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ABSTRACT. Our main purpose is to classify the finite dimensional central sim-
ple associative division Z3-algebras over a field K of characteristic 0, and then
study the existence of Zs-involutions on Zs-algebra A = Mp4q+p(D), where

D is a central division algebra over a field K of characteristic 0 and p,q > 0.
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1. Introduction

n—1
An associative Z,-ring R = @ R; is nothing but a (Z/nZ)-graded associative
i=0
n—1
ring. A (Z/nZ)-graded ideal I = @ I; of an associative Z,-ring R is called a

i=0
Zy,-ideal of R. An associative Z,-ring R is simple if it has no non-trivial Z,-ideals.

Let R be an associative Z,-ring with 1 € Ry, then R is said to be a division Z,-ring
if all nonzero homogeneous elements are invertible, i.e., every 0 # r, € R, has an
inverse !, necessarily in R,_,.

Let K be a field of characteristic 0 (not necessarily algebraically closed). An
associative (Z/nZ)-graded K-algebra A = nél A; is a finite dimensional central
simple Z,-algebra over a field K, if Z(A) N ;l_ooz K, where Z(A) ={a € A | ab=
ba V b € A} is the center of A, and the only Z,-ideals of A are (0) and A itself.
An associative (Z/27)-graded K-algebra A is called associative superalgebra (see
[3,1,5]).

2. Examples of Z,-algebras

Example 2.1. Let A = K({/a) be an algebraic field extension of the field K of
degree n, that is [A : K] =n. We can make A into a Z,-algebra by setting

Ao=K, Ay =K. Ya, ..., Ai:K.W, cory, Ap1 = K. Var—1.

Note that A is a central simple Z,-algebra, since A is a field and AN Ay = K.
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Example 2.2. Let w be a fixed primitive n-th root of unity. For a,b € K>,
let A =< a,b >, be the K-algebra which is generated by {¢,;j} which satisfy
{i" =a, j" =b, ij = wji}. Then A is a vector space over K with basis

2 as a K-algebra. (See [4, Section

{i"j®* : 0 <7 < n}. So.A has dimension n
15.4] and [2, Exercise 4.28]). This is a generalization of the quaternion algebras.
We can make A into Z,-algebra by setting A; =< i*5™ : k+m =1( mod n) > .
Example 2.3. A Z,-space over a field K is a left K-vector space V which is
n—1 n—1
Zn-graded V = € V;. The associative algebra EndxV = € End;V, where
i=0 i=0

End,V :={a € EndgV : vja € Viy,},

is an associative Z,-algebra.

n—1

Example 2.4. Let D = @ D; be a Z,-division algebra then A = M (D) can be
i=0

made into Z,-algebra by setting

Ao = My(Dy), A1 = M(D1),..., A1 = Mp(Dyp—1).

Example 2.5. Let D be a central division algebra over a field K and let A =
Ms3(D). If Ag = <§ g 8) , A = (g 3 §> , Ao = (gég). Then A is a Zs-algebra
written by A = Mj4141(D).

Theorem 2.6. Let D be a central division algebra over a field K and let A =
M, (D), then A can be made into Zi,-algebra by setting

0 -+ - 0
* 0
Ay = , A= |0 % 0 ,
%
0 0 * 0
0 0 =+ 0 [0 « 0 0]
0 0 =
0 =
* 0 0
A2: O * O O ) 7“4’!7.71: O 0
. . 0 *
0 - 0 x 0 o0 [ 00 0]
n—1
Proof. Note that A = @ A; and A? C Ay, A} C As, ..., A?_l C A,

i=0
AP C Ap. Therefore A;A; C A;1; where the subscripts are taken modulo n. O
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In the next theorem we will show that any matrix A = M, (D), where D is a

division algebra, and where n = p + ¢ + r such that p,q,r > 0, can be made into

Zs-algebra.

Theorem 2.7. Let D be a division algebra and let A = M, (D) where n =p+q+r
a 00z 0fO0

such that p,q,r > 0. If Ay = (028), A = (IOO), A = (Ogg) where
00c 0y0 h 00

a € My(D), b e My(D), ¢c € Mp(D), z € Mpxr(D), x € Myxp(D), y € Myyxq(D),
f € Myxy(D), g € Mysr(D), h € Myyp(D), then A is a Zs-algebra written by
A= Mpyq4r(D).

2

Proof. Note that A = @ A;, and A;A; C A;y; where the subscripts are taken
i=0

modulo 3. Therefore A = M, ,+,(D) is a Zz-algebra. O

2
Definition 2.8. Let A = @ A; be a Zs-algebra, then the Zgs-additive map
i=0
o : A — Asuch that for a; € A;, b; € A; and r = ij mod 3
o(aibj) = (=1)"o(b;)o(a:)
is called a Zg-antiautomorphism on A.

Definition 2.9. A Zgs-involution on a Zg-algebra A is a Zs-antiautomorphism on
A of order 2.

n—1
Let V = @ V; be a left Z,-space over a field K. A symmetric Z,-form on V is
i=0
a Zy-bilinear form

( y ) VXV — K, V= VQJ_VlJ_...J_anl,

which is symmetric on Vs, and skew-symmetric on Vo4 1.

The symmetric Z,-form (, ) on V is nondegenerate if
(v;,V)={0} = v, =0 and (V,v;) ={0} = v, =0.

Theorem 2.10. A nondegenerate symmetric Zs-form (, ) on a finite dimensional

Zs-space V over a field K, induces a Zz-involution * on EndgV wvia

(viar,vj) = (=1)" (v;,vja}) Yoi,v; € V.
Proof. Let ay,bs € EndgV, then
(viaabs,vj) = (=1 (v;,v5(aabs)")
= (=1 (viaq, v;b)

= (=1)*PHD(=1)% (v;,v;bal).
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Which implies that (—1)F7 (v, v;(anbg)*) = (fl)a('@”)(fl)ﬁj(vi,vjbEaZ). We
will show that

a(B+7) mod3+8j mod3 = (a+3)j mod3+af mod3 (1)

case by case on a.
If @« =0, then (1) becomes $j mod 3 =35 mod 3.
If & =1, then (1) becomes

(B+37) mod3+3j mod3 = (1+p)j mod3+3 mod3 (2)

we show that (2) is true case by case on j.

If 5 =0, then (2) becomes  mod 3 =0 mod 3.

If j = 1, then (2) becomes (8+1) mod 3+ mod 3= (8+1) mod 3+ mod 3.
If j = 2, then (2) becomes

(B+2) mod3+4+28 mod3 = (2+28) mod3+ S mod3 (3)

and we will show that (3) is true case by case on 3.

If 3 =0, then (3) becomes 2 mod 3 =2 mod 3.

If 8 =1, then (3) becomes 2 mod 3 =1 mod 3+ 1 mod 3.

If 8 =2, then (3) becomes 1 mod 34+ 1 mod 3 =2 mod 3.
(1)

If @« =2, then (1) becomes
2(6+7) mod3+p3j mod3 = (2+3)7 mod3+23 mod3 (4)

and we will show that (4) is true case by case on j.

If 5 =0, then (4) becomes 23 mod 3 =28 mod 3.

If j = 2, then (4) becomes 2(5 + 2) mod 3 + 258 mod 3 = 2(8 + 2) mod 3 + 203
mod 3.

If j =1, then (4) becomes

2(64+1) mod3+p5 mod3 = (2+6) mod3+25 mod3 (5)

and we will show that (5) is true case by case on 3.

If 3 =0, then (5) becomes 2 mod 3 =2 mod 3.

If 3 =1, then (5) becomes 1 mod 34+ 1 mod 3 =2 mod 3.
If 8 =2, then (5) becomes 2 mod 3=1 mod 3+ 1 mod 3.

Therefore, in all cases we have

(=)@ (w3, 05(aabs)?) = (1) (1) (vi, vb5a7)

= (D) (0 b0,
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which implies that (v;,v;(aabg)*) = (fl)aﬁ(vi,vjbgaj;), for all v; € V;, and hence
(v3,v;(aabp)” = (=1)*v;bas) =0 Vu; € V;

and because of the nondegenerancy of the Zs-form (, ) on V, we have
vj(aabs)* = (=1)*v;bjar,. 0

3. Division Zs-algebras

We start this section by proving a structure theorem on Zjs-division algebras
which is a restate of Division Superalgebra Theorem, see [5, P. 438], but first we
need the following lemma. The proof of this lemma is exactly the same as the proof
of [6, Lemmata 3,5].

Lemma 3.1. If A = Ayg+.A;1+.As is a central simple unital Zs-algebra over K then
either A is simple as an algebra or Ag is simple and A, = Agu and Ay = Agu?,
with uw € Z(A)N Ay and u® = 1.

Theorem 3.2 (Division Zs-algebra Theorem). If D = Dy + D1 + Dy is a finite
dimensional central division Zs-algebra over the field K of characteristic 0, then
exactly one of the following holds where throughout C denotes a central division
algebra over K and w € K denotes a primitive third root of unity.

(i) D =Dy =C, i.e., D; = {0}, Dy = {0}.

(ii) D =CRx Klu], u> =X € KX, Dy =C®x K, D1 = C®x Ku, Dy = CRx Ku?.
(iii) D =C, Dy = Cp(u), the centralizer of u in C,

Dy ={ceD : cu=o(u)c},
Dy={ce€D : cu=o*(u)c},
for some Galois extension K[u] C C of order 3 with Galois automorphism o.

(iv) D = M3(C) = C @k M3(K),
Dy =C®x K[u], D1 =C @k K[u]Wi, Dy = C @ Ku]W;*,

010 100 _ 100
ot = (345) w5 = (125 7 = (121) € a1

Proof. Let D = Dy + Dy + D> be a central division Zg-algebra over K, and let
Dy # {0}, then Dy # {0}. If 0 # v € Dy, then Dyv C Dy = Dyv v C Dyv, and
Dov~! € Dy = Dyvv~t C Dyv~'. Therefore D; = Dyv and Dy = Dyv~' for any
0#veD.

For any a € Dy, va = a¥*v, where a¥» = vav™!, and ¥, |p, is an automorphism
of Dy as an algebra over K = Z(D) N Dy. Since any element of Dy is of the form
cov, ¢ € Dy, the restriction of ¥, to Z(Dy) does not depend on the particular
choice of v € Dy.
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Assume first that 1,|p, is an inner automorphism of Dy, say ¥, |p, = ¢, where

1 1

¢ € Dy (up to multiplication by an element of Z(Dy)). Therefore vav™" = cac™

1

implies that ¢ 'vav~'c = a for all a € Dy. Letting u = ¢ 'v € Dy then u=' € D,

I = g for all a € Dy, so u centralizes Dy. Since Dy = Dou, Dy = Dou ™",

and uau~
u centralizes Dy and Dy. Thus u € Z(D) and u® € Z(D) N Dy, say u® = X € K*.
Letting C = Dy, D = C ® K[u]. Note that D is simple as an algebra if and only
if A\ ¢ K3. If A\ € K3, we may assume that A\ = 1. This is the only case where D is
not simple as an algebra.

Assume next that o = 1, |p, is not an inner automorphism of Dy over K. If o
is not the identity then K is the fixed subfield of Z(Dy), which implies that Z(Dy)
is a Galois extension of K of order 3 with Galois automorphism o. We may choose
u € Z(Dy) such that Z(Dg) = K[u], u®> = X\ ¢ K3 with o(u) # v € K[u]. Now,
(av)u = ao(u)v = o(u)(av) implies that o(vu) = vo(u) = o(o(u)v) = o(u)v and
2u = avo(u)v = a(vo(u))v = a(o?(u)v)v = o2(u)(av?) for all a € Dy.
Therefore Dy = Cp(u), the centralizer of v in D, and Dy = {c € D : cu = o(u)c} =
Dov, Dy = {c € D : cu = o*(u)c} = Dyv?®. If D is a division algebra then
D = Dy + Dy + D5 as above.

hence av

If D is not a division algebra then since Dy is not central simple over K =
Z(D) N Dy then, by Lemma 3.1, D is a central simple algebra over K. Let J # {0}
be a right ideal of D. If 0 # ag + a1 + as € J then at least one of a; # 0 and
multiplying by ai_1 on the right, 1+ by + by € J for some by € Dy, by € Dy. Hence
(14b1+b2)D C J. If J contains an element 0 # aj + a} +ah & (14 by + by)D then
arguing as above, we obtain an element 1+ b} + b5 € J, b] + by # by + bo. In that
case 0 # by — by + by — by € J, where by — b} € Dy and by — by € Do, If by — b} =0
or by — b, =0, then 1 € J and hence J = D. If by — b} # 0 and by — by # 0, then
multiplying by — b} + by — by by (by —b})™1, 1+¢1 € J and ¢; # 0. If J contains an
element 0 # af +af +a} & (14 ¢1)D, then arguing as above, we obtain an element
14c} € J, ¢} # c1. In that case 0 # ¢; — ¢} € J and hence 1 € J which must be the
whole of D. Therefore a descending chain of nonzero right ideals in D has length
at most 3 and D is isomorphic to M3(C), where C is a central division algebra over
K. If K[u] were to embed in C then Dy = Cp(u) 2 M3(C) which is not a division
algebra. Therefore K[u] does not embed in C but rather the algebraic extension
K|[u] of order 3 embeds in M5(K) and u, Wy, Wa can be chosen as

= (141) = (2 8) (13wt e
where
Dy =C® Ku], D1 =C® K[ulWy, Dy =C ® K[u]Wh. O
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4. Zs-Involution

In this section we will obtain more information on the Zs-involutions of the
central simple Zs-algebra A = Mpi44,(D), where D is a central division algebra

over a field K of characteristic 0, and p, g, > 0.

Example 4.1. Let A = Mjy141(K) be a Zs-algebra then the Zs-additive map

o0 : A— A defined by
(338D = (538, o(23E)= (15 %). (3520 = (242
00c 00a 0b0 Oa O c00 —c00

is a Zs-involution on A.
Theorem 4.2. Let D be a division algebra, and let A= Mpiq1+p(D), p,g >0 be a
Zs-algebra with Ay = M,(D) & My(D) & M,(D) and
0 0 ¢ 0
.Al =]la 0 O 5 .A2 =10
0 b 0

o O 8

0
Yy
z 0

with a,y € Myxp(D), byx € Mpxq(D), ¢,z € Mypxp(D). If D has an involution ~,
then * defined by

*

f z c h y —cC
a g y| = b g T
z b h -z a f

is a Zz-involution on A, where for any matriz a over D, a = a®, t the transpose.

Proof. If D has an involution ~, then for any a € M, (D) or a € My (D), a = a',

t the transpose, defines involutions on M, (D) and on My(D). Moreover if ¢ €

Mpsq(D) (Mgxp(D)), then a € Myxp(D) (Mpxq(D)).-
0 0 ¢ 0 0 =

Let

a 0 O0],|x 0 0] betwo matrices in A;, then
0 b 0 0y O
0 0 ¢ 0 0 =z 0 cy O 0 az O
[fa 0 0]z 0 0|]'=]0 0 az| = 0 0 ¢
0 b 0y 0 br 0 0 ~bz 0 0
0 za 0
= 0 0 4c
— 0 0



And

\
o 8 o
o 9 o
-~ o o

0
0

o O 2
o o O
8 O© O
oS O

c

And

oS O w
o v O

o O
o O 2

Which implies that (XY)* =
0 0 ¢

Finally, let X = [a 0 0
0 b 0

general matrix in As, then

cT
0
0

(XY)" =

-~

o o4 O©

AMEER JABER

0 0
ay O
0 bz

o O

2

0 az
0 0
cy O

*

S O W

o T O

—Y*X* for all X, Y € A,.

0 —¢
0
a
0
=| o0
—zb

0

cy

o O o

be a general matrix in A; and Y =

za

0 gc

0

s}

o O

8

o O w

0

0

o o O



DIVISION Zs3;-ALGEBRAS 9

0 z 0\ [0 0 —¢ b 0 0
andY*X*=10 0 g||[ob 0o of=[0 ga o [=(&xY)
-z 0 0/ \0o a o 0 0 ic
Similarly, (Y X)* = X*Y*. g

Theorem 4.3. Let D be a dwision algebra. If A = Mpyq4r(D), p,g,7 > 0 is a
Zs-algebra with Ay = M,(D) & My(D) & M, (D) and

0 0 ¢ 0z O
Ai=|a 0 0|, A2=1]0 0 y
0 b 0 z 0 0

with a € Myxp(D), y € Myxr(D), € Mpxq(D), b € Myyq(D), ¢ € Mpxp(D),
z € Myyp(D). Let A = M,(D) ® {0} & M, (D) if * is a Zs-involution on A with
(A, x|a) is simple then p = r, D has an involution ~, and (A, *) is isomorphic
to Mpyq+p(D) with the Zz-involution * given by

*

f z c h % —uc
a gyl =% § az|, (6)
z b h —jiz aa f

for p,a € K such that ppp = 1 and & = p, where a = at for any matriz a over
D, t the transpose. If ~ is of the first kind then p and o may be chosen equal to 1.
Conversely if D has an involution ~ then (6) defines a Zz-involution on the simple
Zs-algebra My q4p(D).

Proof. In recent work on the primitive Zs-algebras which has yet to appear, we
prove that a Zg-algebra M, (D) has a Zs-involution if and only if D has. In this case
since D = Dy, D has an involution ~ then @ = a' for any matrix a over D, t the
transpose, extends to involutions on M, (D) and on M, (D). Since (A, | 4) is simple
by assumption, M, (D) is anti-isomorphic to M,(D) and r = p. Up to isomorphism,
(A, %] 4) is given by (M,(D) @ {0} & M, (D), *) with (a,0,b)* = (b,0,d). The proof
for p > g goes along the same lines we may let p < ¢q. Letting

D pt+q p+q+p
f11 = E €is f22 = E €i4 f33 = E €ii
i=1 i=p+1 i=p+q+1

D D
fi2 = E €i pti fiz = g €i ptqti
i=1 i=1

p p
for = Zep+i i foz = Z €p+i p+qti
i=1

=1
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fs1 = iemqﬂ' i J32 = iep—i-q-‘ri pti
We have - -
Ao = Mp(D) fr1 & My(D) faz & Mp(D)fss,
Ay = Mp(D) frs & (My(D) fa1 + fa1 My (D)) & (Mp(D) f32 + f32My(D))
Az = My(D) f31 @ (Mp(D) fr2 + f12Me(D)) & (My(D) f23 + fasMp(D))
fi = fs3, fa3 = fi1, fa2 = fo.
Hence
fis = (firf13f33)" = fuifis /33,
and

fis = cfis, for some ¢ € M,(D).

For any a € M,(D),

(afi3)" = ((afi1)f13)" = cfizafss = cafis
While

(af13)" = (fis(afs3))” = afircfrs = acfis.
Therefore ¢ € Z(M,(D)). Moreover fi3 = fi5 = (cfi3)* = ¢cfr3 implies éc = I,,.
So ¢ = —p € K with pp = 1. Similarly f§; = dfs1, d € Z(M,(D)). But

f33 = fi1 = (f13f31)" = f31f13 = (dfs1)(cf13) = dcfz3

which implies that dc = 1, and hence d = ¢! = ¢ = —/i. Therefore

(afi3)" = —apfiz and (afs)” = —apifs.
Moreover
Ji2 = afaz,  fo3 = Bfi2

for some «, 3 € K with af = p, since (f12)** = (afa3)* = a(f23)* = aBfi2 = fio,
theno’zﬁzl,soﬁzéand%:u.

Similarly, f3; = 7 fs2, fiy = 0fo1 for some 7,6 € K with vd = p which implies that
~v8 = 1 = af3, so we may take y =& and § = 3 = é Therefore

*

f z c h % —uc
a g y = g g az |,
z b h —jiz aa f

is proved in Theorem 4.2. (I
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