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Abstract. The study of global dimension of pullback rings has been subject

of several interesting works and has been served to solve many open problems.

In this paper, we attempt to extend some results on the global dimension of

pullback rings to the Gorenstein setting. As a particular case we discuss the

transfer of the notion of Gorenstein rings in some particular pullback construc-

tions.
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1. Introduction

Throughout the paper all rings are associative with identity, and all modules are,

if not specified otherwise, left modules. Let R be a ring and let M be an R-module.

The notation MR (resp., RM) means that M is a right (resp., left) R-module. The

projective (resp., injective, and flat) dimension of an R-module M is denoted by

pd(M) (resp., id(M) and fd(M)).

An R-module M is said to be Gorenstein projective if there exists an exact

sequence of projective modules

P = · · · → P1 → P0 → P 0 → P 1 → · · ·

such that M ∼= Im(P0 → P 0) and such that HomR(−, Q) leaves the sequence P

exact whenever Q is a projective R-module.

We say that a module M has Gorenstein projective dimension at most a positive

integer n, and we write Gpd(M) ≤ n, if there exists an exact sequence of modules

0 → Gn → · · · → G0 → M → 0,

where each Gi is Gorenstein projective.
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The Gorenstein projective dimension is analogous to the classical projective di-

mension and shares some of its principal properties (see [14,15,18,30] for more de-

tails). They are linked by the well-known fact that, for every module M , Gpd(M) ≤
pd(M) with equality Gpd(M) = pd(M) when pd(M) is finite. We say that the

Gorenstein projective dimension is a refinement of the projective dimension.

The origin of Gorenstein projective dimension dates back to the sixties of the

last century when Auslander [1] introduced it for finitely generated modules over

Noetherian rings and developed it with Bridger in [2]. The Gorenstein projective

dimension was first called G-dimension by Auslander. Later, Enochs and Jenda

[19,20] gave the current extension of the G-dimension to arbitrary modules over

rings (that are not necessarily Noetherian), and named it as Gorenstein projective

dimension. The same authors [19,20] defined the Gorenstein injective module and

the Gorenstein injective dimension as dual notions of their respective Gorenstein

projective ones. Namely, a module M is said to be Gorenstein injective, if there

exists an exact sequence of injective modules

I = · · · → I1 → I0 → I0 → I1 → · · ·

such that M ∼= Im(I0 → I0) and such that Hom(E,−) leaves the sequence I exact

whenever E is an injective module. We say that a module M has Gorenstein

injective dimension at most a positive integer n, and we write Gid(M) ≤ n, if there

exists an exact sequence of modules

0 → M → G0 → · · · → Gn → 0,

where each Gi is Gorenstein injective. Also, the same authors with Torrecillas [22]

introduced the Gorenstein flat modules and the Gorenstein flat dimension, such

that a module M is called Gorenstein flat if there exists an exact sequence of flat

modules

F = · · · → F1 → F0 → F 0 → F 1 → · · · ,

such that M ∼= Im(F0 → F 0) and such that I ⊗ − leaves the sequence F exact

whenever I is an injective right module. We say that M has Gorenstein flat di-

mension at most a positive integer n, and we write Gfd(M) ≤ n, if there exists an

exact sequence of modules

0 → Gn → · · · → G0 → M → 0,

where each Gi is Gorenstein flat.
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The Gorenstein homological dimensions over Noetherian rings have been subject

to an extensive study (see for instance [14,15,18]). It turned out ultimately that

they are similar to (and refinements of) the classical homological dimensions. In

2004, Holm [30] generalized several well-known results on Gorenstein dimensions

over Noetherian rings to arbitrary rings, and then the Gorenstein homological di-

mensions theory witnessed a new impetus. Now, the study of Gorenstein dimen-

sions is known as Gorenstein homological algebra. A principle guiding in the study

of Gorenstein homological dimensions has been formulated in the following meta-

theorem [29, page V]: Every result in classical homological algebra has a counter

part in Gorenstein homological algebra. In line with this, several classical results

on global homological dimensions were extended to global Gorenstein homological

dimensions (see [10,9,8]). Namely, it is proved in [10, Theorem 1.1] that for a ring

R:

sup{GpdR(M) |M is an R−module} = sup{GidR(M) |M is an R−module}.

The common value of the terms of this equality is called, when we consider left

(resp., right) R-modules, left (resp., right) Gorenstein global dimension of R, and

denoted by l.Ggldim(R) (resp., r.Ggldim(R)). Also, the (left and right) Gorenstein

weak dimension of a ring R, Gwdim(R) = sup{GfdR(M) |M is an R−module}, is

investigated. It is also proved that the Gorenstein global and weak dimensions are

refinements of the classical global and weak dimensions of rings, respectively. Thus,

Ggldim(R) ≤ gldim(R) and Gwdim(R) ≤ wdim(R), with equalities Ggldim(R) =

gldim(R) and Gwdim(R) = wdim(R) when wdim(R) is finite ([10, Corollary 1.2]).

In this paper, we investigate Gorenstein global dimension in pullback construc-

tions. Recall that a commutative square of ring homomorphisms

(¤)

R

i2

²²

i1 // R1

j1

²²
R2

j2

// R′

is said to be a pullback square, if given r1 ∈ R1 and r2 ∈ R2 with j1(r1) = j2(r2)

there exists a unique element r ∈ R such that i1(r) = r1 and i2(r) = r2. In the

above pullback diagram (¤), we assume that j2 is surjective, so that results of

Milnor [33] apply. The ring R is called a pullback of R1 and R2 over R′. The most

useful particular cases of pullback rings are constructed as follows: Let I be an ideal

of a ring T . A subring D of the quotient ring T/I is of the form R/I where R is a
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subring of T , which contained I as an ideal. Then, R is a pullback ring of T and D

over T/I issued from the following pullback diagram of canonical homomorphisms:

R := π−1(D)
Ä _

²²

// // D = R/I
Ä _

²²
T // // T/I

Following [12], R is called the ring of the (T, I, D) construction. This construction

includes the well-known “D+M” construction and in general the D+I-construction

(for more details about these constructions, see [12,23,25]).

These constructions have proven to be useful in solving many open problems

and conjectures for various contexts in (commutative and non-commutative) ring

theory. In the same direction, the study of global dimension of pullback rings leads

to interesting examples (see [17,26,27,32]). In [32, Theorem 2], an interesting upper

bound on the global dimension of pullback rings is established as follows: Consider

a pullback diagram of type (¤). Then,

l.gldim(R) ≤ maxi{l.gldim(Ri) + fd(Ri)R}.

In this paper, we attempt to extend this result to the setting of Gorenstein dimen-

sions, such that we get:

l.Ggldim(R) ≤ maxi{l.Ggldim(Ri) + Gfd(Ri)R}.

Naturally, to establish this inequality, one would like to mimic Kirkman and

Kuzmanovich’s proof of [32, Theorem 2]. But, this seems impossible. In fact, the

key result for proving [32, Theorem 2] is the following result.

Proposition 1.1. ([32, Proposition 3]) Consider a pullback diagram of type (¤).

Let M be an R-module such that TorR
ni+m(Ri,M) = 0 for m ≥ 1, i = 1, 2. Then

pdR(M) ≤ maxi{ni + pdRi
(Ri ⊗R Im fni)}

where · · · −→ Pk+1
fk+1−→ Pk

fk−→ · · · −→ P1
f1−→ P0

f0−→ M −→ 0 is a projective

resolution of M .

The proof of this result is a direct consequence of the following well-known

Milnor’s result [33] (see also [24]):

Theorem 1.2 ([33]). Consider a pullback diagram of type (¤). An R-module M

is projective if and only if the R1-module R1 ⊗R M and the R2-module R2 ⊗R M

are projective.
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However, the Gorenstein counterpart of Milnor’s result fails from Example 1.4

below. Before giving this example, we need to recall the following notions and

results. A ring R is called n-Gorenstein if it is Noetherian with id(RR) ≤ n and

id(RR) ≤ n; and R is said to be Iwanaga-Gorenstein if it is n-Gorenstein for some

positive integer n (see [31] and [18, Section 9.1]). Notice that 0-Gorenstein rings

are just the well-known quasi-Frobenius rings. Thus, a ring R is quasi-Frobenius if

and only if R is Noetherian and, for every ideal I, Ann(Ann(I)) = I where Ann(I)

denotes the annihilator of I (see [35] for more details about this kind of rings).

Lemma 1.3. ([18, Theorem 12.3.1]) Let R be a Noetherian ring and n a positive

integer. The following statements are equivalent:

(1) R is n-Gorenstein.

(2) l.Ggldim(R) ≤ n.

(3) r.Ggldim(R) ≤ n.

(4) GpdR(R/I) ≤ n for every left and every right ideal I of R.

The implication (4) =⇒ (1) is a simple consequence of [36, Theorem 9.11]. In

fact, for a not necessarily Noetherian ring R with finite left (resp., right) Gorenstein

global dimension, one can show, using [36, Theorem 9.11] and [10, Lemma 2.1], that

l.Ggldim(R) ≤ n (resp., r.Ggldim(R) ≤ n) if and only if GpdR(R/I) ≤ n for every

left (resp., right) ideal I of R.

Recall that the trivial extension of a ring R by an R-module M is the ring

denoted by R nM whose underling group is A ×M with multiplication given by

(r,m)(r′,m′) = (rr′, rm′ + r′m) (see [25]).

Example 1.4. Let R denotes the field of real numbers and let C denotes the field

of complex numbers. Consider the following pullback diagram

Rn CÄ _

²²

// // RÄ _

²²
Cn C // // C

The ideal 0 n R of R n C is not Gorenstein projective. However, the R-module

0 n R ⊗RnC R and the C n C-module 0 n R ⊗RnC C n C are both Gorenstein

projective.

Proof. First, note that CnC is quasi-Frobenius over which all modules are Goren-

stein projective, and so the second assertion holds true.

It is easy to show that all ideals of RnC are either isomorph to (0nR)2 or to the
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ideal 0 n R. Then, if the ideal 0 n R is Gorenstein projective, so are all ideals of

RnC. Then RnC is quasi-Frobenius (by Lemma 1.3 and since RnC is Artinian).

But this contradict the fact that Ann(Ann(0 n R)) = 0 n C. Therefore, the ideal

0nR of Rn C is not Gorenstein projective. ¤

In view of this, we deduce the difficulty to follow the classical way to extend

Kirkman and Kuzmanovich’s result [32, Theorem 2]. However, in Section 2, we show

that Proposition 1.1 allows us to give a situation where Kirkman and Kuzmanovich’s

result has a Gorenstein counterpart (see Theorem 2.1), and also allows as to give

an upper bound to the global dimension of coherent pullback rings (see Theorem

2.3). In Example 2.4, we give a pullback construction where Theorem 2.3 can be

applied.

It is worthwhile reminding that the study of Gorenstein global dimension of

Noetherian pullback rings turns to the transfer of the notion of Gorenstein rings in

pullback constructions (see Lemma 1.3). In Section 3, we investigate the transfer of

the notion of Gorenstein rings in some particular pullback constructions. In Theo-

rem 3.4, we establish a Gorenstein counterpart of the classical fact that domains of

global dimension 1 are Noetherian, namely Dedekind. Thus, a domain has Goren-

stein global dimension 1 if and only if it is 1-Gorenstein. These kind of domains

are extensively studied and characterized by several notions (see [3, Section 6]).

The most useful one is the notion of divisorial ideal: an ideal I of a domain R is

called divisorial (or reflexive) if (I−1)−1 := Iv = I. The class of domains in which

each nonzero ideal is divisorial has been studied, independently and with different

methods, by H. Bass [3] and W. Heinzer [28]. Following S. Bazzoni and L. Salce

[5,6], these domains are now called divisorial domains. From [3, Theorem 6.3], [28,

Corollary 4.3], we have:

Proposition 1.5. A domain R is 1-Gorenstein if and only if it is a Noetherian

divisorial domain.

Combining the above result with [4, Theorem 2.1(m)], we deduce the following

result on 1-Gorenstein domains in “D + M” constructions.

Proposition 1.6. Let V be a discrete valuation domain of the form K + M ,

R = D + M , where D is a proper subring of K. Then, R is 1-Gorenstein (i.e.,

l.Ggldim(R) = r.Ggldim(R) = 1) if and only if D is a field and the degree of K

over D is two.
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Later, using Mimouni’s paper [34], we generalize this result to more general cases

(see Theorem 3.5 and Corollary 3.8).

2. Gorenstein global dimension of pullback rings

We begin with the first situation where we can get a Gorenstein counterpart of

Kirkman and Kuzmanovich’s result [32, Theorem 2].

Theorem 2.1. Consider a pullback diagram of type (¤). If l.Ggldim(R) < ∞,

then

l.Ggldim(R) ≤ maxi{l.Ggldim(Ri) + Gfd(Ri)R}.

Proof. Assume that maxi{l.Ggldim(Ri)+Gfd(Ri)R} is finite, and set Gfd(Ri)R =

ni for i = 1, 2. Let I be an injective R-module and consider a projective resolution

of I:

· · · → P2 → P1 → P0 → I → 0

By [10, Lemma 2.1], pdR(I) < ∞. Since l.Ggldim(R) < ∞, pdR(Ini) < ∞ for

i = 1, 2, where Ini = Im(Pni → Pni−1). Consider a positive integer mi ≥ 1 with

mi ≥ pdR(Ini). Then, we have the following projective resolution of Ini :

0 → Ini+mi → Pni+mi−1 → · · · → Pni → Ini → 0

So, for m ≥ 1, TorR
m(Ri, Ini) = TorR

ni+m(Ri, I) = 0 (since Gfd(Ri)R = ni and I is

an injective R-module). Thus, the following sequence

0 → Ri ⊗R Imi+ni → · · · → Ri ⊗R Pni → Ri ⊗R Ini → 0

is exact and it is a projective resolution of the Ri-module Ri ⊗R Ini . This means

that Ri⊗R Ini has finite projective dimension which is at most l.Ggldim(Ri). Thus,

from Proposition 1.1, pdR(I) ≤ maxi{l.Ggldim(Ri)+Gfd(Ri)R}. Therefore, by [10,

Lemma 2.1], l.Ggldim(R) ≤ maxi{l.Ggldim(Ri) + Gfd(Ri)R}. ¤

For commutative coherent rings, we give an upper bound to the global dimension

of coherent pullback rings without assuming that l.Ggldim(R) < ∞. For that, we

need the following result.

In [8], the authors gave a result that allows to show where Gorenstein global

dimension of coherent ring is finite (see [8, Proposition 2.5 and 2.11] and [8, Example

2.8]). Recall that a ring R is called n-perfect for some positive integer n, if pd(F ) ≤
n for every flat R-module F (see [16,21]), and a commutative ring R is said to be

n-FC for some positive integer n, if it is coherent and FP−idR(R) ≤ n, where

FP−id(M) denotes, for an R-module M , the FP-injective dimension, which is
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defined to be the least positive integer n for which Extn+1
R (P, M) = 0 for all finitely

presented R-modules P . From [13, Theorem 7] (see also [8]), for a positive integer

n and a commutative coherent ring R, Gwdim(R) ≤ n if and only if R is n-FC.

Then, the inequality of [8, Theorem 2.1] can be written as follows:

Lemma 2.2. ([8, Theorem 2.1]) For two positive integers n and m, if a commuta-

tive ring R is n-FC and m-perfect, then Ggldim(R) ≤ n + m.

Using this result with Proposition 1.1, we establish an upper bound on the global

dimension of coherent pullback rings.

Theorem 2.3. Consider a pullback diagram of type (¤) of commutative rings. If

R is coherent, then

Ggldim(R) ≤ maxi{gldim(Ri) + GpdR(Ri)}.

Proof. Assume that maxi{gldim(Ri) + GpdR(Ri)} is finite. Let GpdR(Ri) = ni

and let gldim(Ri) = mi for i = 1, 2. Then, Extni+k
R (Ri, R) = 0 for every k ≥ 1.

Consider an injective resolution of the R-module R:

0 → R → I0 → I1 → I2 → · · ·

We have, for every k ≥ 1 and for i = 1, 2, Extm
R (Ri,Kni) = Extni+k

R (Ri, R) = 0,

where Kni = Im(Ini → Ini+1). So we obtain the following exact sequence for

i = 1, 2:

0 → HomR(Ri,Kni) → HomR(Ri, Ini+1) → · · · → HomR(Ri, Ini+mi) → 0.

Since gldim(Ri) = mi is finite, HomR(Ri, Ini+m) is an injective Ri-module, where

m = max{m1, m2}. Then, by [24], Ini+m is an injective R-module, which means

that idR(R) ≤ ni + m and so R is ni + m-FC.

On the other hand, consider a flat R-module F and a projective resolution of

M as in Proposition 1.1. Since gldim(Ri) = mi, pd(Ri(Ri ⊗R Im fni)) ≤ mi.

Then, by Proposition 1.1, pdR(F ) ≤ maxi{pd(Ri(Ri ⊗R Im fni))} ≤ m, where

m = maxi{m1, m2}. This means that R is m-perfect. By Lemma 2.2, Ggldim(R)

is finite and so Ggldim(R) ≤ maxi{Ggldim(Ri) + Gfd(Ri)} from Theorem 2.1.

Therefore, the desired inequality follows since over rings of finite Gorenstein global

dimension every Gorenstein projective module is Gorenstein flat and so Gfd(Ri) ≤
Gpd(Ri) (see [10, proof of Corollary 1.2 (1)]). ¤

As an example where Theorem 2.3 can be applied, we give the following example

due to Vasconcelos [37, Page 29]:
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Example 2.4. Let V be a valuation domain with a principal maximal ideal aV and

let R be a subring of V × V of pairs (x, y) with x − y ∈ aV . Then, Ggldim(R) ≤
Ggldim(V ).

Proof. First note that R is the pullback ring arising from the following pullback

diagram:

R

i2

²²

i2 // V

²²²²
V // // V/aV

where i1(x, y) = (0, y) and i2(x, y) = (x, 0). Then, V as R-module via i1 is isomorph

to 0× aV , and V as R-module via i2 is isomorph to aV × 0.

Consider the following short exact sequences:

0 // 0× aV
Â Ä // R

(a,0)
// aV × 0 // 0

0 // aV × 0 Â Ä // R
(0,a)

// aV × 0 // 0

Using the same argument as in the proof of [7, Example 2.4] and the fact that R

is a local ring, we get that aV × 0 ∼= V and 0× aV ∼= V are Gorenstein projective

R-modules.

On the other hand, from [37, proof of Theorem], V is a coherent ring. Indeed,

since V is a valuation ring, every finitely generated ideal I of R is of the form

I = (x, 0)R⊕ (0, y)R for appropriate x and y, and since we have the following short

exact sequences:

0 // 0× aV
Â Ä // R

(x,0)
// (x, 0)R // 0

0 // aV × 0 Â Ä // R
(0,y)

// (0, y)R // 0

I is finitely presented and so R is coherent. Therefore, Theorem 2.3 can be applied,

and thus Ggldim(R) ≤ Ggldim(V ). ¤

3. Gorenstein pullback rings

Throughout this section all rings are, except in Theorem 3.4, commutative.

This section investigates Gorenstein global dimension of Noetherian pullback

rings. From Lemma 1.3, this is equivalent to the notion of Gorenstein rings in

pullback constructions. Then, using properties of n-Gorenstein rings, we establish

more results on Gorenstein global dimension of Noetherian pullback rings.
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Theorem 3.1. Consider a pullback diagram of type (¤). If R is Noetherian and

maxi{gldim(Ri) + GfdR(Ri)} = n is finite, then R is n-Gorenstein.

Proof. Recall that a Noetherian ring is n-Gorenstein if and only if every injective

module has projective dimension at most n. Then, consider an injective R-module

I and let

· · · → P2 → P1 → P0 → I → 0

be a projective resolution of I. Consider Ini
= Im(Pni

→ Pni−1), where ni =

GfdR(Ri) for i = 1, 2. Since I is an injective R-module,

TorR
m(Ri, Ini

) = TorR
ni+m(Ri, I) = 0

for every m ≥ 1. Thus, from Proposition 1.1,

pdR(I) ≤ maxi{ni + pdRi
(Ri ⊗R Ini)} ≤ maxi{Ggldim(Ri) + GfdR(Ri)} = n.

Therefore, by [18, Theorem 9.1.11], R is n-Gorenstein. ¤

Using the notion of Krull dimension of rings, we can determine the Gorenstein

global dimension of certain Noetherian pullback rings. In fact, it is well-known that

the Krull dimension, dim(R), of a Iwanaga-Gorenstein ring R is finite. Namely, if

R is a Iwanaga-Gorenstein ring, then idR(R) = dim(R) [3, Corollary 3.4]. On

the other hand, the Krull dimension of a ring R of the (T, I,D) construction was

investigated by Cahen in [12, Section 2], such that, from [12, Section 2, Corollary

2], dim(R) = dim(T ) + dim(D) if T is local with a unique maximal ideal I.

Also recall that R is Noetherian if and only if T is Noetherian, D = R/I is a subfield

of T/I such that the degree of T/I over D is finite [12, Section 1, Corollary 1].

Using these facts with [14, Theorem 1.4.9 and Proposition 5.2.9], we get:

Proposition 3.2. Consider a Noetherian ring R of the (T, I, D) construction where

T is local with a unique maximal ideal I. If GfdR(R/I) is finite, then R is an n-

Gorenstein local ring, where n = GfdR(R/I) = dim(R) = dim(T ).

Example 3.3. Let V be a discrete valuation domain with a principal maximal

ideal aV and let R be a subring of V × V of pairs (x, y) with x − y ∈ aV . Then,

Ggldim(R) = 1.

Proof. Flows from Example 2.4, Proposition 3.2, and since R is of the (V ×V, aV ×
aV, V/aV ) construction (see [37, the note before Theorem 3.4]). ¤

We close the paper with some results on 1-Gorenstein domains.
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The following result shows that domains of Gorenstein global dimension 1 are

Noetherian and so they are just 1-Gorenstein domains. This is an extension of the

well-known classical case; that is, the domains of global dimension 1 are Noetherian.

Namely, they are just Dedekind domains.

Theorem 3.4. Let R be an integral domain. Then, the following statements are

equivalent:

(1) l.Ggldim(R) ≤ 1.

(2) r.Ggldim(R) ≤ 1.

(3) R is 1-Gorenstein.

Proof. The implications (3) ⇒ (1) and (3) ⇒ (2) follow from [18, Theorem 12.3.1].

We prove the implication (1) ⇒ (3). The implication (2) ⇒ (3) has a similar proof.

Consider a left ideal I of R and let x 6= 0 be any element in I. We have to prove

that the quotient ring R/xR is Noetherian. In fact, this implies that the ideal I/xR

of R/xR is finitely generated and so is the ideal I of R. Therefore, R is Noetherian.

Then, it remains to prove that the quotient ring R/xR is Noetherian. Consider

an R/xR-module M . As an R-module, M can not be Gorenstein projective (deny

M embeds in a free R-module, and this contradicts the fact that xM = 0). Thus,

there exists, from [30, Proposition 2.18], a short exact sequence of R-modules

0 → G1 → G0 → M → 0,

where G1 is free and G0 is Gorenstein projective. Tensorising this sequence by

R/xR we get the following exact sequence of R/xR-module:

TorR
1 (R/xR, G0) → TorR

1 (R/xR, M) → G1/xG1 → G0/xG0 → M → 0.

From [11, Examples (1), p. 102], TorR
1 (R/xR, M) = M since xM = 0 and

TorR
1 (R/xR, G0) = 0 since as a Gorenstein projective R-module, G0 embeds in a

free R-module, and so x is a G0-regular element. Then, M embeds in the free R/xR-

module G1/xG1. Therefore, by Faith and Walker’s theorem [35, Theorem7.56],

R/xR is quasi-Frobenius and it is then Noetherian. ¤

As mentioned in the end of the introduction, the 1-Gorenstein domains are also

characterized by the notion of divisorial ideals (see Proposition 1.5). This gives

another tool to show when a pullback domain has Gorenstein global dimension

1 (i.e., it is 1-Gorenstein). We close the paper with the following results on 1-

Gorenstein domains R of the (T, M, D) constructions.

The following result generalizes Proposition 1.6.
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Theorem 3.5. Consider a domain R of the (T,M, D) construction such that T

is a domain and M is a maximal ideal of T . Then, the following statements are

equivalent:

(1) R is 1-Gorenstein.

(2) T is 1-Gorenstein, M−1 = T , D is a subfield of T/M = K, [K : D] = 2,

and every ideal J of RM , with JTM is not principal in TM , is an ideal of

TM .

The proof would use the following results:

First note that the local case of Theorem 3.5 above can be deduced from Mi-

mouni’s results [34, Lemma 3.2 and Theorem 3.4,(ii)⇔(iii)], such that we get:

Lemma 3.6. Consider a domain R of the (T, M, D) construction such that T is a

local domain with a unique maximal ideal M . Then, the following statements are

equivalent:

(1) R is 1-Gorenstein.

(2) T is 1-Gorenstein, M−1 = T , D is a subfield of T/M = K, [K : D] = 2,

and every ideal J of R, with JT is not principal in T , is an ideal of T .

The following result is well-known. It is in fact a simple consequence of [3,

Corollary 2.3 (ii)] (see also [18, Corollary 3.2.6]).

Lemma 3.7. Let S be a Noetherian ring. Then, for a positive integer n, the

following statements are equivalent:

(1) S is n-Gorenstein.

(2) Sm is n-Gorenstein for every maximal ideal m of R.

Proof of Theorem 3.5. (1) ⇒ (2). Assume that R is a 1-Gorenstein domain.

Then, by [12, Section 1, Corollary 1], D is a field and T is Noetherian. Thus,

M−1 = T , and [K : k] = 2 (by [34, Lemma 3.2]). To show that T is 1-Gorenstein,

we use Lemma 3.7, such that we prove that every localization of T is 1-Gorenstein.

Let N be a maximal ideal of T . If N = M , apply Lemma 3.6 to the diagram (¤M ):

RM

²²

// k

²²
TM

// K

we get that TM is 1-Gorenstein. For the case where N 6= M , we have TN = RN∩R,

which is 1-Gorenstein by Lemma 3.7.
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The last statement is a consequence of Lemmas 3.6 applied to the diagram (¤M ).

(2) ⇒ (1). A similar argument as in (1)⇒(2) works. ¤

As a direct consequence of Theorem 3.5, we have the following result. Compare

it with Proposition 1.6 and [34, Corollary 3.9].

Corollary 3.8. Consider a domain R of the (T, M,D) construction such that T is

a Dedekind domain and M is a maximal ideal of T . Then, the following statements

are equivalent:

(1) R is 1-Gorenstein.

(2) D is a subfield of T/M = K with [K : D] = 2.

To construct a concrete examples, we can use the polynomial rings as follows:

Corollary 3.9. Consider a domain R of the (K[X],M, D) construction, where

K[X] is a polynomial ring of one indeterminate X over a field K. Then, the

following statements are equivalent:

(1) R is 1-Gorenstein.

(2) D is a subfield of K with [K : D] = 2.
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