for each of the αi in turn. Let v =∑n−1
j=0 λjεj ∈ Ψ.

Suppose first that 0 < i < n. The proof is a case by case check according to

the values of λi and λi+1. There are three cases to check, and we omit the details

because the cases are almost identical to those in the first part of the argument

proving Lemma 4.2.

Next, suppose that i = 0. There are three cases to check, according to the

values of λ0 and λ1. If λ0 = λ1 = +2, then v + α0 ∈ Ψ, v − α0 6∈ Ψ, and

2v.α0 = −32 = −α0.α0, giving c = c(v, α0) = −1 as required. If λ0 = λ1 = −2,

then v − α0 ∈ Ψ, v + α0 6∈ Ψ, and 2v.α0 = 32 = α0.α0, giving c = 1 as required.

If λ0 6= λ1, then neither vector v ± α0 lies in Ψ, and 2v.α0 = 0, giving c = 0.

Definition 2.1 is therefore satisfied in all three cases.

Finally, suppose that i = n. There are two cases to check, according to the

value of λn−1. If λn−1 = +2 then v − αn ∈ Ψ and v + αn 6∈ Ψ. We also have

2v.αn = 16 = αn.αn, giving c = c(v, αn) = 1, thus satisfying Definition 2.1. If

λn−1 = −2 then v+αn ∈ Ψ and v−αn 6∈ Ψ. We also have 2v.αn = −16 = −αn.αn,

giving c = −1, thus satisfying Definition 2.1 and completing the proof. ¤

We may now state an analogue of Proposition 4.3.

Proposition 5.2. Maintain the notation of Definition 5.1. Let j =
∑n−1

j=0 εj and

S = {2n− 4j : 0 ≤ j ≤ n}.

(i) The 2n-dimensional C-vector space VΨ has the structure of a g-module,

where g is the derived affine Kac–Moody algebra of type B
(1)
n .

(ii) Let Ψ′ = Ψ and ∆′ = ∆\{α0}. Then Ψ′ is a minuscule system with respect

to the simple system ∆′, and VΨ′ is a module for the simple Lie algebra bn

over C of type Bn. It is an irreducible module with highest weight vector 2j

and lowest weight vector −2j, and affords the spin representation of bn.

(iii) We have a disjoint union

Ψ =
n⋃

j=0

Ψ(j, 2n− 4j).

For l ∈ S, Ψ(j, l) is a minuscule system with respect to the simple system

∆(j) = ∆\{α0, αn},

and VΨ(j,l) is a module for the simple Lie algebra an−1 over C of type An−1.

The two modules VΨ(j,±2n) are trivial one-dimensional modules for an−1,
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and the other modules VΨ(j,l) satisfy

VΨ(j,2n−4j)
∼= L(ωn−j).

The module VΨ(j,2n−4j) has highest weight

−2j + 4

(
n−j−1∑

i=0

εi

)

and lowest weight

2j− 4

(
j−1∑

i=0

εi

)
.

(iv) For l ∈ S, Ψ(j, l) is a minuscule system with respect to the simple system

∆(j) ∪ {α}, where α = 4(εn−1 − ε0). This makes VΨ(j,l) into a module for

the derived affine Kac–Moody algebra g of type A
(1)
n−1.

Proof. Using Lemma 5.1 in place of Lemma 4.2, the proof of (i) follows the same

argument as the proof of Proposition 4.3 (i).

The proof of (ii) now follows by copying the argument of Proposition 4.3 (ii). In

this case, the module turns out to be L(ωn).

It is easily checked that Ψ(j, 2n− 4j) consists precisely of the vectors in Ψ that

have j occurrences of −2, from which the first assertion of (iii) follows. Proposition

3.3 (iii) shows that Ψ(j, 2n − 4j) is a minuscule system with respect to ∆(j), and

Theorem 3.2 shows that the modules VΨ(j,2n−4j) are modules for an−1 (after the

generalized Cartan matrix has been recognized as symmetrizable of type An−1).

The assertions about dimensions and weight vectors are easy to check. If j 6= ±n

and v is the highest weight vector v of VΨ(j,2n−4j), then we have Hi.v = 0 unless

i = n − j, in which case Hi.v = v. The required isomorphism now follows from

Proposition 1.4.

To prove (iv), we may copy the argument of Proposition 4.3 (iv) to check that

Definition 2.1 is satisfied with a = α. (Note that j.α = 0.) ¤

Lemma 5.3. Let n ≥ 4, let ε0, . . . , εn−1 ∈ Rn be the usual basis for Rn, and let Ψ

be as in Lemma 5.1. Let Ψ+
D (respectively, Ψ−D) be the subset of Ψ whose vectors

contain an even (respectively, odd) number of occurrences of −2.

Let ∆D = {α0, α1, . . . , αn−1, α
′
n}, where α′n = 4(εn−2 + εn−1) and the other

vectors αi are as in Lemma 5.1.

Then Ψ = Ψ+
D ∪̇ Ψ−D is a minuscule system with respect to the simple system

∆D, and both (Ψ+
D, ∆D) and (Ψ−D, ∆D) are minuscule subsystems of (Ψ,∆D).
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Proof. Most of the work for checking that Ψ is a minuscule system with respect

to ∆D is done in the proof of Lemma 5.1. The only extra criterion to check is that

Definition 2.1 holds for a = α′n. This follows by making appropriate sign changes

to the argument used to check Definition 2.1 for a = α0 as in the proof of Lemma

5.1.

Letting j be as in Proposition 5.2, we see that v ∈ Ψ lies in Ψ+
D if the integer v.j

is a multiple of 8, and v lies in Ψ−D otherwise. We observe that each a ∈ ∆D has

the property that a.j is a multiple of 8. We now apply Proposition 3.3 (i), which

proves that (Ψ±D,∆D) are minuscule subsystems. ¤

Proposition 5.4. Maintain the notation of 5.1–5.3.

(i) Each of the 2n−1-dimensional C-vector spaces VΨ±D
has the structure of a

g-module, where g is the derived affine Kac–Moody algebra of type D
(1)
n .

(ii) Let Ψ± = Ψ±D and ∆± = ∆D\{α0}. Then each of the two sets Ψ± is a

minuscule system with respect to each of the simple systems ∆± respectively,

and each of the two spaces VΨ± is a module for the simple Lie algebra dn

over C of type Dn. The modules are nonisomorphic and both irreducible,

and they afford the two spin representations of dn. The highest weight vector

of VΨ+ (respectively, VΨ−) is 2j (respectively, 2j−4εn−1). The lowest weight

vectors of VΨ± are −2j and −2j + 4εn−1, where the assignment of vectors

to modules depends on whether n is even or odd.

Proof. Using Lemma 5.3 in place of Lemma 4.2, the proof of (i) follows the same

argument as the proof of Proposition 4.3 (i).

The first assertion of (ii) follows by using Lemma 5.3 and copying the argument

of Proposition 4.3 (ii). The operators Hi (for 1 ≤ i < n − 1) all act as zero on 2j

and 2j−4εn−1. The operator Hn−1 (corresponding to αn−1) acts as zero on 2j and

acts as the identity on 2j− 4εn−1. The operator Hn (corresponding to α′n) acts as

the identity on 2j and as zero on 2j − 4εn−1. The second assertion is then proved

by adapting the corresponding argument in Proposition 4.3 (iii). ¤

6. The hyperoctahedron

In §6, we consider examples relating to the polytope known as the the hyper-

octahedron or cross polytope; in Coxeter’s notation it is denoted βn. The set Ψ

defined in Lemma 6.1 is our standard set of coordinates for the 2n vertices of the

hyperoctahedron.
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We will show how to use the hyperoctahedron to construct the remaining two

types of minuscule representations, namely the natural representations for Lie al-

gebras of types Cn and Dn.

Lemma 6.1. Let n ≥ 4, let ε0, . . . , εn−1 ∈ Rn be the usual basis for Rn, and let

Ψ = {±4εi : 0 ≤ i ≤ n− 1}.

Let ∆D be as in Lemma 5.3. Then Ψ is a minuscule system with respect to ∆D.

Proof. We check Definition 2.1, treating each vector a ∈ ∆D in turn. Suppose

first that a = αi for some 1 ≤ i ≤ n− 1, and let v ∈ Ψ.

Define εj to be the unique basis element such that v = ±4εj . If j 6∈ {i − 1, i}
then we have c = c(v,a) = 0 and neither vector v±a lies in Ψ, satisfying Definition

2.1 (ii). If v ∈ {4εi−1,−4εi} then v − a ∈ Ψ, 2v.a = 32 = a.a, giving c = 1 as

required. The other possibility is that v ∈ {−4εi−1, 4εi}, in which case v + a ∈ Ψ,

2v.a = −32 = −a.a, giving c = −1 as required.

Now suppose a = α′n. In this case, if j 6∈ {n−2, n−1} then we have c = c(v,a) =

0 and neither vector v±a lies in Ψ. If v ∈ {4εn−2, 4εn−1} then v−a ∈ Ψ, v+a 6∈ Ψ,

and 2v.a = 32 = a.a, giving c = 1 as required. The other possibility is that

v ∈ {−4εn−2,−4εn−1}, in which case v+a ∈ Ψ, v−a 6∈ Ψ, and 2v.a = −32 = −a.a,

giving c = −1 as required.

Finally, suppose a = α0. In this case, if j 6∈ {0, 1} then we have c = c(v,a) = 0

and neither vector v± a lies in Ψ. If v ∈ {−4ε0,−4ε1} then v− a ∈ Ψ, v + a 6∈ Ψ,

and 2v.a = 32 = a.a, giving c = 1 as required. The other possibility is that

v ∈ {4εi−1, 4εi}, in which case v + a ∈ Ψ, v − a 6∈ Ψ, and 2v.a = −32 = −a.a,

giving c = −1 as required. ¤

Proposition 6.2. Maintain the notation of Lemma 6.1.

(i) The 2n-dimensional C-vector space VΨ has the structure of a g-module,

where g is the derived affine Kac–Moody algebra of type D
(1)
n .

(ii) Let Ψ′ = Ψ and ∆′ = ∆\{α0}. Then Ψ′ is a minuscule system with respect

to the simple system ∆′, and VΨ′ is a module for the simple Lie algebra dn

over C of type Dn. It is an irreducible module with highest weight vector

4ε0 and lowest weight vector −4ε0, and affords the natural representation

of dn.

Proof. Using Lemma 6.1 in place of Lemma 4.2, the proof of (i) follows the same

argument as the proof of Proposition 4.3 (i).
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The first assertion of (ii) follows by using Lemma 6.1 and copying the argument

of Proposition 4.3 (ii). The operators Hi (for 1 < i ≤ n, where Hn corresponds to

α′n) all act as zero on 4ε0. The operator H1 acts as the identity on 4ε0. The second

assertion is then proved by adapting the corresponding argument in Proposition

4.3 (ii). ¤

Lemma 6.3. Let n ≥ 2, let Ψ be as in Lemma 6.1, and let

∆C = {α1, . . . , αn−1} ∪ {α′′0 , α′′n},
where αi is as in Lemma 5.1 for 1 ≤ i ≤ n− 1, α′′0 = −8ε0 and α′′n = 8εn−1. Then

Ψ is a minuscule system with respect to ∆C .

Proof. We check Definition 2.1, treating each vector a ∈ ∆C in turn. The only

cases not already covered by Lemma 6.1 are the cases where a ∈ {α′′0 , α′′n}. Let

v ∈ Ψ, and define εj to be the unique basis element such that v = ±4εj .

Suppose that a = α′′n. If j 6= n − 1 then we have c = c(v,a) = 0 and neither

vector v ± a lies in Ψ, satisfying Definition 2.1. If v = ±4εn−1 then v ∓ a ∈ Ψ,

v ± a 6∈ Ψ, and 2v.a = ±64 = ±a.a, giving c = ±1 as required.

The other possibility is that a = α′′0 . If j 6= 0 then we have c = c(v,a) = 0 and

neither vector v±a lies in Ψ, satisfying Definition 2.1. If v = ±4ε0 then v±a ∈ Ψ,

v ∓ a 6∈ Ψ, and 2v.a = ∓64 = ∓a.a, giving c = ∓1 and completing the proof. ¤

Proposition 6.4. Maintain the notation of Lemma 6.3.

(i) The 2n-dimensional C-vector space VΨ has the structure of a g-module,

where g is the derived affine Kac–Moody algebra of type C
(1)
n .

(ii) Let Ψ′ = Ψ and ∆′ = ∆\{α′′0}. Then Ψ′ is a minuscule system with respect

to the simple system ∆′, and VΨ′ is a module for the simple Lie algebra cn

over C of type Cn. It is an irreducible module with highest weight vector

4ε0 and lowest weight vector −4ε0, and affords the natural representation

of cn.

Proof. The proof is the same as the proof of Proposition 6.2, using Lemma 6.3 in

place of Lemma 6.1. ¤

7. Lines on Del Pezzo surfaces

In §7, we revisit the examples of §4 involving the exceptional Lie algebras e6

and e7. We will highlight the close link between the representation theory and

the combinatorial algebraic geometry associated with configurations of lines on Del

Pezzo surfaces. For more details on the latter, the reader is referred to [9, §V.4].
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Lemma 7.1. Let Ψ and ∆ be as in Proposition 4.3, and let K0 and K7 be as

in Definition 4.1. The action of the generators {sa : a ∈ ∆} of the Weyl group

W = WΨ,∆ on Ψ are as follows. If a = αi with 0 ≤ i ≤ 6, then

sa(±vj,k) = sa(±vsi(j),si(k)),

where si is the simple transposition (i, i + 1). We have sα7(±vi,j) = ±vi,j unless

{i, j} ⊂ Kk for some k ∈ {0, 7}, in which case we have

sα7(±v{i,j}) = ∓vKk\{i,j}.

The action of W on Ψ is transitive.

Proof. The formulae for the action of the sa are obtained by a routine case by

case check.

The action of the sαi
for 0 ≤ i ≤ 6 makes it clear that the vectors {+vi,j : 0 ≤ i <

j ≤ 7} are W -conjugate to each other, as are the vectors {−vi,j : 0 ≤ i < j ≤ 7}.
The fact that sα7(+v0,1) = −v2,3 completes the proof. ¤

Remark 7.2. The transformations induced by sα7 described in the preceding proof

are sometimes known as bifid transformations (see Example 3 of [13, §4]).

Lemma 7.3. Let Ψ and ∆ be as in Proposition 4.3. The diagonal action of the

Weyl group W on Ψ×Ψ has four orbits, each of which consists of a set

{(v1,v2) : v1,v2 ∈ Ψ and |v1 − v2| = D}
for some fixed number D. More explicitly, the orbits are as follows:

(i) {(v,v) : v ∈ Ψ}, corresponding to D = 0;

(ii) {(±vi,j ,±vi,k) : |{i, j, k}| = 3} ∪ {(±vi,j ,∓vk,l) : |{i, j, k, l}| = 4}, corre-

sponding to D =
√

32,

(iii) {(±vi,j ,∓vi,k) : |{i, j, k}| = 3} ∪ {(±vi,j ,±vk,l) : |{i, j, k, l}| = 4}, corre-

sponding to D =
√

64,

(iv) {(v,−v) : v ∈ Ψ}, corresponding to D =
√

96.

Proof. The assertions about D are easy to check. This other assertions, which are

also not difficult to prove, are a restatement of [4, (4.1)]. ¤

Proposition 7.4. The 56 elements of Ψ are in natural bijection with the 56 lines

of the Del Pezzo surface of degree 2; more precisely, if v1,v2 ∈ Ψ are distinct points

with |v1 − v2| =
√

32D, then D − 1 is the intersection number of the lines corre-

sponding to v1 and v2. In particular, pairs of points at distance
√

32 correspond to

skew lines on the Del Pezzo surface.
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The 27 elements of Ψ(n, 8) (defined in Proposition 4.3 (iii)) are

{v0,i : 1 ≤ i ≤ 6} ∪ {−vi,j : 1 ≤ i < j ≤ 6} ∪ {vi,7 : 1 ≤ i ≤ 6}.
These are in natural bijection with the 27 lines of the Del Pezzo surface of degree

1: in Hartshorne’s notation [9, Theorem V.4.9], we identify Ei with v0,i, Fij with

−vi,j and Gi with vi,7. The intersection number is defined as in the case of the 56

lines.

Proof. The assertions about the Del Pezzo surface of degree 2 are proved in [6,

p28], where it is shown that

|v1 − v2|2 = d2(x + 1),

where v1 and v2 are two distinct points of Ψ, d is the minimal nontrivial distance

between two points, and x is the intersection number of the pair of lines corre-

sponding to v1 and v2. (The precise link with the polytopes 221 and 321 is given

on [6, p33].)

It is easily checked that the 27 elements of Ψ(n, 8) are as listed. By the result

mentioned above, the only possible intersection numbers for two distinct lines on

the Del Pezzo surface of degree 3 are 0 (meaning the lines are skew) and 1 (meaning

the lines are incident). Since no two elements of Ψ(n, 8) are at distance
√

96, it

remains to check that two distinct points of Ψ(n, 8) are at distance
√

32 if and

only if the corresponding lines are skew, and this follows from the rules given in [9,

Remark V.4.10.1]. ¤

Note that, because Ψ(n,−8) = −Ψ(n, 8), the two 27-dimensional representations

of e6 are interchangeable in this context.

The next result explains how to recover the root system of type E7 from the set

E of directed edges of the polytope 321.

Proposition 7.5. Maintain the notation of Lemma 7.3. Let

E = {(v1,v2) : v1,v2 ∈ Ψ and |v1 − v2| =
√

32}
has size 1512. The vectors E′ = {v1 − v2 : (v1,v2) ∈ E} form a root system of

type E7, and each of the 126 roots occurs with multiplicity 12 in E.

Proof. If v1 = v0,1 then one checks directly that there are 27 vectors v2 such

that (v1,v2) ∈ E. The fact (Lemma 7.1) that W acts transitively on Ψ implies by

Lemma 7.1 that E has size |Ψ| × 27 = 1512.

For the second assertion, note that v0,1−v0,2 = α1. The (additive) action of W

on Ψ induces an action on E′, and Lemma 7.3 (ii) shows that W acts transitively



REPRESENTATIONS OF LIE ALGEBRAS 49

on E′. Note that if Aij = Aji = −1, then sisj(αi) = αj . This implies that all

the roots αi are conjugate under the action of the Weyl group, and then [11, §5.1]

shows that the orbit W.α1 consists precisely of the root system of type E7. By

transitivity of the action of W on the root system, each root in E′ occurs with

the same multiplicity, and by [2, Appendix] there are 126 roots of type E7. Since

1512/126 = 12, the proof is completed. ¤

Proposition 7.6. Let Ψ′ and ∆′ be as in Proposition 4.3, and let VΨ′ be the

corresponding 56-dimensional representation of the Lie algebra e7. If v ∈ Ψ′ and

x ∈ e7, then we have

x.v =
∑

u∈Ψ′′
λuu,

where Ψ′′ = {v} ∪ {u : |v − u| =
√

32}. In other words, if λu 6= 0, then either

u = v or the lines on the Del Pezzo surface of degree 2 corresponding to u and v

are skew.

A similar result holds for either of the 27-dimensional representations of e6 and

the Del Pezzo surface of degree 3.

Proof. By [2, §4.1], we have

e7 = h⊕
⊕

α∈Φ

gα,

where h is a 7-dimensional Cartan subalgebra, Φ is the root system for e7, and the

subspaces gα are one-dimensional. We identify e7 with the algebra of operators on

the 56-dimensional module V as described in Proposition 4.3 (ii).

With these identifications, if α = αi for i 6= 0, then gα (respectively, g−α) is

spanned by the Lie algebra element Ei = Eαi (respectively, Fi = Fαi). The Cartan

subalgebra h has as a basis the operators Hi = Hαi for 1 ≤ i ≤ 7.

It is possible to extend this to a basis for e7 in which (a) the subspace gα for α

a positive root is spanned by a vector of the form

[· · · [[Ei1 , Ei2 ]Ei3 ] · · ·Eim ]

where α =
∑m

j=1 αij and (b) the subspace gα for α a negative root is spanned by

a vector of the form

[· · · [[Fi1 , Fi2 ]Fi3 ] · · ·Fim ]

where −α =
∑m

j=1 αij . (See [7, Proposition 5.4 (ii), (iv)] or [11, (7.8.5)] for more

details.)

It follows that if bv is a basis element of V , α ∈ Φ and gα ∈ gα, then gα.bv =

λbv+α for some scalar λ (meaning that gα.bv = 0 if v + α 6∈ Ψ). If λ 6= 0, then
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Proposition 7.5 shows that the distance from v to v + α is
√

32. By Proposition

7.4, we see that v and v + α correspond to skew lines. It follows easily from the

definition of the Hi that if h ∈ H then h.bv = λbv for some scalar λ.

Combining these observations proves the assertions about the 56-dimensional

representation. The argument can be easily adapted to work for the 27-dimensional

representation, because the root system of type E6 embeds naturally into the root

system of type E7. ¤

8. Concluding remarks

In the various constructions presented above for irreducible modules for simple

Lie algebras, we did not provide self-contained proofs that the modules constructed

were irreducible. However, this was done only to save space, and it is not hard to

give an elementary field-independent proof that these modules are irreducible.

One application of the polytope approach to minuscule representations is that

one can describe the crystal graph of each of the irreducible modules that arises

from the construction directly in terms of the polytope. To do this, one starts with

the vertices of Ψ, and for each element a ∈ ∆ corresponding to a simple root of the

simple Lie algebra, one connects two vertices v1 and v2 of Ψ by an edge labelled a

if v1−v2 = a. It is not hard to show that this produces a realization of the crystal

graph, with the extra property that two edges are parallel if and only if they have

the same label.

In the cases where the pair (Ψ, ∆) corresponds to a representation of a simple

Lie algebra, the elements of Ψ may be partially ordered by stipulating that v1 ≤ v2

if v2−v1 is a positive linear combination of elements of ∆; this corresponds to the

usual partial order on the weights of a representation. The resulting partial order on

Ψ makes Ψ into a distributive lattice under the operations of greatest lower bound

and least upper bound. (This is not a priori obvious, but follows, for example, from

the full heaps approach; see [7, Corollary 2.2].) It would be interesting to know

whether there is an easy way to define the meet and join operations directly from

the data (Ψ,∆).

It may be tempting to think that one can describe a basis for each of the simple

Lie algebras described in this paper by including operators Ea and Fa for every

positive root a. However, such an algebra of operators would not be closed under

the Lie bracket (except in trivial cases) and what is needed instead is to modify

the definition of these new operators to introduce sign changes in certain places.

This information may easily be computed by hand, because there is a dictionary
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between the vertices of polytopes in this paper and certain heaps appearing in [7,15].

Associated to each heap is a number ±1, called the “parity” of the heap, which may

easily be computed by hand. One may then introduce sign changes to the operators

Ea and Fa according to the parity of the heaps involved. In the simply laced case, a

definition of parity is given in [15]. A more versatile and general definition is given

in [7, Definition 4.3, Definition 6.3], which can be used to produce the Chevalley

basis corresponding to an arbitrary orientation of the Dynkin diagram as described

by Kac in [11, (7.8.5), (7.9.3)]. We plan to give full details of this construction

elsewhere.
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