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1. Introduction

Let ¢ be a power of a prime p. For a monic polynomial A € F,[z], let w(A) be
the number of distinct irreducible monic factors of A, and let o(A) be the sum of

all monic divisors of A (included the trivial divisors 1 and A):

o(A)= Y D

D monic, D|A

If 0(A) = A, then we call A a perfect polynomial.

This is the appropriate analogue for polynomials of the notion of “multiperfect”
numbers for two reasons: a) it is easy to see that A is perfect if and only if A divides
o(A) and b) we are forced to consider monic polynomials only, since the sum of all
divisors of a non-monic polynomial is trivially equal to 0. Canaday [2] and Beard [1]
studied principally the case when ¢ = p that even now is far from being understood.
Assume now that ¢ # p. Gallardo and Rahavandrainy [4,5] investigated the case
q = 4 mainly considering polynomials with a small number of prime factors in order
to be able to get some results. So for general g # p, it is natural to consider first the
study of some class of simple polynomials. A natural choice is to consider splitting
polynomials that is, polynomials with all their roots in the same field where are
the coefficients. Beard [1] does that for the case ¢ = p. Recently, Gallardo and
Rahavandrainy [7] studied splitting perfect polynomials over quadratic extensions
(¢ = p?). On the other hand the p-th extension field of F,, that is the Artin-
Schreier extension of the prime field F,, has been recently [10,3,9] considered in

relation to the minimal period of Bell numbers. Some arithmetic properties of the
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prime number p appear there naturally. We decided then to consider the study of
splitting perfect polynomials over the field Fp». Lemmas 2.9, 2.10, 3.2 contain some
simple arithmetic properties of the prime number p useful for our work. Of course,
we just scratch the subject in this paper.

More precisely, let p be a prime number and let ¢ = p?. We denote by [, the field
with ¢ elements. It is the splitting field of the irreducible Artin-Schreier polynomial
flx)=aP —x—1€eFylz]

The splitting perfect polynomials over Fy are known (see [4, Theorem 3.4]) so we

shall assume in the rest of the paper that p is an odd prime.

By Lemma 2.4, a splitting perfect polynomial A can be expressed as

A=Ay A= J[@—ao ' T @—ar )",

J€Fp JEF,

w(A)

ri1=22enN o<r<?d 1,
p p
A; = H (x —a; — )", ged(Ag, A)) = 1if i #1
jeF,
a; €Fy, a;—a; ¢ Fpfor 0 <i#£1<r.
By changing A(z) by A(z + ag), and by Lemma 2.2, we may suppose that ag = 0.

where

We say that A is trivially perfect if for any 0 < ¢ < r, the polynomial A; is perfect.
In that case, A is perfect and for any 0 < i < r, there exist N;,n; € N such that:

hi; = N;p™ for any j € F,, N; |p—1.

Observe (see Corollary 2.8) that there exists an infinite number of splitting trivially
perfect polynomials with w(A) = (r + 1)p. There exists also an infinite number of
splitting non-trivially perfect polynomials with w(A) = ¢ (see Theorem 3 in [1]),

namely those of the form A = H (z —b;)NP" ! where N,m € N and N divides
biEFq
q—1.

We do not know if all splitting perfect polynomials are trivially perfect. However,

we are able to classify some of them in our main result below:

Theorem 1.1. Let 0 <r < 91 be an integer. In the following cases, any split-
ting perfect polynomial, withlfj(A) = (r+ 1)p, is trivially perfect:
i)o<r<p*—landa; + a;, a; + a — ap ¢ F, fori#1#k.

i) 0 <r <5.
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After some useful technical lemmas in section 2 we prove Theorem 1.1 in sec-
tion 3. The proof of part ii) requires some involved computations with non-linear

systems over F,/F,,.

2. Preliminary

In this section, we recall some useful results for the next sections. Let G be the
Galois group of the polynomial f(z) = a? — x — 1. It is well known that G is a

cyclic group of order p, generated by the Frobenius morphism:
m:Fy, =T, n(t) =17

The orbit, under the action of GG, of an element w € F, but outside F, contains
p—1

exactly p elements: w,wP, ... WP
In the following, we put: F, ={0,1,2,...,p—1}.

Lemma 2.1. i) The polynomial x' — 1 splits in F,, if and only if | = Np™, where
N,m €N and N divides p — 1.

ii) The polynomial x' — 1 splits in Fy if and only if | = Np™, where N,m € N and
N divides g — 1.

In that case, if d = ged(p — 1, N), then N = d + rp for some r € N, and for some

i, Ja €Fp, b1, .. b, € Fy —Fp, one has:

s m

d
1=V =" = ([T@=5) [[(@-b)@=0")@=0") )" .

A=1
Lemma 2.2. The polynomial P(x) € Fylx] is perfect if and only if for all a € Fy,
P(xz + a) is perfect.

Definition 2.3. For a monic polynomial A € Fy[z], we define the integer w(A) as

the number of distinct irreducible monic factors of A.

Lemma 2.4. (see Lemma 2.5 in [5]) If A is a splitting perfect polynomial over F,
then w(A) =0 mod p.

p—1 p—1
More precisely, if w(A) = (r+1)p, then A = H(m —ag —j)i ... H(w —a, — )",
3=0 §=0

where
agy...,ar €EFy, a;—a; §Fp if0<i#I<r
hij = ijpm’j - 1,Nij,nij € N and Nij divides q — 1.
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Remark 2.5. In the rest of paper, by Lemmata 2.4 and 2.2, a splitting perfect
polynomial A such that w(A) = (r + 1)p will be always expressed as

p—1 p—1
A:AO"'A’I‘ — H(x—ao_j)hoj...H(x_ar_j)h"'j7
j=0 j=0
where
p—1
A =[] —ai— )", ged(As, A1) =1 if i #1
j=0
ap =0, a; €Fy, a;—a; ¢, for0<i#l<r,
hij = Nijp™ — 1, Nij,mi; € N, Nyj [ g —1.
p—1
Lemma 2.6. (see Theorem 5 in [1]) The polynomial Ay = H(m — )i s perfect
j=0

over IF,, if and only if for any i,j5, hoi = hoj = Np™ — 1, where Nym € N and N
divides p — 1.

Now, we proceed to show a crucial lemma which allows us to establish Theorem
1.1.

Lemma 2.7. Forr € N*, let A = AyAy--- A, = AgB be a splitting perfect poly-
nomial over Fy. If No; | p — 1 for any j, then the polynomials Ay and B are both
perfect.

Proof. According to Notation 2.5, we have:
p—1 p—1 r

A = H(:E — j)hi and B = H H(m —a;—j)".
3=0 §=0i=1
For any j, since Ny; | p—1, none of the monomials x —a; —1 (I € Fp, i > 1), divides

o((x — j)"7). So we may put:

p—1

o 090
o((z =) =[[@-n",
=0

p—l 150 151 1jr
o((x —ay —j)Mi) = H(x DY (z—a=0)% - (xr—a,—1)%

=0

pil 1) ril
o((@—ar—5)") =[[(x-D*" (z—ar =™ - (@ —a, — 1)

=0

Hence, by considering degrees, we obtain, for any j € {0,...,p— 1}:

p—1 p—1
hoj = Za?jo, hij = Z(Ozl”o + o) f1<i<r
=0 =0
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Since o(A) = A, by comparing exponent of x — a; — [ in o(A) and in A, we get for
any 1,1:
p—1 p—1
hor =D (0 + o+ 4+ af?), ha =Y (o + -+ a)?) if1<i<r
j=0 §=0
We can deduce that:
p—1p—1 p—1 p—1 p—1p—1
A WIS DR b LER )
§=0 =0 §=0 1=0 1=0 j=0
p—1lp—1 p—1p—1
DD (o e+ Zhu Zhu =2 2 (@ +r o,
j=01=0 =0 j=0
p—1p-1 p—1 p—1 p—1lp-1
DY DULEISSRTAN SR ST o) 5 TS
§=0 1=0 §=0 1=0 1=0 =0
Thus
p—1 p—1p—1 ] )
(bt h) = T (@4l (o e )
§=0 §=01=0
p—1p—1 ‘ )
= Y3 (@ + a4+ (0T o)
§=01=0
It follows that:
p—1lp-1
(a/° 4+ ;7% =0,
§=01=0
so that:
o’ = aj’® =0, for any j,1.
p—1 p—1
Therefore, we have U(H(x — j)hoiy = H(m — j)Mi and we are done. O
§=0 §=0
Using Lemmas 2.6 and 2.7, we immediately obtain:
p—1 r 3
Corollary 2.8. For anyr € N*, the splitting polynomial A = H H(x —a; — g)Nur7 -1
§=0i=0

is perfect over Fy whenever for all 0 <1 <1, Nijj = Ny, nij = ny for all j,1 € Fp,.

Lemma 2.9. If a prime number v divides p? — 1 then either (v = 1 mod p) or

(p=1 mod v).
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Lemma 2.10. For any odd integer t, the integer 1 + tp does not divide pP — 1.

Proof. Put m = 1+ tp and f(p) = p? — 1. Assume that m divides f(p). Then
m = niny where ny divides m; = p — 1 and ny divides mg =1+p+--- +pP~ L.

It is well known and it is easy to prove that ged(my, ms2) = 1. So,
(1) : e=ged(n1,ng) = 1.

Now, each prime factor v of ny divides ms, so that v =1 mod p, by Lemma 2.9.

It follows that no =1 mod p. Moreover, clearly m =1 mod p. Thus:
(2): ny=1 mod p.

Observe that ms is odd and m is even, since p and ¢ are both odd. Thus, ny is odd
and nj is even since m = nins.
By (2), we may write: ny = 1 + sp, with s > 0. If s = 0, then n; = 1. This is

impossible since ny is even. So, s > 1 and we get:
n=1l+sp>l4+p>p—1=mjy.
This is impossible since np is a positive divisor of m;. This proves the result. [
3. Proof of Theorem 1.1
We recall that we use Notation 2.5 for a splitting perfect polynomial.

3.1. Case (i). If N;; divides p — 1 for all 0 < ¢ < r and for all j € F,, then

p—1 r
we can apply Lemma 2.7. So, the polynomials B = H H(m —a; —7)" and
3=0i=1
p—1
Ay = H(m —ag — 7)" are both perfect. We remark that w(B) = rp. So the
3=0

result follows by induction on r.

If there exist 1 < iy < r and j; € F), such that N;, ;, = N does not divide p — 1,
then there exist i > 1 and j» € [F,, such that the monomial x — a;, — jo divides
2N — 1. So, the monomial = — a;, — ji — a;, — j2 divides o((z — a;, — j1)"191) and
thus divides 0(A) = A. So, either (a;, + a;, € Fp) or (there exists 1 < u < r such
that a;, + ai, —a, € Fp). It is impossible by hypothesis.

3.2. Case (ii) with w(A4) < 2p. - Case w(4) =p

It is immediate from Lemma 2.6.

- Case w(A) =2p
p—1 p—1

Such polynomial may be of the form: A = ApA; = H(.’L’ — j)hos H(m —ay — )M,
j=0 j=0
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We have two cases:

Case 1: If either (for all j, Nojlp —1) or (for all j, Ny;|p — 1), then by Lemma 2.7,
Ap and A; are both perfect, with w(A4g) = w(A;1) = p. The result follows from
previous case.

Case 2: If there exist j,1 € F), such that Ny; and Ny; do not divide p — 1 then, we
have:

Lo (=)t = ((w =)™ =™,

r—j—1

1

g — YNy
mfalflfl((x @ =) o

1+...+(m_a1_l>le:

Put:

d; = ged(Noj,p — 1), di = ged(Ny,p —1),70, 11 & Fp, W(J)V(’j

Then, the orbit of vy contains exactly p elements and we have: Ny; = d; + p.
It follows that: 1=p=N; =0 mod d;, sod; =1 and Ny; =1+ p.

=yt =1

Analogously, we obtain: Ny; =1+ p.
But, by Lemma 2.10, 1 4+ p does not divide ¢ — 1. It is impossible.

3.3. Case w(A) > 3p. We need the following lemmas.

Lemma 3.1. Let A be a splitting perfect polynomial with w(A) = (r + D)p. If
(x — a)VP" =1 divides A and if N does not divide p — 1, then N = d + Ap, where
d=gcd(N,p—1), A\=0 modd and 1 <\ <r.

pP,

Proof. If N = dd;, where d; divides

p—
to 1 modulo p, so that d; = 14 up. Thus, N = ddy = d + pdp has the claimed
form. Put A = pud. We have:

1
T then, by Lemma 2.9, d; is congruent

d+Xxp=w((xz—a)N?" 1) <w(A) = (r+1)p, where d > 1,
We conclude that: 1 <\ <. O

Lemma 3.2. i) If 3 divides p? — 1 then p=1 mod 3.

it) If d = ged(1 4 2p,p — 1), then d € {1,3}.

1) If 1 + 2p divides p? — 1 then p =2 mod 3 and ged(1 +2p,p—1) = 1.
w) If 1 + 4p divides p? — 1 then either (p =3) or (p =1 mod 3).

v) The integers 1 + 2p and 1 + 4p do not simultaneously divide p? — 1.

Proof. i): by Lemma 2.9, since 3 21 mod p.
ii): the integer d must divide 1 +2p+p — 1 = 3p and d # p. We get the result.
iii): If p=1 mod 3, then by ii), we have: ged(1+2p,p—1) = 3. Any prime divisor
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r # 3 of 14 2p divides p? — 1, so r =1 mod p, since r does not divide p — 1. Thus,

we may write:

14+ 2p =3(1+ up), for some integer u.

Hence: 1=14+2p=3(1+up) =3 mod p. It is impossible. We are done.

If p = 3, we see that 7 = 1 + 2p does not divide 26 = pP — 1.

iv): If p=2 mod 3, then 3 divides 1 +4p and p?» — 1, so p =1 mod 3 by i). It is
impossible.

v): by iii) and iv). O

The following lemma gives the possible forms of h;; = IV;;p"#¥ — 1.

Lemma 3.3. Let A be a splitting perfect polynomial, with w(A) = (r + 1)p, and

Np™ =1 o monomial dividing A such that N does not divide p — 1:

(z —a)
if r € {2,3}, then N =1+ 2p,

if r € {4,5}, then either (N € {1+ 2p,2+4p}) or (N =1+4p).

Proof. If N does not divide p — 1, then by Lemma 3.1, N = d + Ap, where
d=gcd(N,p—1), 1 <A<r, d| A

If r=2,then 1 <\ <2.

If A\=1, then N =1+ p which does not divide p? — 1 by Lemma 2.10.

If A\=2, then N € {1+ 2p,2+ 2p}. If N =2+ 2p, then 1+ p divides p? — 1. Tt is
impossible by Lemma 2.10.

If r =3, then 1 <\ < 3.

If A <2, then N =1+ 2p.

If A=3, then N € {1+ 3p,3+ 3p}. Thus, either 1 + 3p or 1+ p divides p? — 1. Tt
is impossible by Lemma 2.10.

If r =4, then 1 <\ <4.

If A <3, then N =1+ 2p.

If A\ =4, then N € {1 +4p,2+ 4p,4 + 4p}. We can exclude the case N = 4 + 4p
since 1+ p does not divide p? — 1. Furthermore, by Lemma 3.2, the integers 1+ 4p
and 1 + 2p do not simultaneously divide p? — 1.

If r=5,then 1 <\ <5.

If A <4, then either (N € {1+ 2p,2 +4p}) or (N =1+ 4p).

If A =05, then N € {1+ 5p,5+ 5p}. We can exclude this case since, by Lemma
2.10, 1 + 5p and 1 + p do not divide p? — 1. We are done. g
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3.3.1. Case (i) and w(A) = 3p. Such polynomial is of the form:

p—1 p—1 p—1
A=AgA1Ay = H(x — j)hos H(x —ay —j)" H(x —ay —j)".
=0 =0 =0

Case 1: If there exists ¢ € {0,1,2} such that for all j, NV;; | p — 1, then, we may
suppose i = 0. So, by Lemma 2.7, Ay and A; A, are both perfect. It follows by
section 3.2, that Ay and B = A; A are both trivially perfect.

Case 2: If there exist jo,j1,j2 € Fp such that Noj,, Nij, and Naj, do not divide
p — 1 then, by lemma 3.3, we must have: Ny, = Ni;; = Naj, =14 2p = N. Since
the only monomials which interfere are: z — j,z —a; —j and x —az — j, for j € F,,
we can write:

p—1
eV —1=(z-D)]](@—ar— )& —as—j),

j=0
Thus, for some [ € ), the monomials x —2a; —j—{, £ —a; —az —j — ! must divide
o(A) = A, since they divide o((z — a3 — [)"11). Analogously, for some s € F,, the
monomials x — 2as —j — 8, * — a1 — ag — j — s must divide A. So, we must have:
2a1 — ag,2a3 — ay,a1 + az € Fy,. It follows that 3a,,3az € F,. So, p = 3. But, in
this case N =1+ 2p = 7 does not divide 26 = p? — 1. We are done.

3.3.2. Convention. We consider the quotient space Fy/F,. For by, ...,b, € F,/F,,
we write: by --- by, = 0 to mean that at least one of the b;’s equals 0.
Furthermore, we denote in the same manner an element a of F, and its class a

modulo F,,.

3.3.3. Case (ii) and w(A) = 4p. Such polynomial is of the form: A = AgA1 4245 =
AgB.

Case 1: If there exists ¢ (say ¢ = 0) such that for all j, Ny; | p—1, then, by Lemma
2.7, Ag and B are both perfect, and by Sections 3.2 and 3.3.1, they are both triv-
ially perfect.

Case 2: If there exist jo,...,j3 € F, such that Nyj,,..., N3j, do not divide p — 1.
Thus, by Lemma 3.3, we must have: Ny, =--- = N3;, =1+2p=N.

Therefore, there exist a,b € {a1,a2,a3} and ju, jp € Fp, such that a # b and the
monomials £ — a — j, and x — b — j, divide v — 1.

So, for 1 < ¢ < 3, the monomials * — a; — j; —a — j, and © — a; — j; — b — jp divide
o((z — a; — j;)M9i) and hence divide A.

Therefore, a; + a, a; + b, a; + a — a,,, a; + b — as, € F,, for some r;,s; € {1,2,3}.
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We may suppose a = aj,b = as, so the following conditions must be satisfied:

(2a1 — ag € Fp) or (2a1 — a3 € F))
(2a3 — a1 € F,) or (2a2 —az € F))
(a1 +az €Fp) or (a1 +az —ag € Fp)
(a1 +az €Fp) or (a1 + a3 —az € Fp)
(a2 + a3 €Fp) or (ag + a3 — a1 € Fp).

By Convention 3.3.2, we obtain the following system of equations with unknowns

ai,az,as3 € ]Fq/Fp7 aq 7é a2 # ag:

2&1 — a9 2(11 — a3) =

o O

(
(

)

)(2a9 — ag) =
(a1 +az — a3
(

(

2&2 — a

(
(

(0): 9 (a1 + az)
(a1 +a3)
( )

0
0,

az + az)lag + as — ay

)
ay +az —az) =
)

which is impossible by Lemma 3.4. We are done.
Lemma 3.4. System (o) has no distinct solutions in F,/F,.

Proof. : If aj, a2,a3 € Fy/F, satisfy this system, then any possible case leads to

contradiction:

Case 2a1 —as =0

if 2a3 — a; = 0 then we have: 3(a; —a2) =0€ F,,sop=3. Thus, N=1+2p =7
does not divide 26 = p? — 1. It is impossible.

if 2as — ag = 0 then 2a; + az — ag = 0. Thus a3 + ag # 0, since a; — ag # 0.
So we must have a; + as —as = 0.

Therefore, a; = (2a1 + ag — az) — (a1 + ag — az) = 0. It is impossible.

Case 2a; —a3 =0

if 2as — ay; = 0 then a; + 2as — ag = 0. Thus a; + ag # 0, since as — ag # 0.
So we must have a1 + as —ag = 0.

Therefore, as = (2as + a1 — az) — (a1 + ag — ag) = 0. It is impossible.

if 2a5 — ag = 0 then 2(ay — az) = 0. It is impossible. O
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3.3.4. Case (i) and w(A) = 5p. Case 1: If there exists i (say ¢ = 0) such that for
all j, No; | p— 1, then, by Lemma 2.7, Ay and B = A; --- A4 are both perfect and
thus trivially perfect.

Case 2: If there exist jo,...,js € F, such that Nyj,, ..., Naj, do not divide p — 1.
Thus, by Lemma 3.3, we must have: either (Ngj, = -+ = Ny, = 1 +4p) or
(Nojg»---» Naj, € {14 2p,2+4p}).

Case 21:
If Noj, = --- = Nuj, = 1+4p = N, then there exist [1,...,l4 € F, such that the
four monomials © — a; — I;, 1 < i < 4, divide ¥ — 1.
Moreover, p # 5 since 1 + 4p must divide pP — 1.
As in the proof in Section 3.3.3, for all i € {1,...,4}, there exist l;, k;, t; € {1,...,4}
such that:

{ (2a; — ai, € Fp)

(a; + ap, € Fp) or (a; + ax, —ay, € Fp).

We observe that aq,...,as play symmetric roles, and we use Convention 3.3.2, so

we can reduce to the following system of equations:

2a1 —as =0

2a9 — a1)(2a2 —a3z) =0

2a3 — a1)(2a3 — az)(2a3 —ayg) =0
2a4 — a1)(2a4 — a2)(2a4 —a3) =0
a1+ az)(ar +as —az)(ay + az — aq

a1 +az —ag)(ay +az3 —ayg) =

as + aq)(as + ag —ay)(ag + aq4 —az) =

)

( )=0

( ) )=0
a1+ aq)(ar +ag —az)(ar + a4 —az) =0
as + as)(az +az —ay)(azs +az —ag) =0

( ) )=0

( ) ) =

az + a4 —ay)(az + ag — as 0,

which is impossible by Lemma 3.5.

Case 22:

If Nojo, - Naj, € {142p,2+4p} = {N,2N}, then there exist a,b € {a1, a2, a3,a4}
and jq, j» € Fp, such that the monomials x — a — j, and x — b — jj, divide zV — 1.
So, for 1 < ¢ < 4, the monomials * — a; — j; —a — j, and © — a; — j; — b — jp divide
o((x — a; — j;)"i) and A.
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As in the proof of Proposition 3.3.3, we may suppose a = a;,b = as. Moreover,
a1 and ag (resp. as and a4) play symmetric roles. So, the following conditions must
be satisfied:

(2a1 — a2)(2a1 —a3) =0
(2a2 — a1)(2a2 — a3)(2a3 —ay) =0
(a1 + az2)(a1 + a2 —az)(a +az —ayg) =0
(%) : ¢ (a1 +a3)(a1 + a3 — az)(a1 + a3 — ag) =0
(a1 +aq)(a1 + a4 — ag)(a1 + a4 —as) =0
(ag + a3)(az + a3 —ay)(az + a3 —ayg) =0
(ag + aq4)(az + ag — a1)(az + ag — az) = 0.
Lemma 3.6 implies that p = 5. Hence, we have modulo F,:
either (ag = 2a;1, az = —a1, ag = —2ay) or (ay = —ay, az = 2a1, ag = —2ay).
If N=1+42p=11, then:
p—1
N —1=(z-1) H(m —a; —j)(z —az — j), where ay = 2a; or az = —aj.
3=0

Put: Ay ={beF,/F, : (z+b) divides z'* — 1}.

For all b,c € Ay, we see that either (b+2c € F,) or (b+c € Fp).

By computations, if & € F, such that a? —a—1 = 0, then b; = a*+3a3+a?+2a+4
and ¢; = 3a* 4+ 402 + 302 + 3a + 2 belong to A, but by 4+ 2¢1,b, +¢1 € Fp. It is

impossible.

If N =2+ 4p = 22, then:

p—1
N - . . . .
2t —1=(z— 1)(1‘+1)H(m—a1 —@+a —j)(x—2a1 —j)(x + 2a1 — j).

§=0

Put: Ay = {b€F,/F, : (x+b) divides 22> — 1}.

We see that, for all b, c € As, one of the following conditions must hold: b+c € F,,

b+2ceF,, b—2cecF,.

But the elements b, and ¢; defined above do not satisfy that condition.

We are done.
Lemma 3.5. The system of equations (x) has no distinct solutions in F,/F,.

Proof. First of all, recall that in this lemma, p # 5. We may consider only the
following cases:

(1) 2a1 —as = 0, 2a2 —a; = O,
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(11) 2&1 — a2 = 0, 2(12 —asz = 0.

Case (i):

In that case, we have: 3(a; — ag) =0, so p = 3. Moreover, aj + as = 0.

Thus, a1 + a3, a1 + a4, as + ag, as + a4 # 0.

We have: a; +as—as # 0, since (a1 +a3 —a2)+ (a1 +az2) = 2a; +as = azg —aq # 0.
So, a1 +az —ayg = 0.

Therefore:

-if a1 + a4 — as = 0, then 2a; + 2as + a3 = 0, so az = 0. It is impossible.

-if a; + a4 — a3 =0, then 2a; = 0. It is impossible.

Case (ii):

We have: a1 + as — 3a; = 0.

If p = 3, then a; + ag = 0, and ay 4+ ag = 0. It is impossible since a; — a3 # 0.
Thus, p # 3, and a; + az, as + a3z # 0.

Since, a1 + a2 — a3 = a1 — as # 0, we have: a; +as —aq = 0. So ag4 — 3a; = 0 and
as+ayq = 5a; # 0. Therefore, we have either (ag+a4 —a; = 0) or (az+aq4—asz = 0).

It follows that: a; = 0, which is impossible. (]

Lemma 3.6. If p # 5, then the system of equations (xx) has no distinct solutions
inFq/Fp.

Proof. We may consider only the following cases:
1) 2@1 — a9 = 07 2@2 — a1 = O7
ii): 2a; —as =0, 2as — a3z =0,

(
(
(iii): 2a; — a3z =0, 2a2 —a; =0,
(iv): 2a; —az =0, 2ay — a3 =0,
(

v): 2a; —az =0, 2a2 —aq = 0.
Case (i):

In that case, we have: 3(a; —a2) =0, so p = 3. Thus, N =1+ 2p = 7 does not
divide 26 = pP — 1. It contradicts the fact: IV divides ¢ —1 =p? — 1.

Case (ii):

According to the proof of Lemma 3.4, we must have: a; +as —a4 = 0, in particular,
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a1 + ag # 0. We obtain the following equalities:

2a1 —ag =0,2a3 —az3 =0,a; +as —aqg =0,a1 + a4 —az =0,

az +az —ay :0,a2+a4 :O,Cll + as =0.
Thus, ag = 2as = 4ay, ag = a;—ag = —ay. So, ba; = 0. It is impossible since p # 5.

Case (iii): It is similar to the previous case (ii), since a; and ay play symmet-

ric roles.

Case (iv): We have: 2(a; — az) = 0. It is impossible.

Case (v): We have: a; + as — a3, a1 + aa — ag # 0, since a; —ay # 0. So,
a1 + as = 0.

Therefore, as + a4 = 2(a; + a2) =0, and a1 + a3, a1 + a4, a2 + a3, a2 + a4 # 0.
There are two possibilities:

- a1 + a3z —ag = 0. It implies: 2a; + as = a1 + a2 + a1 + az — ax = 0 and thus
4a1 = 2a1 — a3z + 2a1 + ag = 0. It is impossible.

- a1 + az —aqg = 0. Tt implies: a3 + 2a3 = (a1 + a3 — aq) + (a3 + a4) = 0 and thus
5a; = 2(2a1 — a3) + a1 + 2az = 0. It is possible only if p = 5. O

3.3.5. Case (ii) and w(A) = 6p. Case 1: If there exists ¢ such that for all j,
N;j | p—1, then, as in the proof in Section 3.3.4, we conclude that A is trivially

perfect.

Case 2: If there exist jo,...,j5 € F}, such that Nyj,,..., Nsj, do not divide p — 1.
Thus, by Lemma 3.3, we must have: either (Ngj, = --- = Ns;; = 1 +4p) or
(Nojg»---»Nsjs € {14 2p,2+4p}).

Case 21: Noj, =+~ = Nsj, =1+4p = N:

In this case, p # 5 and there exist {1,...,l5 € F, such that the five monomials

x—a; —1l;; 1 <i<5, divide 2V — 1. So, as in the proof in Section 3.3.3, for all
i€{1,...,5}, there exist l;, k;, t; € {1,...,5} such that:

(a; +ap, € Fp) or (a; + ax, —ar, € Fp).

{ (2a; — ai, € Fp)



ON SPLITTING PERFECT POLYNOMIALS OVER F,p

99

Since aq,...,as play symmetric roles, we can reduce, as in the proof in Section

3.3.4, to the following system of equations:

=0

( )

(2a3 — a1)(2as — a2)(2as — a4)(2a3 —as) =0

(2a4 — a1)(2a4 — a2)(2a4 — a3)(2a4 —as) =0

(2a5 — a1)(2as — a2)(2as — a3)(2as —as) =0

(a1 + az2)(a1 + a2z — as)(a1 + a2 — as)(a1 + a2 —as) =0
(a1 + a3)(a1 + a3 —az2)(a1 + a3 —aq)(a1 +az —as) =0
(a1 + as)(ar + as — a2)(a1 + as — az)(a1 + a4 —as) =0
(a1 +as)(a1 + as — az)(a1 + as — az)(a1 + as —as) =0
(a2 + as)(az2 + a3 — a1)(az + a3 — as)(a2 + a3 —as) =0
(a2 + as)(az + as — a1)(az + as — az)(az + a4 —as) =0
(a2 +as)(az +as —a1)(az +as —asz)(az +as —as) =0
(a3 + as)(as + as — a1)(as + as —a2)(as + as —as) =0
(a3 +as)(as + as —a1)(as + as — az)(as +as —as) =0
(a4 + as)(as + as — a1)(as + as — a2)(as + as —az) =0,

which is impossible by Lemma 3.7.

Case 22:

If Noj, - -

., Nsj, € {14 2p,2 +4p} = {N,2N}, then there exist a,b € {aq,...

7(15}

and jq, j» € Fp, such that the monomials x — a — j, and x — b — jj, divide zV — 1.

So, for 1 <14 < 4, the monomials z — a; — j; — a — j, and = — a; — j; — b — jp, divide
o((x —a; — j;)"4i) and A.
As in the proof in Section 3.3.4, we may suppose a = a1,b = as. Moreover, a; and

as (resp. as, a4 and as) play symmetric roles. So the following conditions must be

satisfied:

(¥%) :

2(11 — a2 (2&1 — CL3) =0
(

2a2 — ax 20,2 — a3)(2a2 — a4) =0

ay + az)(a1 + a2 — as)(a1 + a2 — as)(a1 + a2 — as

(

(

( )
(a1 + a3)(a1 + a3 — az2)(a1 + a3 — as)(a1 + as — as
(a1 + aa)
(a1 + as)
( )
( )
( )

a1 +as —az)(ar +as —as

a2 + az)(az +asz —ai)(az +az —aq)(az +az —as

a2 + aq)(az + aqs —a1)(az + aqs —asz)(az + a4 — as

)

)

( ) )=0
( )( ) )=0
(a1 + as — az)( ) )=0
(a1 +as —az2)(a1 + a5 — as)(a1 +as —as) =0
( ) ) )=0
( )( ) )=0
( )( ) )=0

a2 +as —ai)(az +as —az)(az + as — aq

Lemma 3.8 implies that p = 5. We get:

either (as = 2a1, a3 = —ay, a4 = —2a;) or (as = —ay, az = 2a1, ag = —2ay).
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So the line 6 of (%) is impossible. We are done.
Lemma 3.7. System (¥) has no distinct solutions in F,/F,.

Proof. As in the proof of Lemma 3.5, we must have: p # 5, and we may only
consider the following cases:
(i): 2a1 —ag = O7 2a2 —a; = O7

(ii): 2a; —ag =0, 2as — a3z = 0.

Case (i):

In that case, we have: 3(a; — ag) =0, so p = 3. Moreover, a; 4+ az = 0.

Thus, a1 + a3, a1 + a4, a2 + az, as + a4,a1 + as, as + as # 0.

According to the proof of Lemma 3.5, case (i), we have either (a1 + ag — as = 0)
or (a1 + a3z —as = 0). Since a4 and a5 play symmetric roles, we may only consider
the first case: a; + a3 —aqs = 0.

Still by the proof of Lemma 3.5, it remains this possibility: a; + a4 — a5 = 0. So,
as +as —as =0, and az + a4 + a5 = (a1 + a4 — a5) + (az + ag — as) = 0. Thus,
as + as # 0.

Furthermore:

az + a5 —aq # 0 since (a3 +aq +a5) — (a3 +as —a1) = a1 + a4 # 0,

as + a5 — as # 0 since as + a4 # 0,

az + a5 — aq # 0 since 2a4 = (ag + a5 + aq4) — (ag + a5 — aq) # 0.

We see that the line 14 of (%) is not satisfied.

Case (ii):

According to the proof of Lemma 3.5, case (ii), we have: p # 3, a1 + az # 0 and
as + a3 # 0.

Since a1 +ag—a3 = a3 —ag # 0, we have either(a;+az2—aq = 0) or (a1 +az—as = 0).
It suffices to consider the first case: a1 + a2 —as = 0.

So ag —3a; = 0 and ag + a4 # 0. Therefore (see proof of Lemma 3.5, case (ii)), we
have either (as+as—a; = 0) or (ag+as—asz = 0) or (az+as—as = 0). The condition:
(ag +ag —ay =0) or (a3 + ag — a3z = 0) does not hold since it implies a; = 0, which
is impossible. So as + a4 — a5 = 0. Thus: as = 2ay, a3z = 4ay, aqg = 3ay, as = Ha;.
It follows that the line 4 of (¥) is not satisfied. It is impossible. g

Lemma 3.8. If p # 5, then System (¥%) has no distinct solutions in F,/F,,.

Proof. We may only consider (see proof of Lemma 3.6) the following cases:

(1) 2a1 —as = 0, 2a2 — as = O,
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(ii): 2a; — a3 =0, 2as —aq = 0.

Case (i):

According to the proof of Lemma 3.6, case (ii), we must have: p # 3, a; +ag # 0
and a1 +as —as = 0. So as = a1 + as = 3a;. We obtain: a3 = 2a9 = 4a1. So
as+a; =0since ay +a; —ag =a4 —a; #0 and ag + a1 — ag = ag — a5 # 0.

Thus the line 4 of (¥%) is not satisfied. It is impossible.

Case (ii): We have: a; + ag — a3, a1 + ag — ag # 0, since a1 — as # 0. So, ei-

ther (a1 + a2 =0) or (a1 + az = as).

- If a3 4+ az = 0, then according to the proof of Lemma 3.6, it just remains the
case: aj + az = as. So we obtain: ay = —ay,a3 = 2a1, a4 = 2a3 = —2a1, a5 = 3a;.

Thus the line 6 of (%) is not satisfied. It is impossible.

- If a1 + as = as, then az + a4 = 2(a1 + a2) = 2a5 # 0. Since p # 3, we have:
a1+ a3 =3a; #0 and a; + a3 — a5z = az — ag # 0. It remains two cases:

-if a1 + a3 — as = 3a1 — as = 0, then:

ay + a4 —as = aq —az # 0,
al—l—a4—a2:a4—a37é0,

0,14’@47(13:0,47&17&0.

Thus, 0 = a1 + a4 = a1 + 2a2 = 7ay. So p =7, it is impossible because 15 =1+ 2p
does not divide p? —1 =77 — 1.
Thus the line 5 of (%) is not satisfied. It is impossible.

-if a1 +as — ag = 3a; — ag = 0, then:

a1 + ag = 4a; # 0,

2(a1 4+ a4 — az) = Hay # 0, since p # 5,
a1+ a4 —az = 2a1 # 0,

2(a1 + a4 — as) = 3a; # 0, since p # 3.

Thus the line 5 of (%) is not satisfied. It is impossible. g
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