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ABSTRACT. The nonabelian two-dimensional Lie algebra over a field F has a
presentation by generators A, B and relation [A, B] = A, with the univer-
sal enveloping algebra having a presentation by generators A, B and relation
AB — BA = A. A solution to the Lie polynomial characterization problem in
the corresponding class of g-deformed universal enveloping algebras, specifi-

cally of the algebra with relation AB — qBA = A is presented.
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1. Introduction

Let F be a field. Up to isomorphism, there are only two (non-isomorphic) two-
dimensional Lie algebras over F: an abelian one, which we denote here by gg, and
a “solvable” one, which we shall denote by g1. If g € {go, g1}, then, following [11,
Theorem 3.1], the standard approach is to consider the derived (Lie) algebra g’ of
g, or the F-linear span of all possible Lie brackets of elements of g. Since g is two-
dimensional, we may fix a basis of g consisting of two elements A and B. Since the
Lie bracket is alternating (meaning the Lie bracket of anything with itself is zero),
and is bilinear, any element of g’ is a scalar multiple of [A, B] (the Lie bracket of
A with B). Hence, the derived algebra g’ is at most one-dimensional. This gives
the two classifications: g = go (abelian) if g’ is the zero Lie algebra, or else g = g1
(solvable). Routine arguments that make use of basis-to-basis linear maps such as
¢p: A~ BB —A ¢ : A— A B+~ tB,and ¢y : A — tA, B — B (where
t € F\{0} is a parameter) lead to proofs that the nonabelian two-dimensional Lie

algebra g; is unique up to isomorphism. We refer the reader to [11, Chapters 3—4]
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for further details when we go to dimensions that are higher than two. This paper
is about some bigger algebraic structures related to g;.

Among the several isomorphic copies of gi, we choose that which has a basis
consisting of A and B that satisfy the “commutation relation” [A, B] = A. The
universal enveloping algebra of g; is the (associative) algebra U(g;) that has a
presentation by generators A, B and relation AB — BA = A. Let ¢ € F. In this
work, we shall be interested in what is called the “g-analog” or “g-deformation”
of the Lie bracket operation that was done on A and B, which results to the
expression AB — gBA. The literature on g-analogs or ¢-deformations is extensive.
With reference to the scope of this paper, what shall suffice is to mention here two
of the important achievements made using g-analogs. The study of g-analogs of
notions from ordinary calculus led to the discovery of many important notions and
results in combinatorics, number theory, and other fields of mathematics [16, p. vii],
and the g-analogs of commutation relations of important Hilbert space operators
have been successfully applied to, for instance, particle physics, knot theory and
general relativity [12, Chapter 12].

Since the g-deformation of the Lie bracket shall be considered later, we now
mention some of the isomorphic forms of g; so that there shall be more clarity as
to which of the isomorphisms are carried over, or not, after the g-deformation. If
g1 is the Lie algebra over F with a basis consisting of A and B, subject to the re-
lation [A, B] = B, then there exists a Lie algebra isomorphism g; — g; such that
A — B and B — —A. Given a nonzero r € F, if g, is the Lie algebra over F with
a basis consisting of A, B that satisfy the commutation relation [A, B] = rA, then
there exists a Lie algebra isomorphism g, — g1 that sends A — A and B — rB.
Also of interest here is the Lie algebra g, over F with a basis consisting of A and
B that obey the relation [A, B] = sB, given a nonzero s € F. There exists a Lie
algebra isomorphism g, — g; with the property that A — sA and B — B. The
universal enveloping algebras U(g, ), U(gs), for all r,s € F\{0}, of the aforemen-
tioned Lie algebras are isomorphic. This may be proven routinely by the universal
property of these universal enveloping algebras, together with the fact that, for the
said isomorphic forms of the nonabelian two-dimensional Lie algebra, the inclusion
maps g, < U(g,) and g5 — U(gs) are injective [15, Exercise 17.2]. The isomor-
phism previously mentioned for the Lie algebras have their natural extension to

algebra isomorphisms of the universal enveloping algebras. As a recapitulation,
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these algebra isomorphisms have the properties

U(g)) —U(G) + A= B, B~ —A, (1)
U(gr) —U(g1) : A— A, Bw—rB, (2)
U(gs) — U(G1) : A—sA, B~ B. (3)

Given a nonzero g € F, we now consider the g-deformation of the Lie bracket in
the above algebras. Given a nonzero r € F, the algebra U(g,.) has a presentation
by generators A, B and relation AB — BA = rA. The corresponding ¢-deformed
algebra is what we shall denote by U,(r,0) that has a presentation by generators
A, B and relation AB — ¢BA = rA. Analogously, the g-deformation ¢,(0, s) for
U(gs) has a presentation by generators A, B and relation AB — ¢BA = sB, where
s € I is nonzero.

The algebra U(g;) has a natural Lie algebra stucture induced by the operation
that sends any X,Y € U(g1) to XY — Y X. The Lie subalgebra of U(g1) generated
by A and B is simply g1, because of the relation AB — BA = A, and this is at
the heart of the theory of universal enveloping algebras. This reduction of the Lie
subalgebra to a smaller substructure is not necessarily true anymore for the algebra
Uy(1,0). In U,(1,0), we may still compute for Lie algebra expressions generated
by A and B, but the new relation AB — ¢BA = A does not imply that the Lie
subalgebra of U,(1,0) generated by A and B, or the set of all “Lie polynomials” in
A, B € Uy(1,0), shall be reduced into a small substructure. This is the main goal
of this paper: to characterize all the Lie polynomials in A and B under a relation
like AB — ¢BA = A, or what can be called the “Lie polynomial characterization
problem” for the given presentation of U, (1,0) by generators and relations up to
isomorphism.

Lie polynomial characterization problems were first studied in [2], which was
about the universal Askey-Wilson algebra, an important mathematical object in
algebraic combinatorics, which arose from mathematical physics. The Lie poly-
nomial characterization problem was completely solved for the ¢-deformed Heisen-
berg algebra and some extensions of this algebraic structure [3,4,5,6,8,9,10]. The
g-deformed Heisenberg algebra [13,14] is a g-analog of the Heisenberg-Weyl algebra
[7], which is an algebraic structure important in quantum theory.

One can easily verify that when ¢ # 1, there is no algebra homomorphism that
corresponds to (1) for the g-deformed algebras U, (s, 0) and U, (0, s) that performs
A — BB and B — «aA (for some nonzero «, 8 € F), or the traditional map that
“switches and scales” the two generators from U,(s,0) to U, (0,s). If we assume

that there is such homomorphism, then we would obtain equation (¢®> —1)BA + >
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(aqg + 1)B = 0 which would lead to a contradiction, since BA and B are linearly
independent elements in U,;(0,s). We emphasize that this includes the case with
s=1,a=—1and B = 1, which serves as our proof that the algebra homomorphism
U(g1) — U(g1) in (1), that sends A — B and B — —A, has no g-analog. However,
this is not sufficient reason to conclude that U, (s, 0) and U, (0, s) are not isomorphic.
In fact, in Section 5, we settle all these issues concerning isomorphisms leading to
the conclusion that solving Lie polynomial characterization problem in U, (1,0) is
sufficient.

The aforementioned results were obtained with the aid of the Diamond Lemma
for Ring Theory [1, Theorem 1.2], which is an ingenious and indispensable tool in
the determination of a basis for an algebra given a certain kind of presentation. The
proofs and computations for the algebras U, (r,0) and U, (0, s) that are based on the
Diamond Lemma are analogous when done separately. For a better presentation of
these proofs and computations, we decided to generalize the algebras U,(r,0) and
Uy (0, s) into an algebra Uy (r, s) which has a presentation by generators A, B and
relation AB — ¢gBA = rA + sB. The basis theorem, Theorem 4.3, is valid not only
for the aforementioned restrictions on r and s for the relevant Lie algebras, but also

for any choice of r and s in the field F.

2. Preliminaries

Given a field F, any F-algebra shall be assumed to be associative and unital.
Since only one field F will be used, we further drop the prefix “F-” and simply
use the term algebra. A Lie algebra structure is induced on an algebra A by
the operation [X,Y] := XY —YX for all X,Y € A If A1, A,,..., A, € A,
then the Lie subalgebra IC of A generated by Aj, As,..., A, is the smallest Lie
subalgebra which contains Aj, As, ..., A,. That is, if S is a Lie subalgebra of A, if
{41,As,...,A,} € S, and if S C K, then § = K. In such a case, we refer to the
elements of IC as Lie polynomials in Ay, As, ..., A,.

We denote the set of all nonnegative integers by N, and the set of all positive
integers by ZT. We fix v € ZT, and let X = X, be a set with v elements. The
free monoid on X shall be denoted by (X), while the free algebra generated by
X shall be denoted by F(X). Most of the fundamental notions and properties of
the aforementioned free monoid and free algebra may be seen, for instance, from
[17, Chapter 1] or [18, Section 1.1], and we proceed with only the terminology and
notation necessary. Any basis element of F (X’) from the basis (X) is called a word
on X. The length of a word W € (X) shall be denoted by |W|. Words of length

1 are precisely the elements of X', and are called letters. The word of length 0 is
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called the empty word in (X) and shall denoted by I, which is also the identity
element under the concatenation multiplication in (X). If |W| # 0, then W is said
to be a nonempty word, but we further define W := I. Multiplication in F (X
is determined by the concatenation product in (X). Given a word W € (X), a
word W' is said to be a subword of W if there exist words L, R € (X) such that
W = LW'R.

If ¥ ={Xy, Xo, ..., X,}, given L1, Ry, Lo, Ro, ..., Ly, R,y € F(X), let
7 be the (two-sided) ideal of F (X) generated by Ly — Ry, Lo — Ra, ..., Ly, —
R,,. The algebra with generators X1, Xo,..., X, and relations L1 = Ry, Ly =
Ry, ..., Ly, = R, is the quotient algebra F (X)) /Z. With respect to the natural
embedding X — F(X) /Z, if K is the Lie subalgebra of F(X) /Z generated by
Xq, Xo, ..., X, then a characterization of the elements of K is said to be a solution
to the Lie polynomial characterization problem with respect to the aforementioned
presentation of F (X) /Z.

We recall Bergman’s Diamond Lemma or the Diamond Lemma for Ring Theory
[1, Theorem 1.2], together with some related notions taken from [1, Section 1],
which are crucial in determining a basis for F (X) /Z. A set of ordered pairs of the
form A = (Wy, f)) where Wy € (X) and fy € F(X) is called a reduction system.
Let S be a reduction system. Given A\ € S and L, R € (X), by the reduction vt p
we mean the linear mapping F (X) — F (X)) that fixes all elements of (X’) other
than LW\ R, and instead sends this basis element of F (X) to the element Lf\R.
A reduction vp\g acts trivially on an element K of F (X) if the coefficient of the
basis element LW, R in K is zero. If every reduction acts trivially on an element
K, then K is irreducible (under S). We say that K € F (X) is reduction-finite if for
every infinite sequence ty, ta, ... of reductions, there exists IV € N such that v; acts
trivially on (t;—1 ot;—g0---0oty)(K) for all ¢ > N. If K is reduction-finite, then
a final sequence is any maximal finite sequence of reductions t;, such that each v;
acts nontrivially on (v;_1 ot;_90---0ot)(K). Additionally, if K is reduction-finite
and if its images under final sequences of reductions are the same, then we say that
K is reduction-unique.

A 5-tuple (A, 7, W1, Ws, W3) where A\, 7 € S and Wy, Wy, W3 € (X)\{I} is an
overlap ambiguity if Wy = W1 W5 and W, = W5W3. This ambiguity is said to be re-
solvable if there exist compositions of reductions t and t' such that
t(faW3) = (Wi f,). Also, a 5-tuple (\,7, W1, Wa, W3) where A # 7 € S and
Wi, Wa, W3 € (X) is an inclusion ambiguity if Wy = Wy and W, = W, Wy Ws.

This ambiguity is said to be resolvable if there exist compositions of reductions ¢
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and v/ such that t(f;) = /(W1 /AW3). By an ambiguity of S, we mean either an

overlap ambiguity or an inclusion ambiguity.

Theorem 2.1. [Diamond Lemmal] Let S be a reduction system on F(X). Let A be
an algebra with generators in X and relations Wy = f for all X € S. The following

conditions are equivalent.

(i) All ambiguities of S are resolvable.
(ii) All elements of F(X) are reduction-unique under S.

(iii) The set of all irreducible words on X with respect to S form a basis for A.

3. The algebra U,(r,s)

We now consider the case when X has only two elements A and B. Given
q,r,s € F,let 7y = Z1(q, 7, s) be the ideal of F (X') generated by AB—qBA—rA—sB,
and let Uy (r,s) := F(X) /I;. Succeeding computations will involve division by a
power of ¢ or by a field element of the form 1 — ¢ for some nonzero integer m.
Thus, we assume that I has characteristic zero, and the scalar ¢ is nonzero, and is

not a root of unity.

Proposition 3.1. For any n € Z*, the identities

n—1

A"B = BZ() qAn t—‘r’l"qu-i-S)nllAH_l (4)
=0
n n—1

AB" = Z() ntA+SZqB+T)n 1— 1B'L+1 (5)
t= =0

hold in Uy(r, s).

Proof. Both identities simply reduce to the defining relation AB—gqBA =rA+sB
of Uy(r,s) when n = 1. If the given identities hold for some n € Z™, then, with
the goal of performing induction on n, at n 4 1, the desired left-hand sides may be
obtained by multiplying A from the left or by B from the right. In the resulting
right-hand sides, the identity AB = ¢BA +1rA+ sB may be used such that, after a
finite number of steps, the desired linear combinations of words will appear in the
new right-hand sides. By induction on n, the desired identities are indeed true in
Uy(r,s). O

By introducing a new letter C' := [A, B] = AB — BA, the algebra U,(r, s) would

consequently have the following presentation.



LIE POLYNOMIALS IN A ¢-DEFORMED UNIVERSAL ENVELOPING ALGEBRA 7

Lemma 3.2. The algebra Uy(r,s) has a presentation by generators A,B,C and

relations
AB —gqBA = rA-+sB, (6)
C = AB - BA. (7)

Proof. Given X3 = {A,B,C}, let I, be the ideal of F(X3) generated by
AB — qBA — 1A — sB and C — AB 4+ BA. Since the generators in the respec-
tive presentations for F(X') /Z; and F (X3) /Z, satisfy the relations of the other, a

routine argument may be used to show that there exists an algebra isomorphism
F(X) /I, — F (X5) /I which maps A — A, B+~ B and [4,B] — C. O

We will often refer to some g-special relations from [13, Appendix C] such as the

following. For a given n € N and z € F,

{n}z = Zta (8)

t
(1—2){n}, = 1-2" (9)
If n <0, then we interpret (8) as the empty sum 0.

Lemma 3.3. Let & = £3(q, 8) := AC — qCA — sC. For any h € Z7T,

h

> g TICTIGCT = ACh — ¢"CM A — {h},sC". (10)

i=1
Proof. The case h = 1 is simply the definition of £&. Suppose (10) is true for some
h € N. Multiplying both sides by C from the right, the resulting right-hand side
is a linear combination of the words AC"*1, C"AC and C"*!, where the AC in
C" AC may be replaced using the relation AC = & +qC A+ sC, which is immediate
from the definition of &. Adding ¢"C"¢&; to both sides, we find that the identity is
true at h 4+ 1. The desired result follows by induction on h. ([

Proposition 3.4. The algebra Uy(r,s) has a presentation by generators A, B,C

and relations

rA+sB — qC

AB = ——— (11)
1-¢q
AC = qCA+ sC, (12)
rA+sB—-C
BA = ———— 1
eBoC (13)
CB = ¢BC+rC, (14)

k. vk k k k_ okl
BokA - 4 rC*A+q st(l—i— {k)i}qrsC C  hezt. (15)
q —q
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Proof. We view the left-hand side and right-hand side expressions of equations
(11) to (15) as elements of F (X3) with X5 = {A, B,C} and define

A+ sB —
¢ = Ap_ ' AtsB-aC (16)
l—q
& = AC —qCA— sC, (17)
¢ — pA_ATsB-C (18)
l1—q
& = CB—gBC—-rC, (19)
k. k k k k _ k1
(k) = BC”“A—qTC A+q st + {k}qrsC* - C  kezt. (20)
¢"(1—q)
Also, we denote generators of Z, by
(1 = AB—qBA—1rA—sB, (21)
(e = C—-AB+ BA. (22)
Let Z5 be the ideal of F (X3) generated by
{51)527&3764}U{§5(k)} RS {172737} (23)

We claim that Zo = Z3. The relations (16) and (18) may be used in some routine

computations to obtain
&—-& = C—AB+ BA, (24)
& —q€&3 = AB—qBA—1rA-—sB, (25)

provided ¢ # 1. With the use of (24) and (25), we have (1, (s € Z3. Thus we have
To C I3. Next we show that Z3 C Z5. Observe that

(1+qa = AB—qBA—rA—sB+qC —qAB+ ¢BA,
= (1-¢)AB—rA—sB+qC,
Gtaee _ 45 rA+sB-qC (26)
1—g¢q 1—gq
From (26), we can easily derive
AB — C1+qCQ+TA—|—sB—qC. (27)
l—q l—q
By further routine computations,
AG — QA+ AQ — A = AC —qCA - sC, (28)
GHG _ g, rAtsB-C )
l—q l—q

GB—BG +GB—qBG = CB-qBC—rC. (30)
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Equations (26) and (29) clearly show that & and &3 are linear combinations of (3
and (o, and so we have £1,&3 € Zy. Also, because of absorbing property of ideals,
equations (28) and (30) suggest that &, &4 € To.

From Lemma 3.3, we can easily obtain

k
ACK = N g OGO 4 FCR A + (K} gsCP. (31)
i=1
Since we have established &3, &3 € T, we have £5C™, B Zle @O CR T € T,
Observe that

(1—¢q)&C* = (1—q)BAC* —rACk — sBCF + CF 1,

k
= (1—gq)BAC* —r (Z ¢LOT e CR T ot A + {k}quk>

=1
—sBCF + Okt

k
= (1-q)BAC* — ’I“Z ¢TrOT G CR T — gFrOF A — (K} rsCF
i=1

—sBC* 4 k1

and transposing the summation to the left-hand side, we obtain

k
(1 —q)&C* + qui_lCi_lfgck_i = (1—¢q)BAC* — ¢*rC*A — {k},rsC*
i=1

—sBC* + CF L

Also with Lemma 3.3, we have

k
(1-q)BY ¢ 'C"7'&CH " = (1-¢)BAC* — (1—q)¢"BC*A
=1

—(1 = q){k}4sBC*.

The previous two identities, together with the earlier one with left-hand side AC*,
may be used in routine computations to show that

k k
(1 _ q)gjck + rzqi—lci—1£2ck—i _ (1 _ q)B Zqi—lcvi—léécvk—i7 (32)

i=1 =1

is equal to the linear combination
(1 - q)¢"BC*A - ¢*rC*A — ¢*sBC* — {k},rsC* + CFH,

and this implies that &5(k) for any % is a linear combination of elements in Zy and
that & (k) € Zo. We now have T3 C Z,. Thus, we have U, (r, s) = F (X3) /Zs. O
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4. A basis for U,(r, s)

A basis of an algebra holds essential information for understanding its algebraic
structure [19, p. 10]. So we choose a basis for U, (r, s) based from its presentation
on Proposition 3.4 using Bergman’s Diamond Lemma.

We use relations of U,(r,s) given in Proposition 3.4 to construct a reduction
system in F (X3). Let

S (AB, 7'A+sB—qC), (33)
l—q

oo = (AC,qCA+ sC), (34)

o3 = (BA, TAJFSBC), (35)
l—q

oy, = (CB,¢qBC+1rC), (36)
krCk A 4+ ok sBO k okl

o= (BckA,q reT At qf(lt{qlg}qmc ¢ ) keZt. (37)

Then R := {oy, 7, : i € {1,2,3,4},k € {1,2,3,...}} is a reduction system in
F (X3) for Uy(r, s) in three generators. In order to use an implication in Bergman’s
Diamond Lemma, first we show that any ambiguity of R is resolvable. It is routine
to show that there is no inclusion ambiguity given the reduction system R. In

addition, all overlap ambiguities that do not involve an element 7, € R are

o, = (01,03,4,B,A), (38)
Oy = (092,04,A,C,B), (39)
&3 = (03,01,B,A,B), (40)
o, = (03,00,B,A,C), (41)
®5 = (04,03,C,B,A), (42)
while all the overlap ambiguities that depend on an integer parameter (k) are
®s(k) = (01,7 A, B,C*A), (43)
®7(k) = (04,7, C,B,C*A), (44)
®s(k) = (74,01, BC* A, B), (45)
®o(k) = (7,00, BC* A,C). (46)
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Proposition 4.1. For any n,m € Z+,

n

ArCm = Z(?)wnmi({m}qs)icm"i,and (47)
1=0

cmBr = Z<?>qmn-mi({m}qr)i3”—icm. (48)

=0

Proof. The desired relations in the statement may be obtained by routine induc-
tion based on the relations (12) and (14) in Proposition 3.4. An argument similar

to that done in Proposition 3.1 may be used in aid of the induction. [
Lemma 4.2. All ambiguities of R are resolvable.

Proof. We prove this lemma directly by determining compositions of reductions v;
and v for each ambiguity @1, ..., ®5 and Ps(k), ..., Py(k) that will satisfy condition
for resolvable ambiguity. For any positive integer k and any U, W € (X3), we let

A(k,w) = TCk-1g,W OCCk—25,CW O VCk—35,C2W © "' * O CCgyCk—2W © VoyCk—1W»

b,uy = k-1, OWUCk-20,C O WUCk-35,C2 O O TUCo Ck—2 O Vg Ch1-
With Proposition 4.1, we take note of the following simple results:

agw)(ACFW) = ¢"CFAW + {k},sC*W, (49)
by (UCKB) = ¢"UBC* + {k},rUCF. (50)

For simpler notation, given p € R, we write tr,r, tuur, truv as tu, tuu, tuv, respec-
tively.

We first consider ®; = (01,03, A, B, A). Notice that ABA is precisely the non-
trivial word involved with this overlap ambiguity. Let t; = tv,, and v} = t,, 0 t5,.
Observe that

rA% + sBA— qCA
tl(fCHA) = Tgy < 1 g > 5
—q
AT (B0 oA
— — ,

(1—q)rA2 +rsA+s’B—sC — (1 —q)qCA
(1-q)? ’
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and

rA? + sAB — AC
Q) = (i onm) (PTETAC),

rA? 4 s (mA5EoaC) - AC

1—gq
=t o ,
rA? + s (“%;qc) — (qCA + 5C)
= = ,
_ (1—q)rA?+rsA+s*B—sC — (1 —q)qCA
N (1-9)? ’

= tl(f(ﬂA)'

Thus, for the ambiguity &1 = (01,05, A4,B,A4), if vy = t,, and v} = t,, 0 vy,
then we have vj(Afs,) = v1(fr, 4), which implies resolvability of the ambiguity.
To complete the proof, we check all other ambiguities. The process involves rou-
tine computations like those done above for ®;. We only summarize below what
compositions of reductions are used for each ambiguity, which lead to the desired
resolvability condition, like the equation t}(Af,,) = v1(fr, A) for 1. Again, such

equations may be verified routinely for each of the remaining ambiguities.

(i) For & = (09,04, A,C, B), if ta = t,, 0 tcy, and th = t,, 0ty ¢, then
tQ(fth) :té(Aftm)'

(ii) For ®3 = (03,01,B,A,B), if t3 = t,, 0ty and t§ = t,,, then
(fos B) = t3(Bfo,)-

(iii) For ®4 = (03,02,B,A4,C), if vy = t, and ¢, = v, then
ta(fo,C) = t4(Bfo,)-

(iv) For ®5 = (04,05,C,B,A), if vy = v, and t§ = =t,,, then
s (fo,A) = t5(Cfoy)-

(v) For ®s(k) = (01,7, A4, B,C*A), if v¢ = t, o aga and

= A(kt1,1) © A(k,1) © Loy ok © A(k,A), then t6(fo, CFA) = t5(Afr,).
(vi) For ®7(k) = (04,7%,C,B,C*4), if v7 = v,,, and t}, = t,,, then
07, CFA) = (O fr,).
(vii) For ®g(k) = (1,01, BC*, A, B), if vg = O(kt1,1) 00,1 0 bk, By Oteky, and
t; = b p) o tr,, then ts(fr, B) = v5(BC* f5,).
(vili) For ®9(k) = (74,02, BC*, A,C), if tg = tcr,, and t§y = v, then
t9(fr.C) = t§(BC* fs,).
These results suggest that with v; and ¢} for ¢ € {1,2,...,9}, all ambiguities
®q,...,P5 and Pg(k), ..., Pg(k) are resolvable. This completes the proof. O
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Theorem 4.3. The elements
Blc™, cm A, (ILmeN, teZ"), (51)
form a basis for Uy(r, s).

Proof. We consider R whose elements are given by (33)-(37) based from the defin-

ing relations of U, (r, s) as previously stated in Proposition 3.4. We first show that
{B"CI,CIA* . hjeNkeZt}, (52)

is the set of all irreducible words under R. Notice that collection (52) is clearly
a set of irreducible words with respect to the reduction system R since words
AB,AC,BA,CB and BC*A with k € Z* do not appear as a subword in any of
its elements. Suppose W is not in (52). Then W must have a subword of the form
A®CYB?* or B“CYA"Y where z,y,z € N,u,w € Z* and at most one of the powers
x,y,z for ACYB* is equal to zero. It is clear that we cannot have two or three
variables among x,y and z to be zero for A¥CYB?* because it will contradict our
supposition. This means that we only have to consider cases when x = 0, y = 0,
z = 0, and when z,y,z € ZT for ACYB*. Meanwhile, we have cases y = 0,
and y # 0 for B*CYA"™. If x = 0, then a reduction which involves o4 would act
nontrivially on A*CYB* = CYB*. If y = 0, a reduction which involves o1 would
act nontrivially on A*CYB* = A®B?, while a reduction which involves o3 would
act nontrivially on B*CYAY = B*A". And if z = 0, a reduction which involves o4
would act nontrivially on A*CYB?* = A*CY. For the case z,y, 2 € ZT, reductions
which involve oy or o4 would act nontrivially on A*CY B# | while reductions which
involve 7, would act nontrivially on B“CY%a" when y # 0.

It is clear that in any of the mentioned cases, W is not irreducible. Thus, any
irreducible element with respect to the reduction system R are in (52). Now, we only
need to show that elements in (52) form a basis for U, (r, s). To do this, we invoke
Bergman’s Diamond Lemma. The only implication we need from the Diamond
Lemma is that: if all the ambiguities of a reduction system S are resolvable and if
K is the ideal of F (X) generated by all W, — f, (o € S), then the images of all the
S-irreducible words under the canonical map F (X) — F (X)) /K form a basis for
F(X) /K. If we take S = R, K = Z3 generated by expressions in (16)-(22), then

with Lemma 4.2, the elements in (52) form a basis for U, (r, s). O

5. The isomorphism class of the algebra U,(1,0)

In this section, we discuss our reason for choosing the algebra U, (1, 0) for the Lie

polynomial characterization in the class of ¢-deformed universal enveloping algebras
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for two-dimensional nonabelian Lie algebras. We start by considering two general
cases for the algebra U, (r, s). First, the case r # 0 and s = 0, that is, the algebra
Uy (r,0) that has presentation by generators A, B and relation

AB —qBA =rA. (53)

Second, we have the case r = 0 and s # 0, that is, the algebra U,(0, s) with a

presentation by generators A, B and relation
AB — q¢BA = sB. (54)

To proceed, we again make use of the additional generator C = [A, B] = AB—BA
so that the algebra U, (r,0) would have a presentation by generators A, B,C and

relations
rA—qC
Ap = 1%
=, (5)
AC = ¢CA, (56)
rA—C
BA = S (57)
CB = ¢BC+rC, (58)
k OkA o CkJrl
poka = L2272 kgt 59
q*(1—q) (59)

which follows directly from Proposition 3.4. From the same Proposition 3.4, the

algebra U, (0, s) would have a presentation by generators A, B, C' and relations

_ sB—qC
AB = S p—— (60)
AC = qCA+ sC, (61)

sB - C
BA = 2
g (62)
CB = ¢BC, (63)

k Bck _ Ck-i—l

BC* A 50—~ (kezt). 64
Y ( ) (64)

For some important proofs that shall come later, we will need a generalization
of (61) and (63) which is in the following.

Proposition 5.1. For any n,m € Z+,

Anom — qnm C’HLA?’L7 (65)
TnBTL — mn—ma 'LB"L—Z m.
c > (5)amictmpry e (66)

Proof. Set s =0 in Proposition 4.1. (I
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We now show that working on the algebra U, (1, 0) shall suffice for us to accom-
plish the Lie polynomial characterization intended for this paper. We do this by
showing that the relevant algebras actually belong to the isomorphism class (under

algebra isomorphisms) of the algebra U,(1,0).

Proposition 5.2. There is an algebra isomorphism U (0,1) — U,(1,0) that sends
A BB and B — aA, where o, B € F are nonzero.

Proof. The algebra L{% (0,1) is generated by F := —B and G := _TlA, while
Uy(1,0) is generated by U := —¢B and V := —A. Using the defining relations of
these algebras, the relation FG—¢GF = F holds in U1 (0, 1) (which has the defining
relation AB — %BA = B), and the relation UV — %VqU =V in Uy(1,0) (which has
the defining relation AB — ¢gBA = A). We have thus shown that ¢/1(0,1) and
U,(1,0) are homomorphic images of each other. More precisely, there exqist algebra
homomorphisms ¥ : Z/I% (0,1) — Uy(1,0) and T : Uy(1,0) — Z/I% (0,1) such that

U:A— —qB, B~ —A,
T:A— —B, B»—>_—1A,
q

which, by routine computations, satisfy the conditions (YT o ¥)(A) = A and
(YT o ¥)(B) = B. This completes the proof. O

As we said in Section 1, the traditional algebra homomorphisms that perform
A — BB and B — «aA (for some nonzero o, € F), or algebra homomorphisms
that “switch and scale” the two generators from U, (r,0) to U, (0, s) consequently
imply that ¢ = 1 or ¢ = —1, which is counter to the assumption that ¢ is not a root
of unity. Proposition 5.2, however, shows us that, for the case r = 1 = s, by making
a change in parameter for in one of the algebras (that is, from ¢ to %), a “switch
and scale” isomorphism is obtained. This shall greatly simplify the Lie polynomial
characterization later. The problem now shifts into a different direction: could all
algebras U, (r,0) be “represented” by the case r = 1, and similarly, for the algebras

U,(0,s) by the case s = 17 This is addressed by the following.

Proposition 5.3. (i) For any nonzero r € F, there is an algebra isomorphism
Uy(r,0) — U,y(1,0) that sends A — A and B — rB.

(ii) For any mnonzero s € F, there is an algebra isomorphism
Uq(0,s) — Uy(0,1) that sends A sA and B — B.

Proof. The proof is based on an argument similar to that done in the proof of

Proposition 5.2. (]
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Since we have now established an isomorphism between U, (1,0) and U, (r, 0) for
any nonzero r € F, we now have the justification to drop the parameter r and
simply consider algebra the U, (1,0) for our succeeding results and computations.
This is from the first part of Proposition 5.3, and by the second part, we can
do similarly for the algebras U,(0, s) for all nonzero s € F. Ultimately, the two
remaining algebras U, (1,0) and U, (0, 1) have the same algebra structure as implied
by Proposition 5.2. Finally, this gives us sufficient reason to work only on the
algebra U, (1,0) for the Lie polynomial characterization in the class of ¢-deformed
universal enveloping algebras for two-dimensional nonabelian Lie algebras.

We now proceed with exhibiting elements of the algebra U, (1,0) in terms of its
basis elements based on Theorem 4.3. The results in this section are crucial and
work as our initial step in constructing Lie polynomials in U,(1,0). We reiterate
for emphasis that the algebra U,(1,0) has a presentation by generators A, B and

relation
AB —¢BA = A. (67)
Let n € ZT. Routine induction using (53) results to
A"B = ¢"BA" 4+ {n},A", (68)

both sides of which, we multiply by B"~! from the right. The resulting right-hand
side is a linear combination of only two words. The first term is (¢"BA™)B"~!.
To the expressions in parentheses, we substitute using ¢"BA™ = A"B — {n},A",

which is just one equivalent form of (68). We now have
A"B" = (¢"BA+ {n},A)A" B "1 (69)

which we shall use to prove

n—1
A'B" = [[(@"'BA+{n—i},A). (70)

i=0
The case n = 1 is simply the relation (67). Suppose (70) is true for some n € Z*.
We consider the case A" B+ of equation (69). The inductive hypothesis, with
the aid of (67), may then be used on the resulting right-hand side, and (70) follows.

Using the relation (57) on (70), routine computations may be used to prove

n—1 i
" B A _ qnfzc
A"B" = 11 (. (71)

We also have the following equivalent expressions under U, (1,0).
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Corollary 5.4. For any n,m € ZT,

- n —mi i pPn—i,vm
cm"B o= > <i>qm" ({m},)'B"'C™. (73)
=0
Proof. Take r =1 of equations (65) and (66) in Proposition 5.1. O

Theorem 5.5. If all the letters B, C and A appear (meaning with nonzero expo-
nent) in the word BYC*A™, then if BYC*A™ is further written as a linear combi-
nation of the basis elements from Theorem 4.3, then the letter C appears (meaning

has nonzero exponent) in all words in the said linear combination.

Proof. The desired statement may more precisely be stated as: given k,w,y € ZT,
the word BYC*AY € U,(1,0) is in S := Span{B!C™,C™A! : | € N, m € ZT}.
We clarify that S is only a proper subset of the basis of U, (1,0) from Theorem 4.3:
this basis includes words where the letter C' does not appear, while S is the set
of all words in the basis in each of which, the letter C' appears. Let k € ZT.
Elements of the form BCFA are in S because of the relation (59). In particu-
lar, BC*A € Sy := Span{C™A! : [ € N, m € Z*}. If for some w € Z*, we
have BC*AY € Sy, then we have an equation that expresses BC*¥A™ as a linear
combination of basis elements of the form C™A!. We multiply both sides of this
equation by A from the right, and so, BO*A**! is a linear combination of ele-
ments of the form C™A'!, and this proves that BC*¥Av+! ¢ §;. By induction,
BC*AvY € 8y, for all w € Zt. We perform another induction, with the state-
ment BC¥A € S, as the basis step. Suppose that for some w € ZT, we have
BYCFA" € Sy. Thus, BYC* A" is a linear combination of elements of the form
C™A!, and consequently, B**1C* A%+ is a linear combination of elements of the
form BC™ A1, which have been proven earlier to be elements of Sy. By induc-
tion, BYC*AY € S for all w € ZT. An analogous induction argument may be
used to show that BYC*AY*" ¢ Sy for all n € N. The remaining case is when
the exponent of B is strictly greater than the exponent of A in the word BYC*kAY.
We may write such a word as BYT*C* A", where t € ZT. If t = 1, then using the
fact that BYC*AY € Sy, the element BYCF A" is a linear combination of elements
of the form C™A!. Consequently, B*t'C*A™ is a linear combination of elements
of the form BC™A!, which have been proven earlier to be in Sy C S. If for some
t € ZT, we have BYt'C*AY € S, then this element is a linear combination of
elements of the form B*C* and C™A!. Thus, BYH+1CkAY is a linear combina-

tion of elements of the form B**1C* and BC™A!. The latter have been proven
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earlier to be in Sy C S, while the former are spanning set elements of S. Therefore,
Bwtttlok Av ¢ S. This completes the proof. O

Proposition 5.6. Given k,w,y € ZT and t € N,

Yy y—1i .
CkAwBth _ Z <ZZJ) qufwi({w}q)i Z (y t_ Z) qk(y—i—t)+tw({k}q)tByfiftClvktAw_ (74)
i= t=0

Proof. From (68), we find that AYB = ¢”BA" +{w},A". Multiplying both sides
by C*, we find that the identity

Y
Ck-AwBy — Z (y> qu—wi({w}q)iCvIcBy—iAw7 (75)

i
i=0
is true in Uy(1,0) for the case y = 1. The proof of (75) may be completed by
induction, with some aid again from the equation A¥B = ¢ BA" + {w},A".
Using equation (73) in Corollary 5.4, we have

y—1 .
CkByfi _ Z (y - Z> qk(yfi)fkt({k}q)tByfiftck,
t
t=0
which we subtitute into (75) to obtain

Y Yy—

crarer = 3 (Y)amriqul,)

=0

(y t— Z) qk(y_i)_kt({k‘}q)tBy_i_tCkAw,

t=0
both sides of which, we multiply by C* from the right. The resulting right-hand side
is a linear combination of words of the form BY~*"*C*A*C* where the subword
AYC* may be replaced by ¢¥*C*A¥ using (72). The result is (74), as desired. [

Remark 5.7. [Hilbert space representations in a g-oscillator] For interested read-
ers, we mention here a realization, or more precisely, a representation of the alge-
bras U, (1,0) and U, (0, 1) in terms of Hilbert space operators. We refer the reader
to [4, Section 3| for the details on how two operators a and a™ act on a fixed
complete orthonormal basis of an infinite-dimensional seperable Hilbert space such
that the relation aa™ — ga*a = 1 holds, where 1 is the identity operator. If we now
introduce the number operator N := a™a, then the relations aN — ¢Na = a and
Nat—ga™ N = a* hold. Thus, we have a representation of U, (1, 0) given by 4 — a
and B +— N, and a representation of U, (0, 1), for which, A — N and B+ a*.

6. Constructing Lie polynomials in A, B of {,(1,0)

Let L(1,0) denote the Lie subalgebra of U,(1,0) generated by A and B. Fix an
element U € L(1,9). We recall the linear map ad U that sends V +~ [U, V] for
any V' € L1,0)- We exhibit some important elements of the Lie subalgebra L ¢
generated by A and B.
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Proposition 6.1. For any m € Z7T,
(ad O)"A = (1—¢q)™C™A, (76)
(ad C)"B = (¢—1)"BC™ + (¢ —1)"tCc™. (77)

Proof. Use induction on m, with routine computations that involve the relations
(56) and (58) with r = 1. O

Lemma 6.2. For any m € Z*, the following holds in U,(1,0):
q"[C™A,B] = {m+1},C" (78)
Proof. Use (55) and (59) on [C™A, B] = C™AB — BC™A given r = 1. O
Proposition 6.3. For any m € Z*,
C™, BC™ ,C™A € L1,0)- (79)

Proof. Equation (76) implies that C™A € L ). With Lemma 6.2, we conse-
quently have all elements of the form C™ for any m € Z* are in L1,0) - Isolat-
ing the term with BC™ in equation (77), we find that BC™ € L o) since C"™,
(ad C)"B € L1,0)- O

Lemma 6.4. Fizm € Z*. For anyn € Z7T,

(—ad A)n(CmA) — (1 _ qm)nCmA""'17 (80)
(ad B)"(BC™) = ((1-¢™)B ~{m},)" BC™ (81)
Proof. Use (72) and (73) and induction on n. 0

Theorem 6.5. The following elements
A, B,B"C™,C™AF, (m,k € ZT,n € N), (82)
Jorm a basis for Lie algebra L1 ).

Proof. Let K be the span of the elements in (82). Notice that elements in (82)
are linearly independent as they are basis elements of ,(1,0). To show that K is
equal to L(1,p), we only have to show that the following conditions are satisfied:
(i) A,B ek,

(ii) K is a Lie subalgebra of U, (1,0),

(iii) & € L1,0)-
The condition (i) immediately follows from the definition of K. For condition (ii),
we show that I is closed under the Lie bracket operation. That is, we show that

for any basis elements L, R of K from(82), [L, R] is a linear combination of the
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elements in (82). Given t,u,v,w € ZT and z,y € N, routine use of Corollary 5.4

gives us

(¢, ¢l = o, (83)
[C*,A] = (1-¢")C"A, (84)
[Cqu ] — (1 qu)cmAw—i-l7 (85)
[Cqu t] — (th _ 1)Ct+qu, (86)
[Cqu CtA'u] — (qt'w _ qu’u)Cvt-l-uAv-i-w7 (87)
(€, B] = (¢"=1)BC" +{u},C", (88)
[BtC“ B] = (q” B CY + {u},BC", (89)
[Cuvact] — (w) quw ui {U} Bw—ict—i—u _ cht-&-u’ (90)

=0

[BUCu,Bth] — Z (w) quu; u7 {u} B1J+w—ict+u
=0
- v v—t1 T RWHv—1 u
— <i)qt ({tyy) Bt IO (91)
i=0
e

Bt Uu A — Bt uA . t+u7iBt7i uA 2
[B'C, A] CrA=3 ] (Z>q CUA, (92)
[C"A" B] = C“A“B-— BC“A", (93)
[CvA“,BYC!'] = CUAYBYC' - BYC'TUAY. (94)

The commutation relations of the basis elements of I in (82) are summarized in

the following table.

1] a4 | B | B | ctar
A 0
B —C 0
B*Cv (92), (84) (89), (88) | (91), (90), (83)
CUAY (85) (93) (94), (86) (87)

For each of the right-hand sides of the relations (83)—(91), we find that the result
of the Lie bracket is a linear combination of (82), and is hence in K. For the last
three relations (92)—(94), we use Theorem 5.5 and Proposition 5.6 to deduce that
the right-hand sides are also linear combinations of (82). Hence, condition (ii) is
satisfied.

To prove (iii), we show that every basis element of K is in L(; ). The basis
elements A, B,C have this property by the definition of L o). The rest of the
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basis elements of K are in L(; o) because of Lemma 6.4. At this point, we have

proven K C L1 o). This completes the proof. O

From the standpoint of this study, the introduction of a g-deformation from the
Lie algebra relation AB — BA = A to the “g-relation” AB — gBA = A results to a
rich Lie-algebraic structure, an infinite-dimensional space of Lie polynomials in A
and B which contrasts the reduction to a low-dimensional Lie algebra for the non-
deformed case. The interplay between the associative and nonassociative algebraic
structures in the same space is one important mathematical perspective that comes

from studying Lie polynomial characterization problems.
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