

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA Published Online: June 23, 2025 DOI: 10.24330/ieja.1725123

CHARACTERIZATIONS OF (σ, τ) -GENERALIZED JORDAN DERIVATIONS ON PRIME RINGS

Abbas Zivari-Kazempour

Received: 22 March 2025; Revised: 16 May 2025; Accepted: 2 June 2025 Communicated by A. Çiğdem Özcan

ABSTRACT. In this paper, we characterize (σ, τ) -generalized Jordan derivations from a ring R into an S-bimodule X, where $\sigma, \tau \colon R \longrightarrow S$ are ring homomorphisms. Our result covers a known result due to Nakajima [Turkish J. Math., 30 (2006), 403-411].

Mathematics Subject Classification (2020): 47B47, 47B48 Keywords: (σ, τ) -generalized derivation, (σ, τ) -generalized Jordan derivation, Hochschild 2-cocycle

1. Introduction

Let R be a ring and X be an R-bimodule. An additive map $\delta : R \longrightarrow X$ is called a *derivation* if it satisfies

$$\delta(ab) = \delta(a)b + a\delta(b), \quad a, b \in R.$$
(1)

If the equality (1) only hold in the case where b = a, then δ is called a *Jordan* derivation. We denote by [a, b], the commutator ab - ba. Each mapping of the form $a \mapsto [a, x]$, where $x \in X$, will be called an inner derivation. Clearly, every derivation is Jordan derivation, however, there exists Jordan derivations which are not derivations, see [3,7].

Recall that a ring R is called *prime* if aRb = 0 implies that a = 0 or b = 0, and it is called *semiprime* if aRa = 0 implies a = 0. A classical result of Herstein [6] states that every Jordan derivation from a 2-torsion free prime ring into itself is a derivation and it was extended to 2-torsion free semiprime rings by Brešar [2]. Johnson [7] proved that every continuous Jordan derivation δ from a C^* -algebra Ainto any Banach A-bimodule X is a derivation. Of course, the continuity of δ can be removed, see [9]. Zhang [11] proved that every Jordan derivation on nest algebras is an inner derivation. In [5], the authors proved that each Jordan derivation on a triangular ring is a derivation. Let R and S be rings, X be an S-bimodule and let $\sigma, \tau : R \longrightarrow S$ be additive maps. A biadditive map $\mu : R \times R \longrightarrow X$ is said to be a (σ, τ) -Hochschild 2-cocycle if

$$\sigma(a)\mu(b,c) - \mu(ab,c) + \mu(a,bc) - \mu(a,b)\tau(c) = 0, \quad a,b,c \in \mathbb{R}.$$

A (σ, τ) -Hochschild 2-cocycle map μ is called *symmetric* if $\mu(a, b) = \mu(b, a)$ for all $a, b \in \mathbb{R}$.

An additive map $\delta : R \longrightarrow X$ is said to be a (σ, τ) -generalized derivation if there exists a (σ, τ) -Hochschild 2-cocycle μ such that for all $a, b \in R$,

$$\delta(ab) = \delta(a)\tau(b) + \sigma(a)\delta(b) + \mu(a,b),$$

and it is called a (σ, τ) -generalized Jordan derivation if

$$\delta(a^2) = \delta(a)\tau(a) + \sigma(a)\delta(a) + \mu(a,a), \quad a \in \mathbb{R}.$$

The concept of (σ, τ) -generalized derivation associated with a (σ, τ) -Hochschild 2cocycle was introduced by Zhou [12], as an extension of generalized derivation associated with a Hochschild 2-cocycle μ . Indeed, if R = S and $\sigma = \tau = id$, the identity map on R, then (σ, τ) -generalized derivation is simply called a generalized derivation which was introduced by Nakajima [8]. Moreover, if $\mu = 0$, then they are the usual derivations and Jordan derivations, respectively.

Next we show that the class of (σ, τ) -generalized derivations is large. Indeed, it contains τ -multipliers, (σ, τ) -derivations and all another type of generalized derivations.

We mention that in the next example $\sigma, \tau : R \longrightarrow S$ are ring homomorphisms.

Example 1.1. (i) Suppose that δ satisfies $\delta(ab) = \delta(a)\tau(b) + \sigma(a)d(b)$, where $d: R \longrightarrow X$ is a (σ, τ) -derivation. Then the map $\mu_1: R \times R \longrightarrow X$ via $\mu_1(a,b) = \sigma(a)(d-\delta)(b)$ is biadditive and it is (σ, τ) -Hochschild 2-cocycle. Moreover, for all $a, b \in R$,

$$\delta(ab) = \delta(a)\tau(b) + \sigma(a)\delta(b) + \mu_1(a,b).$$

Thus, δ is a (σ, τ) -generalized derivation associated with μ_1 .

(ii) Suppose that $\delta : R \longrightarrow X$ is a left τ -multiplier, that is, $\delta(ab) = \delta(a)\tau(b)$. Then by the equality $\delta(ab) = \delta(a)\tau(b) + \sigma(a)\delta(b) + \sigma(a)(-\delta)(b)$, we have a (σ, τ) -Hochschild 2-cocycle biadditive map $\mu_2 : R \times R \longrightarrow X$ defined by $\mu_2(a, b) = \sigma(a)(-\delta)(b)$. Thus, a left τ -multiplier is also a (σ, τ) -generalized derivation. (iii) Let δ satisfy the relation $\delta(ab) = \delta(a)\sigma(b) + \tau(a)\delta(b)$ for all $a, b \in R$. Then the map $\mu_3 : R \times R \longrightarrow X$ defined by

$$\mu_3(a,b) = \delta(a) \big(\sigma(b) - \tau(b) \big) + \big(\tau(a) - \sigma(a) \big) \delta(b),$$

is (σ, τ) -Hochschild 2-cocycle and

$$\delta(ab) = \delta(a)\tau(b) + \sigma(a)\delta(b) + \mu_3(a,b).$$

Hence a (τ, σ) -derivation is also a (σ, τ) -generalized derivation.

The following theorem was proved by Nakajima in [8].

Theorem 1.2. Suppose that R is a 2-torsion free ring and $\delta : R \longrightarrow R$ is a generalized Jordan derivation associate with Hochschild 2-cocycle μ . If R satisfies one of the following conditions, then δ is a generalized derivation.

- (i) R is a non-commutative prime ring,
- (ii) There exist $a, b \in R$ such that [a, b] is a non-zero divisor,
- (iii) R is commutative and μ is symmetric.

The aim of this paper is to generalize Theorem 1.2 for (σ, τ) -generalized Jordan derivations from a ring R into an S-bimodule X. Note that our approach is quite different from that in [8].

Throughout this paper, R and S are rings, X is an S-bimodule and $\sigma, \tau \colon R \longrightarrow S$ are ring homomorphisms.

2. Main results

In this section, we characterize (σ, τ) -generalized Jordan derivations $\delta : R \longrightarrow X$ and prove under special hypothesis that such maps necessary are (σ, τ) -generalized derivations.

For all $a, b \in R$, we introduce the notation

$$D(a,b) = \delta(ab) - \delta(a)\tau(b) - \sigma(a)\delta(b) - \mu(a,b).$$

Using the same approach as in the proof of [8, Lemmas 2 and 4], we have

Lemma 2.1. Let R and S be rings and X be a 2-torsion free S-bimodule. If $\delta: R \longrightarrow X$ is a (σ, τ) -generalized Jordan derivation, then

(i)
$$\delta(ab+ba) = \delta(a)\tau(b) + \sigma(a)\delta(b) + \mu(a,b) + \delta(b)\tau(a) + \sigma(b)\delta(a) + \mu(b,a),$$

- (ii) $\delta(aba) = \delta(a)\tau(ba) + \sigma(a)\delta(b)\tau(a) + \sigma(ab)\delta(a) + \sigma(a)\mu(b,a) + \mu(a,ba),$
- (iii) $\delta(abc + cba) = \delta(a)\tau(bc) + \sigma(a)\delta(b)\tau(c) + \sigma(ab)\delta(c) + \sigma(a)\mu(b,c) + \mu(a,bc)$

$$+\delta(c)\tau(ba) + \sigma(c)\delta(b)\tau(a) + \sigma(cb)\delta(a) + \sigma(c)\mu(b,a) + \mu(c,ba)$$

- (iv) $D(a,b)\tau(c)[\tau(a),\tau(b)] + [\sigma(a),\sigma(b)]\sigma(c)D(a,b) = 0,$
- (v) $D(a,b)[\tau(a),\tau(b)] = 0$, and $[\sigma(a),\sigma(b)]D(a,b) = 0$.

For the proof of the main theorem, we need the following lemma.

Lemma 2.2. [4, Lemma 4] Let G and H be additive groups and let R be a 2-torsion free ring. Let $f : G \times G \longrightarrow H$ and $h : G \times G \longrightarrow R$ be biadditive maps. Suppose that for each pair $a, b \in G$ either f(a, b) = 0 or $h(a, b)^2 = 0$. Then either f(a, b) = 0for all $a, b \in G$, or $h(a, b)^2 = 0$ for all $a, b \in G$.

Remark 2.3. [4, Remark 5] It is worth noting that if a ring S and a nonzero S-bimodule X are such that xSa = 0 with $x \in X$, $a \in S$ implies that x = 0 or a = 0, then S is prime. Indeed, suppose that aSb = 0 for some $a, b \in S$. Then for any nonzero $x \in X$ we have (xSa)Sb = 0, and hence it follows that a = 0 or b = 0.

Moreover, if X is 2-torsion free, then S is 2-torsion free. To see this let 2a = 0 for some $a \in S$. Then 2xSa = 0 for all $x \in X$ and so a = 0.

Our first main theorem is stated as follows and serves as a generalization of Theorem 1.2(i).

Theorem 2.4. Let R be any ring, S be a noncommutative ring and X be a 2-torsion free S-bimodule. Suppose that either

- (i) τ is onto and xSa = 0 with $x \in X$, $a \in S$ implies that x = 0 or a = 0, or
- (ii) σ is onto and aSx = 0 with $x \in X$, $a \in S$ implies that x = 0 or a = 0.

In this case each (σ, τ) -generalized Jordan derivation δ from R into X is a (σ, τ) -generalized derivation.

Proof. We only prove the case where τ is onto and xSa = 0 with $x \in X$, $a \in S$ implies that x = 0 or a = 0. The case (ii) can be discussed analogously.

Multiply the relation (iv) in Lemma 2.1 from the right by $[\tau(a), \tau(b)]$. According to (v) in Lemma 2.1, for all $a, b \in R$, we obtain

$$D(a,b)\tau(c)[\tau(a),\tau(b)]^2 = 0.$$

Since τ is onto, our assumption implies that for each pair $a, b \in R$ either D(a, b) = 0or $[\tau(a), \tau(b)]^2 = 0$. It is by Remark 2.3 that S is 2-torsion free. Applying Lemma 2.2 for the mapping f(a, b) = D(a, b) and $h(a, b) = [\tau(a), \tau(b)]$, we get either D(a, b) = 0 for all $a, b \in R$ or $[\tau(a), \tau(b)]^2 = 0$ for all $a, b \in R$.

Suppose that $D(a, b) \neq 0$ for some $a, b \in R$. Then $[\tau(a), \tau(b)]^2 = 0$ for every $a, b \in R$. Since τ is onto, we conclude that $[x, y]^2 = 0$ for all $x, y \in S$. By Remark 2.3, S is a prime ring. Then it follows from [10, Lemma] that S is commutative, which is

4

contradiction. Consequently, D(a, b) = 0 for all $a, b \in R$ and hence $\delta \colon R \longrightarrow X$ is a (σ, τ) -generalized derivation.

Take R = S = X in Theorem 2.4, we get the following result.

Corollary 2.5. Suppose that R is a 2-torsion free noncommutative prime ring. If τ is surjective (or σ is surjective), then every (σ, τ) -generalized Jordan derivation δ on R is a (σ, τ) -generalized derivation.

If $\sigma = \tau = id$ in Corollary 2.5, then we obtain the next corollary.

Corollary 2.6. [8, Theorem 6] If R is a 2-torsion free noncommutative prime ring, then every generalized Jordan derivation $\delta : R \longrightarrow R$ is a generalized derivation.

The condition that xSa = 0 with $x \in X$, $a \in S$ implies that x = 0 or a = 0, in Theorem 2.4 is essential. The following example illustrates this fact.

Example 2.7. Let

$$R = \left\{ \begin{bmatrix} z_1 & z_2 \\ 0 & z_3 \end{bmatrix} : z_1, z_2, z_3 \in \mathbb{C} \right\}.$$

We make $X = \mathbb{C}$ an *R*-bimodule by defining

$$a\lambda = z_3\lambda, \quad \lambda a = \lambda z_1, \quad \lambda \in \mathbb{C}, \ a \in R.$$

Define $\delta : R \longrightarrow X$ via $\delta(a) = z_2$ for all $a \in R$. Then

$$\delta(a^2) = \delta(a)a + a\delta(a)$$

for all $a \in R$. Therefore, δ is a generalized Jordan derivation associated with Hochschild 2-cocycle $\mu = 0$. However, δ is not a generalized derivation.

Note that the condition $\lambda Ra = 0$ with $\lambda \in X = \mathbb{C}$, $a \in R$ does not imply that $\lambda = 0$ or a = 0.

It is proved in [1, Theorem 1] that if R is a 2-torsion free semiprime ring, τ is surjective and $\tau(Z(R)) = Z(R)$, where Z(R) is the center of R, then each left Jordan τ -multiplier $\delta : R \longrightarrow R$ is a left τ -multiplier. For another characterization of τ -multipliers, see [13,14] and the references therein.

Next we consider this result in two different cases. In the first case we assume that R is commutative and outline a new simple proof for it as follows.

Theorem 2.8. Let R be a 2-torsion free commutative semiprime ring. If τ is surjective, then each left Jordan τ -multiplier $\delta : R \longrightarrow R$ is a left τ -multiplier.

Proof. By our assumption,

$$\delta(a^2) = \delta(a)\tau(a), \quad a \in R.$$

Replacing a by a + b, we get

$$2\delta(ab) = \delta(a)\tau(b) + \delta(b)\tau(a), \qquad a, b \in R.$$
(2)

Interchanging b by bc in (2), we obtain

$$2\delta(abc) = \delta(a)\tau(bc) + \delta(bc)\tau(a).$$
(3)

Plugging (2) into (3) to get

$$4\delta(abc) = 2\delta(a)\tau(b)\tau(c) + (\delta(b)\tau(c) + \delta(c)\tau(b))\tau(a).$$
(4)

Similarly,

$$4\delta(bac) = 2\delta(b)\tau(a)\tau(c) + (\delta(a)\tau(c) + \delta(c)\tau(a))\tau(b).$$
(5)

Comparing (4) and (5) and using the fact that $\tau(a)\tau(b) = \tau(b)\tau(a)$ for all $a, b \in \mathbb{R}$, we arrive at

$$\left(\delta(a)\tau(b) - \delta(b)\tau(a)\right)\tau(c) = 0, \qquad a, b, c \in R.$$
(6)

Multiplying the relation (6) from the right by $(\delta(a)\tau(b) - \delta(b)\tau(a))$, we get

$$\left(\delta(a)\tau(b) - \delta(b)\tau(a)\right)\tau(c)\left(\delta(a)\tau(b) - \delta(b)\tau(a)\right) = 0.$$

Since R is semiprime and τ is surjective, we conclude that $\delta(a)\tau(b) - \delta(b)\tau(a) = 0$ for all $a, b \in R$. Thus, it follows from (2) that $\delta(ab) = \delta(a)\tau(b)$ for all $a, b \in R$ and hence δ is a left τ -multiplier.

In the second case we consider the noncommutative situation and relaxing the condition $\tau(Z(R)) = Z(R)$, but we assume the stronger condition that R is prime.

Corollary 2.9. Suppose that R is a 2-torsion free noncommutative prime ring. If τ is surjective, then each left Jordan τ -multiplier $\delta : R \longrightarrow R$ is a left τ -multiplier.

Proof. Take $\sigma = \mu = 0$ in Corollary 2.5.

Let R be a commutative ring, $\sigma = \tau$ and μ is a symmetric (σ, τ) -Hochschild 2-cocycle map. Then by Lemma 2.1(i), every (σ, τ) -generalized Jordan derivation $\delta : R \longrightarrow R$ is a (σ, τ) -generalized derivation. The following result improve this conclusion.

Recall that an S-bimodule X is said to be symmetric if ax = xa for all $a \in S$ and $x \in X$. **Theorem 2.10.** Let R be a commutative ring and S be any ring. Let X be a 2-torsion free symmetric S-bimodule with the property that xa = 0 with $x \in X$, $a \in S$ implies that x = 0 or a = 0. If μ is symmetric, then each (σ, τ) -generalized Jordan derivation $\delta : R \longrightarrow X$ is a (σ, τ) -generalized derivation.

Proof. Let $\delta: R \longrightarrow X$ be a (σ, τ) -generalized Jordan derivation. Then

$$\delta(a^2) = \delta(a)\tau(a) + \sigma(a)\delta(a) + \mu(a,a), \quad a \in \mathbb{R}.$$
(7)

Replacing a by a^2 in Lemma 2.1(i), we get

$$2\delta(a^{2}b) = \delta(a^{2})(\tau(b) + \sigma(b)) + \delta(b)(\sigma(a^{2}) + \tau(a^{2})) + \mu(a^{2}, b) + \mu(b, a^{2}),$$
(8)

for all $a, b \in R$. By (7) and (8),

$$\begin{split} 2\delta(a^2b) = &\delta(a)\tau(a)\tau(b) + \sigma(a)\delta(a)\tau(b) + \mu(a,a)\tau(b) \\ &+ \delta(a)\tau(a)\sigma(b) + \sigma(a)\delta(a)\sigma(b) + \mu(a,a)\sigma(b) \\ &+ \delta(b)\sigma(a)\sigma(a) + \delta(b)\tau(a)\tau(a) + \mu(a^2,b) + \mu(b,a^2). \end{split}$$

On the other hand, according to (ii) in Lemma 2.1, we have

$$2\delta(a^2b) = 2\delta(a)\tau(b)\tau(a) + 2\sigma(a)\delta(a)\tau(b) + 2\sigma(a)\sigma(b)\delta(a)$$
$$+ 2\sigma(a)\mu(b,a) + 2\mu(a,ba).$$

Comparing the above two expressions, we obtain

$$(\delta(a)\tau(b) + \sigma(a)\delta(b) - \delta(a)\sigma(b) - \tau(a)\delta(b)) (\sigma(a) - \tau(a)) + (\mu(a,a)\tau(b) + \mu(a^{2},b) - \mu(a,ba)) - \mu(a,ba) + (\sigma(b)\mu(a,a) + \mu(b,a^{2}) - \sigma(a)\mu(b,a)) - \sigma(a)\mu(b,a) = 0.$$
(9)

Since μ is a (σ, τ) -Hochschild 2-cocycle map, we have the following relation:

- (i) $\sigma(a)\mu(b,a) + \mu(a,ba) = \mu(ab,a) + \mu(a,b)\tau(a),$
- (ii) $\mu(a, a)\tau(b) + \mu(a^2, b) \mu(a, ab) = \sigma(a)\mu(a, b),$
- (iii) $\sigma(b)\mu(a,a) + \mu(b,a^2) \mu(b,a)\tau(a) = \mu(ba,a).$

Since R is commutative and μ is symmetric, by (i) we get

$$\sigma(a)\mu(b,a) = \mu(a,b)\tau(a), \quad a,b \in R,$$

and hence (iii) implies that

$$\sigma(b)\mu(a,a) + \mu(b,a^2) - \sigma(a)\mu(b,a) = \mu(ba,a), \quad a,b \in \mathbb{R}.$$
 (10)

Plugging the relation (ii) and (10) into (9), we get

$$\left(\delta(a)\tau(b) + \sigma(a)\delta(b) - \delta(a)\sigma(b) - \tau(a)\delta(b)\right)\left(\sigma(a) - \tau(a)\right) = 0. \tag{11}$$

By our assumption, it follows from (11) that for each $a \in R$ either $\sigma(a) = \tau(a)$ or for all $b \in R$,

$$\delta(a)\tau(b) + \sigma(a)\delta(b) = \delta(a)\sigma(b) + \tau(a)\delta(b).$$

In other words, R is the union of its subsets $A = \{a \in R : \sigma(a) = \tau(a)\}$ and

$$B = \{a \in R : \ \delta(a)\tau(b) + \sigma(a)\delta(b) = \delta(a)\sigma(b) + \tau(a)\delta(b), \text{ for all } b \in R\}.$$

Clearly, each of A and B are additive subgroups of R. But a group cannot be the union of two proper subgroups, therefore A = R or B = R.

If A = R, then $\sigma = \tau$ and hence from (i) in Lemma 2.1, it follows that $\delta : R \longrightarrow X$ is a (σ, τ) -generalized derivation.

If B = R, then for all $a, b \in R$, we have

$$\delta(a)\tau(b) + \sigma(a)\delta(b) = \delta(a)\sigma(b) + \tau(a)\delta(b).$$

Thus, by using (i) in Lemma 2.1, we see that δ is a (σ, τ) -generalized derivation. \Box

Corollary 2.11. Let R be a commutative prime ring (i.e., a commutative integral domain) and $\delta : R \longrightarrow R$ be a (σ, τ) -generalized Jordan derivation. If μ is symmetric, then δ is a (σ, τ) -generalized derivation.

Proof. Take R = S = X in Theorem 2.10.

The next example shows that selecting an appropriate (σ, τ) -Hochschild 2-cocycle μ plays a crucial role. Moreover, it shows that the primeness of R can be omitted from Corollary 2.11 whether $\sigma = \tau$.

Example 2.12. Let

$$R = \left\{ \begin{bmatrix} z_1 & z_2 \\ 0 & z_1 \end{bmatrix} : z_1, z_2 \in \mathbb{C} \right\}.$$

Then R is a commutative ring. Suppose that $\delta : R \longrightarrow R$ is an additive map defined by $\delta(x) = xm + mx$, where

$$m = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Let $\sigma, \tau: R \longrightarrow R$ be additive maps with

$$\sigma(a) = \tau(a) = \begin{bmatrix} z_1 & 0\\ 0 & z_1 \end{bmatrix}, \quad a \in R.$$

Define $\mu_1, \mu_2 : R \times R \longrightarrow R$ via

$$\mu_1(a,b) = -\sigma(a)\delta(e_A)\tau(b), \quad \mu_2\left(\begin{bmatrix} z_1 & z_2\\ 0 & z_1 \end{bmatrix}, \begin{bmatrix} w_1 & w_2\\ 0 & w_1 \end{bmatrix}\right) = \begin{bmatrix} 0 & -z_1w_1\\ 0 & 0 \end{bmatrix}.$$

Then both μ_1 and μ_2 are (σ, τ) -Hochschild 2-cocycle and they are symmetric. Since

$$\delta(a^2) = \delta(a)\tau(a) + \sigma(a)\delta(a) + \mu_1(a,a),$$

for all $a \in R$ and $\sigma = \tau$, δ is a (σ, τ) -generalized derivation associated with μ_1 , but δ is not a (σ, τ) -generalized Jordan derivation associated with μ_2 .

Acknowledgement. The author gratefully acknowledge for careful reading of the manuscript and for helpful comments of the anonymous referees.

Disclosure statement. The author reports there are no competing interests to declare.

References

- E. Albas, On τ-centralizers of semiprime rings, Siberian Math. J., 48(2) (2007), 191-196.
- [2] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 104(4) (1988), 1003-1006.
- [3] M. Brešar, Jordan derivations revisited, Math. Proc. Cambridge Philos. Soc., 139(3) (2005), 411-425.
- [4] M. Brešar and J. Vukman, Jordan (Θ, φ)-derivations, Glas. Mat. Ser. III, 26(46)(1-2) (1991), 13-17.
- [5] A. Fošner and W. Jing, A note on Jordan derivations of triangular rings, Aequationes Math., 94(2) (2020), 277-285.
- [6] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104-1110.
- [7] B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc., 120(3) (1996), 455-473.
- [8] A. Nakajima, Note on generalized Jordan derivations associate with Hochschild 2-cocycles of rings, Turkish J. Math., 30(4) (2006), 403-411.
- [9] A. M. Peralta and B. Russo, Automatic continuity of derivations on C*-algebras and JB*-triples, J. Algebra, 399 (2014), 960-977.
- [10] M. F. Smiley, Jordan homomorphisms onto prime rings, Proc. Amer. Math. Soc., 8 (1957), 426-429.
- [11] J. H. Zhang, Jordan derivations on nest algebras, Acta Math. Sinica (Chinese Ser.), 41(1) (1998), 205-212.
- [12] J. Zhou, Characterizations of generalized derivations associated with Hochschild 2-cocycles and higher derivations, Quaest. Math., 39(6) (2016), 845-862.

ABBAS ZIVARI-KAZEMPOUR

- [13] A. Zivari-Kazempour, Linear maps which are θ-centralizers at zero or identity products, Commun. Korean Math. Soc., 40(1) (2025), 125-136.
- [14] A. Zivari-Kazempour, Characterizations of n-Jordan multipliers on rings, J. Mahani Math. Res., 14(1) (2025), 63-72.

Abbas Zivari-Kazempour

Department of Mathematics Faculty of Basic Sciences Ayatollah Boroujerdi University Boroujerd, Iran e-mails: zivari@abru.ac.ir zivari6526@gmail.com