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Abstract. The nonabelian two-dimensional Lie algebra over a field F has a
presentation by generators A, B and relation [A,B] = A, with the univer-
sal enveloping algebra having a presentation by generators A, B and relation
AB −BA = A. A solution to the Lie polynomial characterization problem in
the corresponding class of q-deformed universal enveloping algebras, specifi-
cally of the algebra with relation AB − qBA = A is presented.
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1. Introduction

Let F be a field. Up to isomorphism, there are only two (non-isomorphic) two-
dimensional Lie algebras over F: an abelian one, which we denote here by g0, and
a “solvable” one, which we shall denote by g1. If g ∈ {g0, g1}, then, following [11,
Theorem 3.1], the standard approach is to consider the derived (Lie) algebra g′ of
g, or the F-linear span of all possible Lie brackets of elements of g. Since g is two-
dimensional, we may fix a basis of g consisting of two elements A and B. Since the
Lie bracket is alternating (meaning the Lie bracket of anything with itself is zero),
and is bilinear, any element of g′ is a scalar multiple of [A,B] (the Lie bracket of
A with B). Hence, the derived algebra g′ is at most one-dimensional. This gives
the two classifications: g = g0 (abelian) if g′ is the zero Lie algebra, or else g = g1

(solvable). Routine arguments that make use of basis-to-basis linear maps such as
φ : A 7→ B,B 7→ −A, φt : A 7→ A,B 7→ tB, and ψt : A 7→ tA,B 7→ B (where
t ∈ F\{0} is a parameter) lead to proofs that the nonabelian two-dimensional Lie
algebra g1 is unique up to isomorphism. We refer the reader to [11, Chapters 3–4]
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for further details when we go to dimensions that are higher than two. This paper
is about some bigger algebraic structures related to g1.

Among the several isomorphic copies of g1, we choose that which has a basis
consisting of A and B that satisfy the “commutation relation” [A,B] = A. The
universal enveloping algebra of g1 is the (associative) algebra U(g1) that has a
presentation by generators A, B and relation AB − BA = A. Let q ∈ F. In this
work, we shall be interested in what is called the “q-analog” or “q-deformation”
of the Lie bracket operation that was done on A and B, which results to the
expression AB − qBA. The literature on q-analogs or q-deformations is extensive.
With reference to the scope of this paper, what shall suffice is to mention here two
of the important achievements made using q-analogs. The study of q-analogs of
notions from ordinary calculus led to the discovery of many important notions and
results in combinatorics, number theory, and other fields of mathematics [16, p. vii],
and the q-analogs of commutation relations of important Hilbert space operators
have been successfully applied to, for instance, particle physics, knot theory and
general relativity [12, Chapter 12].

Since the q-deformation of the Lie bracket shall be considered later, we now
mention some of the isomorphic forms of g1 so that there shall be more clarity as
to which of the isomorphisms are carried over, or not, after the q-deformation. If
g̃1 is the Lie algebra over F with a basis consisting of A and B, subject to the re-
lation [A,B] = B, then there exists a Lie algebra isomorphism g1 −→ g̃1 such that
A 7→ B and B 7→ −A. Given a nonzero r ∈ F, if gr is the Lie algebra over F with
a basis consisting of A, B that satisfy the commutation relation [A,B] = rA, then
there exists a Lie algebra isomorphism gr −→ g1 that sends A 7→ A and B 7→ rB.
Also of interest here is the Lie algebra g̃s over F with a basis consisting of A and
B that obey the relation [A,B] = sB, given a nonzero s ∈ F. There exists a Lie
algebra isomorphism g̃s −→ g̃1 with the property that A 7→ sA and B 7→ B. The
universal enveloping algebras U(gr), U(g̃s), for all r, s ∈ F\{0}, of the aforemen-
tioned Lie algebras are isomorphic. This may be proven routinely by the universal
property of these universal enveloping algebras, together with the fact that, for the
said isomorphic forms of the nonabelian two-dimensional Lie algebra, the inclusion
maps gr ↪→ U(gr) and g̃s ↪→ U(g̃s) are injective [15, Exercise 17.2]. The isomor-
phism previously mentioned for the Lie algebras have their natural extension to
algebra isomorphisms of the universal enveloping algebras. As a recapitulation,
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these algebra isomorphisms have the properties

U(g1) −→ U(g̃1) : A 7→ B, B 7→ −A, (1)

U(gr) −→ U(g1) : A 7→ A, B 7→ rB, (2)

U(g̃s) −→ U(g̃1) : A 7→ sA, B 7→ B. (3)

Given a nonzero q ∈ F, we now consider the q-deformation of the Lie bracket in
the above algebras. Given a nonzero r ∈ F, the algebra U(gr) has a presentation
by generators A, B and relation AB − BA = rA. The corresponding q-deformed
algebra is what we shall denote by Uq(r, 0) that has a presentation by generators
A, B and relation AB − qBA = rA. Analogously, the q-deformation Uq(0, s) for
U(g̃s) has a presentation by generators A, B and relation AB − qBA = sB, where
s ∈ F is nonzero.

The algebra U(g1) has a natural Lie algebra stucture induced by the operation
that sends any X,Y ∈ U(g1) to XY − Y X. The Lie subalgebra of U(g1) generated
by A and B is simply g1, because of the relation AB − BA = A, and this is at
the heart of the theory of universal enveloping algebras. This reduction of the Lie
subalgebra to a smaller substructure is not necessarily true anymore for the algebra
Uq(1, 0). In Uq(1, 0), we may still compute for Lie algebra expressions generated
by A and B, but the new relation AB − qBA = A does not imply that the Lie
subalgebra of Uq(1, 0) generated by A and B, or the set of all “Lie polynomials” in
A,B ∈ Uq(1, 0), shall be reduced into a small substructure. This is the main goal
of this paper: to characterize all the Lie polynomials in A and B under a relation
like AB − qBA = A, or what can be called the “Lie polynomial characterization
problem” for the given presentation of Uq(1, 0) by generators and relations up to
isomorphism.

Lie polynomial characterization problems were first studied in [2], which was
about the universal Askey-Wilson algebra, an important mathematical object in
algebraic combinatorics, which arose from mathematical physics. The Lie poly-
nomial characterization problem was completely solved for the q-deformed Heisen-
berg algebra and some extensions of this algebraic structure [3,4,5,6,8,9,10]. The
q-deformed Heisenberg algebra [13,14] is a q-analog of the Heisenberg-Weyl algebra
[7], which is an algebraic structure important in quantum theory.

One can easily verify that when q 6= 1, there is no algebra homomorphism that
corresponds to (1) for the q-deformed algebras Uq(s, 0) and Uq(0, s) that performs
A 7→ βB and B 7→ αA (for some nonzero α, β ∈ F), or the traditional map that
“switches and scales” the two generators from Uq(s, 0) to Uq(0, s). If we assume
that there is such homomorphism, then we would obtain equation (q2− 1)BA+ s

α ·
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(αq + 1)B = 0 which would lead to a contradiction, since BA and B are linearly
independent elements in Uq(0, s). We emphasize that this includes the case with
s = 1, α = −1 and β = 1, which serves as our proof that the algebra homomorphism
U(g1) −→ U(g̃1) in (1), that sends A 7→ B and B 7→ −A, has no q-analog. However,
this is not sufficient reason to conclude that Uq(s, 0) and Uq(0, s) are not isomorphic.
In fact, in Section 5, we settle all these issues concerning isomorphisms leading to
the conclusion that solving Lie polynomial characterization problem in Uq(1, 0) is
sufficient.

The aforementioned results were obtained with the aid of the Diamond Lemma
for Ring Theory [1, Theorem 1.2], which is an ingenious and indispensable tool in
the determination of a basis for an algebra given a certain kind of presentation. The
proofs and computations for the algebras Uq(r, 0) and Uq(0, s) that are based on the
Diamond Lemma are analogous when done separately. For a better presentation of
these proofs and computations, we decided to generalize the algebras Uq(r, 0) and
Uq(0, s) into an algebra Uq(r, s) which has a presentation by generators A, B and
relation AB − qBA = rA+ sB. The basis theorem, Theorem 4.3, is valid not only
for the aforementioned restrictions on r and s for the relevant Lie algebras, but also
for any choice of r and s in the field F.

2. Preliminaries

Given a field F, any F-algebra shall be assumed to be associative and unital.
Since only one field F will be used, we further drop the prefix “F-” and simply
use the term algebra. A Lie algebra structure is induced on an algebra A by
the operation [X,Y ] := XY − Y X for all X,Y ∈ A. If A1, A2, . . . , An ∈ A,
then the Lie subalgebra K of A generated by A1, A2, . . . , An is the smallest Lie
subalgebra which contains A1, A2, . . . , An. That is, if S is a Lie subalgebra of A, if
{A1, A2, . . . , An} ⊆ S, and if S ⊆ K, then S = K. In such a case, we refer to the
elements of K as Lie polynomials in A1, A2, . . . , An.

We denote the set of all nonnegative integers by N, and the set of all positive
integers by Z+. We fix ν ∈ Z+, and let X = Xν be a set with ν elements. The
free monoid on X shall be denoted by 〈X 〉, while the free algebra generated by
X shall be denoted by F 〈X 〉. Most of the fundamental notions and properties of
the aforementioned free monoid and free algebra may be seen, for instance, from
[17, Chapter 1] or [18, Section 1.1], and we proceed with only the terminology and
notation necessary. Any basis element of F 〈X 〉 from the basis 〈X 〉 is called a word
on X . The length of a word W ∈ 〈X〉 shall be denoted by |W |. Words of length
1 are precisely the elements of X , and are called letters. The word of length 0 is
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called the empty word in 〈X 〉 and shall denoted by I, which is also the identity
element under the concatenation multiplication in 〈X 〉. If |W | 6= 0, then W is said
to be a nonempty word, but we further define W 0 := I. Multiplication in F 〈X 〉
is determined by the concatenation product in 〈X 〉. Given a word W ∈ 〈X〉, a
word W ′ is said to be a subword of W if there exist words L,R ∈ 〈X〉 such that
W = LW ′R.

If X = {X1, X2, . . . , Xν}, given L1, R1, L2, R2, . . ., Lm, Rm ∈ F 〈X 〉, let
I be the (two-sided) ideal of F 〈X 〉 generated by L1 − R1, L2 − R2, . . ., Lm −
Rm. The algebra with generators X1, X2, . . . , Xn and relations L1 = R1, L2 =

R2, . . ., Lm = Rm is the quotient algebra F 〈X 〉 /I. With respect to the natural
embedding X ↪→ F 〈X 〉 /I, if K is the Lie subalgebra of F 〈X 〉 /I generated by
X1, X2, . . . , Xν , then a characterization of the elements of K is said to be a solution
to the Lie polynomial characterization problem with respect to the aforementioned
presentation of F 〈X 〉 /I.

We recall Bergman’s Diamond Lemma or the Diamond Lemma for Ring Theory
[1, Theorem 1.2], together with some related notions taken from [1, Section 1],
which are crucial in determining a basis for F 〈X 〉 /I. A set of ordered pairs of the
form λ = (Wλ, fλ) where Wλ ∈ 〈X〉 and fλ ∈ F 〈X 〉 is called a reduction system.
Let S be a reduction system. Given λ ∈ S and L,R ∈ 〈X〉, by the reduction rLλR

we mean the linear mapping F 〈X 〉 −→ F 〈X 〉 that fixes all elements of 〈X 〉 other
than LWλR, and instead sends this basis element of F 〈X 〉 to the element LfλR.
A reduction rLλR acts trivially on an element K of F 〈X 〉 if the coefficient of the
basis element LWλR in K is zero. If every reduction acts trivially on an element
K, then K is irreducible (under S). We say that K ∈ F 〈X 〉 is reduction-finite if for
every infinite sequence r1, r2, . . . of reductions, there exists N ∈ N such that ri acts
trivially on (ri−1 ◦ ri−2 ◦ · · · ◦ r1)(K) for all i ≥ N . If K is reduction-finite, then
a final sequence is any maximal finite sequence of reductions ri, such that each ri

acts nontrivially on (ri−1 ◦ ri−2 ◦ · · · ◦ r1)(K). Additionally, if K is reduction-finite
and if its images under final sequences of reductions are the same, then we say that
K is reduction-unique.

A 5-tuple (λ, τ,W1,W2,W3) where λ, τ ∈ S and W1,W2,W3 ∈ 〈X〉\{I} is an
overlap ambiguity if Wλ =W1W2 and Wτ =W2W3. This ambiguity is said to be re-
solvable if there exist compositions of reductions r and r′ such that
r(fλW3) = r′(W1fτ ). Also, a 5-tuple (λ, τ,W1,W2,W3) where λ 6= τ ∈ S and
W1,W2,W3 ∈ 〈X〉 is an inclusion ambiguity if Wλ = W2 and Wτ = W1W2W3.
This ambiguity is said to be resolvable if there exist compositions of reductions r
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and r′ such that r(fτ ) = r′(W1fλW3). By an ambiguity of S, we mean either an
overlap ambiguity or an inclusion ambiguity.

Theorem 2.1. [Diamond Lemma] Let S be a reduction system on F 〈X 〉. Let A be
an algebra with generators in X and relations Wλ = fλ for all λ ∈ S. The following
conditions are equivalent.

(i) All ambiguities of S are resolvable.
(ii) All elements of F 〈X 〉 are reduction-unique under S.
(iii) The set of all irreducible words on X with respect to S form a basis for A.

3. The algebra Uq(r, s)

We now consider the case when X has only two elements A and B. Given
q, r, s ∈ F, let I1 = I1(q, r, s) be the ideal of F 〈X 〉 generated by AB−qBA−rA−sB,
and let Uq(r, s) := F 〈X 〉 /I1. Succeeding computations will involve division by a
power of q or by a field element of the form 1 − qm for some nonzero integer m.
Thus, we assume that F has characteristic zero, and the scalar q is nonzero, and is
not a root of unity.

Proposition 3.1. For any n ∈ Z+, the identities

AnB = B

n∑
t=0

(
n

t

)
st(qA)n−t + r

n−1∑
i=0

(qA+ s)n−1−iAi+1, (4)

ABn =

n∑
t=0

(
n

t

)
rt(qB)n−tA+ s

n−1∑
i=0

(qB + r)n−1−iBi+1 (5)

hold in Uq(r, s).

Proof. Both identities simply reduce to the defining relation AB−qBA = rA+sB

of Uq(r, s) when n = 1. If the given identities hold for some n ∈ Z+, then, with
the goal of performing induction on n, at n+ 1, the desired left-hand sides may be
obtained by multiplying A from the left or by B from the right. In the resulting
right-hand sides, the identity AB = qBA+ rA+ sB may be used such that, after a
finite number of steps, the desired linear combinations of words will appear in the
new right-hand sides. By induction on n, the desired identities are indeed true in
Uq(r, s). □

By introducing a new letter C := [A,B] = AB −BA, the algebra Uq(r, s) would
consequently have the following presentation.
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Lemma 3.2. The algebra Uq(r, s) has a presentation by generators A,B,C and
relations

AB − qBA = rA+ sB, (6)

C = AB −BA. (7)

Proof. Given X3 = {A,B,C}, let I2 be the ideal of F 〈X3〉 generated by
AB − qBA − rA − sB and C − AB + BA. Since the generators in the respec-
tive presentations for F 〈X 〉 /I1 and F 〈X3〉 /I2 satisfy the relations of the other, a
routine argument may be used to show that there exists an algebra isomorphism
F 〈X 〉 /I1 −→ F 〈X3〉 /I2 which maps A 7→ A, B 7→ B and [A,B] 7→ C. □

We will often refer to some q-special relations from [13, Appendix C] such as the
following. For a given n ∈ N and z ∈ F,

{n}z :=

n−1∑
t=0

zt, (8)

(1− z){n}z = 1− zn. (9)

If n ≤ 0, then we interpret (8) as the empty sum 0.

Lemma 3.3. Let ξ2 = ξ2(q, s) := AC − qCA− sC. For any h ∈ Z+,
h∑

i=1

qi−1Ci−1ξ2C
h−i = ACh − qhChA− {h}qsCh. (10)

Proof. The case h = 1 is simply the definition of ξ2. Suppose (10) is true for some
h ∈ N. Multiplying both sides by C from the right, the resulting right-hand side
is a linear combination of the words ACh+1, ChAC and Ch+1, where the AC in
ChAC may be replaced using the relation AC = ξ2+qCA+sC, which is immediate
from the definition of ξ2. Adding qhChξ2 to both sides, we find that the identity is
true at h+ 1. The desired result follows by induction on h. □

Proposition 3.4. The algebra Uq(r, s) has a presentation by generators A,B,C
and relations

AB =
rA+ sB − qC

1− q
, (11)

AC = qCA+ sC, (12)

BA =
rA+ sB − C

1− q
, (13)

CB = qBC + rC, (14)

BCkA =
qkrCkA+ qksBCk + {k}qrsCk − Ck+1

qk(1− q)
, k ∈ Z+. (15)
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Proof. We view the left-hand side and right-hand side expressions of equations
(11) to (15) as elements of F 〈X3〉 with X3 = {A,B,C} and define

ξ1 := AB − rA+ sB − qC

1− q
, (16)

ξ2 := AC − qCA− sC, (17)

ξ3 := BA− rA+ sB − C

1− q
, (18)

ξ4 := CB − qBC − rC, (19)

ξ5(k) := BCkA− qkrCkA+ qksBCk + {k}qrsCk − Ck+1

qk(1− q)
, k ∈ Z+. (20)

Also, we denote generators of I2 by

ζ1 = AB − qBA− rA− sB, (21)

ζ2 = C −AB +BA. (22)

Let I3 be the ideal of F 〈X3〉 generated by

{ξ1, ξ2, ξ3, ξ4} ∪ {ξ5(k)} : k ∈ {1, 2, 3, . . .}. (23)

We claim that I2 = I3. The relations (16) and (18) may be used in some routine
computations to obtain

ξ3 − ξ1 = C −AB +BA, (24)

ξ1 − qξ3 = AB − qBA− rA− sB, (25)

provided q 6= 1. With the use of (24) and (25), we have ζ1, ζ2 ∈ I3. Thus we have
I2 ⊆ I3. Next we show that I3 ⊆ I2. Observe that

ζ1 + qζ2 = AB − qBA− rA− sB + qC − qAB + qBA,

= (1− q)AB − rA− sB + qC,

ζ1 + qζ2
1− q

= AB − rA+ sB − qC

1− q
. (26)

From (26), we can easily derive

AB =
ζ1 + qζ2
1− q

+
rA+ sB − qC

1− q
. (27)

By further routine computations,

Aζ1 − ζ1A+Aζ2 − qζ2A = AC − qCA− sC, (28)
ζ2 + ζ1
1− q

= BA− rA+ sB − C

1− q
, (29)

ζ1B −Bζ1 + ζ2B − qBζ2 = CB − qBC − rC. (30)
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Equations (26) and (29) clearly show that ξ1 and ξ3 are linear combinations of ζ1
and ζ2, and so we have ξ1, ξ3 ∈ I2. Also, because of absorbing property of ideals,
equations (28) and (30) suggest that ξ2, ξ4 ∈ I2.

From Lemma 3.3, we can easily obtain

ACk =

k∑
i=1

qi−1Ci−1ξ2C
k−i + qkCkA+ {k}qsCk. (31)

Since we have established ξ2, ξ3 ∈ I2, we have ξ3Cn, B
∑k

i=1 q
i−1Ci−1ξ2C

k−i ∈ I2.
Observe that

(1− q)ξ3C
k = (1− q)BACk − rACk − sBCk + Ck+1,

= (1− q)BACk − r

(
k∑

i=1

qi−1Ci−1ξ2C
k−i + qkCkA+ {k}qsCk

)
−sBCk + Ck+1,

= (1− q)BACk − r

k∑
i=1

qi−1Ci−1ξ2C
k−i − qkrCkA− {k}qrsCk

−sBCk + Ck+1,

and transposing the summation to the left-hand side, we obtain

(1− q)ξ3C
k + r

k∑
i=1

qi−1Ci−1ξ2C
k−i = (1− q)BACk − qkrCkA− {k}qrsCk

−sBCk + Ck+1.

Also with Lemma 3.3, we have

(1− q)B

k∑
i=1

qi−1Ci−1ξ2C
k−i = (1− q)BACk − (1− q)qkBCkA

−(1− q){k}qsBCk.

The previous two identities, together with the earlier one with left-hand side ACk,
may be used in routine computations to show that

(1− q)ξ3C
k + r

k∑
i=1

qi−1Ci−1ξ2C
k−i − (1− q)B

k∑
i=1

qi−1Ci−1ξ2C
k−i, (32)

is equal to the linear combination

(1− q)qkBCkA− qkrCkA− qksBCk − {k}qrsCk + Ck+1,

and this implies that ξ5(k) for any k is a linear combination of elements in I2 and
that ξ5(k) ∈ I2. We now have I3 ⊆ I2. Thus, we have Uq(r, s) = F 〈X3〉 /I3. □
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4. A basis for Uq(r, s)

A basis of an algebra holds essential information for understanding its algebraic
structure [19, p. 10]. So we choose a basis for Uq(r, s) based from its presentation
on Proposition 3.4 using Bergman’s Diamond Lemma.

We use relations of Uq(r, s) given in Proposition 3.4 to construct a reduction
system in F 〈X3〉. Let

σ1 =

(
AB,

rA+ sB − qC

1− q

)
, (33)

σ2 = (AC, qCA+ sC) , (34)

σ3 =

(
BA,

rA+ sB − C

1− q

)
, (35)

σ4 = (CB, qBC + rC) , (36)

τk =

(
BCkA,

qkrCkA+ qksBCk + {k}qrsCk − Ck+1

qk(1− q)

)
, k ∈ Z+. (37)

Then R := {σi, τk : i ∈ {1, 2, 3, 4}, k ∈ {1, 2, 3, . . .}} is a reduction system in
F 〈X3〉 for Uq(r, s) in three generators. In order to use an implication in Bergman’s
Diamond Lemma, first we show that any ambiguity of R is resolvable. It is routine
to show that there is no inclusion ambiguity given the reduction system R. In
addition, all overlap ambiguities that do not involve an element τk ∈ R are

Φ1 = (σ1, σ3, A,B,A), (38)

Φ2 = (σ2, σ4, A, C,B), (39)

Φ3 = (σ3, σ1, B,A,B), (40)

Φ4 = (σ3, σ2, B,A,C), (41)

Φ5 = (σ4, σ3, C,B,A), (42)

while all the overlap ambiguities that depend on an integer parameter (k) are

Φ6(k) = (σ1, τk, A,B,C
kA), (43)

Φ7(k) = (σ4, τk, C,B,C
kA), (44)

Φ8(k) = (τk, σ1, BC
k, A,B), (45)

Φ9(k) = (τk, σ2, BC
k, A, C). (46)
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Proposition 4.1. For any n,m ∈ Z+,

AnCm =

n∑
i=0

(
n

i

)
qmn−mi({m}qs)iCmAn−i, and (47)

CmBn =

n∑
i=0

(
n

i

)
qmn−mi({m}qr)iBn−iCm. (48)

Proof. The desired relations in the statement may be obtained by routine induc-
tion based on the relations (12) and (14) in Proposition 3.4. An argument similar
to that done in Proposition 3.1 may be used in aid of the induction. □

Lemma 4.2. All ambiguities of R are resolvable.

Proof. We prove this lemma directly by determining compositions of reductions ri
and r′i for each ambiguity Φ1, . . . ,Φ5 and Φ6(k), . . . ,Φ9(k) that will satisfy condition
for resolvable ambiguity. For any positive integer k and any U,W ∈ 〈X3〉, we let

a(k,W ) := rCk−1σ2W ◦ rCk−2σ2CW ◦ rCk−3σ2C2W ◦ · · · ◦ rCσ2Ck−2W ◦ rσ2Ck−1W ,

b(k,U) := rUCk−1σ4
◦ rUCk−2σ4C ◦ rUCk−3σ4C2 ◦ · · · ◦ rUCσ4Ck−2 ◦ rUσ4Ck−1 .

With Proposition 4.1, we take note of the following simple results:

a(k,W )(AC
kW ) = qkCkAW + {k}qsCkW, (49)

b(k,U)(UC
kB) = qkUBCk + {k}qrUCk. (50)

For simpler notation, given µ ∈ R, we write rIµI , rUµI , rIµV as rµ, rUµ, rµV , respec-
tively.

We first consider Φ1 = (σ1, σ3, A,B,A). Notice that ABA is precisely the non-
trivial word involved with this overlap ambiguity. Let r1 = rσ3

and r′1 = rσ2
◦ rσ1

.
Observe that

r1(fσ1
A) = rσ3

(
rA2 + sBA− qCA

1− q

)
,

=
rA2 + s

(
rA+sB−C

1−q

)
− qCA

1− q
,

=
(1− q)rA2 + rsA+ s2B − sC − (1− q)qCA

(1− q)2
,
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and

r′1(Afσ3
) = (rσ2

◦ rσ1
)

(
rA2 + sAB −AC

1− q

)
,

= rσ2

rA2 + s
(

rA+sB−qC
1−q

)
−AC

1− q

 ,

=
rA2 + s

(
rA+sB−qC

1−q

)
− (qCA+ sC)

1− q
,

=
(1− q)rA2 + rsA+ s2B − sC − (1− q)qCA

(1− q)2
,

= r1(fσ1A).

Thus, for the ambiguity Φ1 = (σ1, σ3, A,B,A), if r1 = rσ3
and r′1 = rσ2

◦ rσ1
,

then we have r′1(Afσ3
) = r1(fσ1

A), which implies resolvability of the ambiguity.
To complete the proof, we check all other ambiguities. The process involves rou-
tine computations like those done above for Φ1. We only summarize below what
compositions of reductions are used for each ambiguity, which lead to the desired
resolvability condition, like the equation r′1(Afσ3

) = r1(fσ1
A) for Φ1. Again, such

equations may be verified routinely for each of the remaining ambiguities.

(i) For Φ2 = (σ2, σ4, A, C,B), if r2 = rσ4 ◦ rCσ1 and r′2 = rσ2 ◦ rσ1C , then
r2(fσ2B) = r′2(Afσ4).

(ii) For Φ3 = (σ3, σ1, B,A,B), if r3 = rσ4 ◦ rσ1 and r′3 = rσ3 , then
r3(fσ3

B) = r′3(Bfσ1
).

(iii) For Φ4 = (σ3, σ2, B,A,C), if r4 = rσ2
and r′4 = rτ1 , then

r4(fσ3
C) = r′4(Bfσ2

).
(iv) For Φ5 = (σ4, σ3, C,B,A), if r5 = rτ1 and r′5 = rσ4

, then
r5(fσ4

A) = r′5(Cfσ3
).

(v) For Φ6(k) = (σ1, τk, A,B,C
kA), if r6 = rτk ◦ a(k,A) and

r′6 = a(k+1,I) ◦ a(k,I) ◦ rσ1Ck ◦ a(k,A), then r6(fσ1C
kA) = r′6(Afτk).

(vi) For Φ7(k) = (σ4, τk, C,B,C
kA), if r7 = rτk+1

and r′7 = rσ4 , then
r7(fσ4

CkA) = r′7(Cfτk).
(vii) For Φ8(k) = (τk, σ1, BC

k, A,B), if r8 = b(k+1,I) ◦ b(k,I) ◦ b(k,B) ◦ rCkσ1
and

r′8 = b(k,B) ◦ rτk , then r8(fτkB) = r′8(BC
kfσ1

).
(viii) For Φ9(k) = (τk, σ2, BC

k, A, C), if r9 = rCkσ2
and r′9 = rτk+1

, then
r9(fτkC) = r′9(BC

kfσ2
).

These results suggest that with ri and r′i for i ∈ {1, 2, . . . , 9}, all ambiguities
Φ1, . . . ,Φ5 and Φ6(k), . . . , Φ9(k) are resolvable. This completes the proof. □
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Theorem 4.3. The elements

BlCm, CmAt, (l,m ∈ N, t ∈ Z+), (51)

form a basis for Uq(r, s).

Proof. We consider R whose elements are given by (33)-(37) based from the defin-
ing relations of Uq(r, s) as previously stated in Proposition 3.4. We first show that

{BhCj , CjAk : h, j ∈ N, k ∈ Z+}, (52)

is the set of all irreducible words under R. Notice that collection (52) is clearly
a set of irreducible words with respect to the reduction system R since words
AB,AC,BA,CB and BCkA with k ∈ Z+ do not appear as a subword in any of
its elements. Suppose W is not in (52). Then W must have a subword of the form
AxCyBz or BuCyAw where x, y, z ∈ N, u, w ∈ Z+ and at most one of the powers
x, y, z for AxCyBz is equal to zero. It is clear that we cannot have two or three
variables among x, y and z to be zero for AxCyBz because it will contradict our
supposition. This means that we only have to consider cases when x = 0, y = 0,
z = 0, and when x, y, z ∈ Z+ for AxCyBz. Meanwhile, we have cases y = 0,
and y 6= 0 for BuCyAw. If x = 0, then a reduction which involves σ4 would act
nontrivially on AxCyBz = CyBz. If y = 0, a reduction which involves σ1 would
act nontrivially on AxCyBz = AxBz, while a reduction which involves σ3 would
act nontrivially on BuCyAw = BuAw. And if z = 0, a reduction which involves σ2
would act nontrivially on AxCyBz = AxCy. For the case x, y, z ∈ Z+, reductions
which involve σ2 or σ4 would act nontrivially on AxCyBz , while reductions which
involve τy would act nontrivially on BuCyαw when y 6= 0.

It is clear that in any of the mentioned cases, W is not irreducible. Thus, any
irreducible element with respect to the reduction system R are in (52). Now, we only
need to show that elements in (52) form a basis for Uq(r, s). To do this, we invoke
Bergman’s Diamond Lemma. The only implication we need from the Diamond
Lemma is that: if all the ambiguities of a reduction system S are resolvable and if
K is the ideal of F 〈X 〉 generated by all Wσ − fσ(σ ∈ S), then the images of all the
S-irreducible words under the canonical map F 〈X 〉 −→ F 〈X 〉 /K form a basis for
F 〈X 〉 /K. If we take S = R, K = I3 generated by expressions in (16)-(22), then
with Lemma 4.2, the elements in (52) form a basis for Uq(r, s). □

5. The isomorphism class of the algebra Uq(1, 0)

In this section, we discuss our reason for choosing the algebra Uq(1, 0) for the Lie
polynomial characterization in the class of q-deformed universal enveloping algebras



14 RAFAEL RENO S. CANTUBA AND MARK ANTHONY C. MERCIALES

for two-dimensional nonabelian Lie algebras. We start by considering two general
cases for the algebra Uq(r, s). First, the case r 6= 0 and s = 0, that is, the algebra
Uq(r, 0) that has presentation by generators A,B and relation

AB − qBA = rA. (53)

Second, we have the case r = 0 and s 6= 0, that is, the algebra Uq(0, s) with a
presentation by generators A,B and relation

AB − qBA = sB. (54)

To proceed, we again make use of the additional generator C = [A,B] = AB−BA
so that the algebra Uq(r, 0) would have a presentation by generators A,B,C and
relations

AB =
rA− qC

1− q
, (55)

AC = qCA, (56)

BA =
rA− C

1− q
, (57)

CB = qBC + rC, (58)

BCkA =
qkrCkA− Ck+1

qk(1− q)
, k ∈ Z+, (59)

which follows directly from Proposition 3.4. From the same Proposition 3.4, the
algebra Uq(0, s) would have a presentation by generators A,B,C and relations

AB =
sB − qC

1− q
, (60)

AC = qCA+ sC, (61)

BA =
sB − C

1− q
, (62)

CB = qBC, (63)

BCkA =
qksBCk − Ck+1

qk(1− q)
, (k ∈ Z+). (64)

For some important proofs that shall come later, we will need a generalization
of (61) and (63) which is in the following.

Proposition 5.1. For any n,m ∈ Z+,

AnCm = qnmCmAn, (65)

CmBn =

n∑
i=0

(
n

i

)
qmn−mi({m}qr)iBn−iCm. (66)

Proof. Set s = 0 in Proposition 4.1. □
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We now show that working on the algebra Uq(1, 0) shall suffice for us to accom-
plish the Lie polynomial characterization intended for this paper. We do this by
showing that the relevant algebras actually belong to the isomorphism class (under
algebra isomorphisms) of the algebra Uq(1, 0).

Proposition 5.2. There is an algebra isomorphism U 1
q
(0, 1) −→ Uq(1, 0) that sends

A 7→ βB and B 7→ αA, where α, β ∈ F are nonzero.

Proof. The algebra U 1
q
(0, 1) is generated by F := −B and G := −1

q A, while
Uq(1, 0) is generated by U := −qB and V := −A. Using the defining relations of
these algebras, the relation FG−qGF = F holds in U 1

q
(0, 1) (which has the defining

relation AB − 1
qBA = B), and the relation UV − 1

qV U = V in Uq(1, 0) (which has
the defining relation AB − qBA = A). We have thus shown that U 1

q
(0, 1) and

Uq(1, 0) are homomorphic images of each other. More precisely, there exist algebra
homomorphisms Ψ : U 1

q
(0, 1) −→ Uq(1, 0) and Υ : Uq(1, 0) −→ U 1

q
(0, 1) such that

Ψ : A 7→ −qB, B 7→ −A,

Υ : A 7→ −B, B 7→ −1

q
A,

which, by routine computations, satisfy the conditions (Υ ◦ Ψ)(A) = A and
(Υ ◦Ψ)(B) = B. This completes the proof. □

As we said in Section 1, the traditional algebra homomorphisms that perform
A 7→ βB and B 7→ αA (for some nonzero α, β ∈ F), or algebra homomorphisms
that “switch and scale” the two generators from Uq(r, 0) to Uq(0, s) consequently
imply that q = 1 or q = −1, which is counter to the assumption that q is not a root
of unity. Proposition 5.2, however, shows us that, for the case r = 1 = s, by making
a change in parameter for in one of the algebras (that is, from q to 1

q ), a “switch
and scale” isomorphism is obtained. This shall greatly simplify the Lie polynomial
characterization later. The problem now shifts into a different direction: could all
algebras Uq(r, 0) be “represented” by the case r = 1, and similarly, for the algebras
Uq(0, s) by the case s = 1? This is addressed by the following.

Proposition 5.3. (i) For any nonzero r ∈ F, there is an algebra isomorphism
Uq(r, 0) −→ Uq(1, 0) that sends A 7→ A and B 7→ rB.

(ii) For any nonzero s ∈ F, there is an algebra isomorphism
Uq(0, s) −→ Uq(0, 1) that sends A 7→ sA and B 7→ B.

Proof. The proof is based on an argument similar to that done in the proof of
Proposition 5.2. □
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Since we have now established an isomorphism between Uq(1, 0) and Uq(r, 0) for
any nonzero r ∈ F, we now have the justification to drop the parameter r and
simply consider algebra the Uq(1, 0) for our succeeding results and computations.
This is from the first part of Proposition 5.3, and by the second part, we can
do similarly for the algebras Uq(0, s) for all nonzero s ∈ F. Ultimately, the two
remaining algebras Uq(1, 0) and Uq(0, 1) have the same algebra structure as implied
by Proposition 5.2. Finally, this gives us sufficient reason to work only on the
algebra Uq(1, 0) for the Lie polynomial characterization in the class of q-deformed
universal enveloping algebras for two-dimensional nonabelian Lie algebras.

We now proceed with exhibiting elements of the algebra Uq(1, 0) in terms of its
basis elements based on Theorem 4.3. The results in this section are crucial and
work as our initial step in constructing Lie polynomials in Uq(1, 0). We reiterate
for emphasis that the algebra Uq(1, 0) has a presentation by generators A,B and
relation

AB − qBA = A. (67)

Let n ∈ Z+. Routine induction using (53) results to

AnB = qnBAn + {n}qAn, (68)

both sides of which, we multiply by Bn−1 from the right. The resulting right-hand
side is a linear combination of only two words. The first term is (qnBAn)Bn−1.
To the expressions in parentheses, we substitute using qnBAn = AnB − {n}qAn,
which is just one equivalent form of (68). We now have

AnBn = (qnBA+ {n}qA)An−1Bn−1, (69)

which we shall use to prove

AnBn =

n−1∏
i=0

(qn−iBA+ {n− i}qA). (70)

The case n = 1 is simply the relation (67). Suppose (70) is true for some n ∈ Z+.
We consider the case An+1Bn+1 of equation (69). The inductive hypothesis, with
the aid of (67), may then be used on the resulting right-hand side, and (70) follows.

Using the relation (57) on (70), routine computations may be used to prove

AnBn =

n−1∏
i=0

A− qn−iC

(1− q)
. (71)

We also have the following equivalent expressions under Uq(1, 0).
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Corollary 5.4. For any n,m ∈ Z+,

AnCm = qnmCmAn, (72)

CmBn =

n∑
i=0

(
n

i

)
qmn−mi({m}q)iBn−iCm. (73)

Proof. Take r = 1 of equations (65) and (66) in Proposition 5.1. □

Theorem 5.5. If all the letters B, C and A appear (meaning with nonzero expo-
nent) in the word ByCkAw, then if ByCkAw is further written as a linear combi-
nation of the basis elements from Theorem 4.3, then the letter C appears (meaning
has nonzero exponent) in all words in the said linear combination.

Proof. The desired statement may more precisely be stated as: given k,w, y ∈ Z+,
the word ByCkAw ∈ Uq(1, 0) is in S := Span{BlCm, CmAl : l ∈ N, m ∈ Z+}.
We clarify that S is only a proper subset of the basis of Uq(1, 0) from Theorem 4.3:
this basis includes words where the letter C does not appear, while S is the set
of all words in the basis in each of which, the letter C appears. Let k ∈ Z+.
Elements of the form BCkA are in S because of the relation (59). In particu-
lar, BCkA ∈ S0 := Span{CmAl : l ∈ N, m ∈ Z+}. If for some w ∈ Z+, we
have BCkAw ∈ S0, then we have an equation that expresses BCkAw as a linear
combination of basis elements of the form CmAl. We multiply both sides of this
equation by A from the right, and so, BCkAw+1 is a linear combination of ele-
ments of the form CmAl+1, and this proves that BCkAw+1 ∈ S0. By induction,
BCkAw ∈ S0, for all w ∈ Z+. We perform another induction, with the state-
ment BCkA ∈ S0 as the basis step. Suppose that for some w ∈ Z+, we have
BwCkAw ∈ S0. Thus, BwCkAw is a linear combination of elements of the form
CmAl, and consequently, Bw+1CkAw+1 is a linear combination of elements of the
form BCmAl+1, which have been proven earlier to be elements of S0. By induc-
tion, BwCkAw ∈ S0 for all w ∈ Z+. An analogous induction argument may be
used to show that BwCkAw+n ∈ S0 for all n ∈ N. The remaining case is when
the exponent of B is strictly greater than the exponent of A in the word ByCkAw.
We may write such a word as Bw+tCkAw, where t ∈ Z+. If t = 1, then using the
fact that BwCkAw ∈ S0, the element BwCkAw is a linear combination of elements
of the form CmAl. Consequently, Bw+1CkAw is a linear combination of elements
of the form BCmAl, which have been proven earlier to be in S0 ⊆ S. If for some
t ∈ Z+, we have Bw+tCkAw ∈ S, then this element is a linear combination of
elements of the form BλCµ and CmAl. Thus, Bw+t+1CkAw is a linear combina-
tion of elements of the form Bλ+1Cµ and BCmAl. The latter have been proven
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earlier to be in S0 ⊆ S, while the former are spanning set elements of S. Therefore,
Bw+t+1CkAw ∈ S. This completes the proof. □

Proposition 5.6. Given k,w, y ∈ Z+ and t ∈ N,

CkAwByCt =

y∑
i=0

(y
i

)
qwy−wi({w}q)i

y−i∑
t=0

(y − i

t

)
qk(y−i−t)+tw({k}q)tBy−i−tCk+tAw. (74)

Proof. From (68), we find that AwB = qwBAw+{w}qAw. Multiplying both sides
by Ck, we find that the identity

CkAwBy =

y∑
i=0

(
y

i

)
qwy−wi({w}q)iCkBy−iAw, (75)

is true in Uq(1, 0) for the case y = 1. The proof of (75) may be completed by
induction, with some aid again from the equation AwB = qwBAw + {w}qAw.

Using equation (73) in Corollary 5.4, we have

CkBy−i =

y−i∑
t=0

(
y − i

t

)
qk(y−i)−kt({k}q)tBy−i−tCk,

which we subtitute into (75) to obtain

CkAwBy =

y∑
i=0

(
y

i

)
qwy−wi({w}q)i

y−i∑
t=0

(
y − i

t

)
qk(y−i)−kt({k}q)tBy−i−tCkAw,

both sides of which, we multiply by Ct from the right. The resulting right-hand side
is a linear combination of words of the form By−i−tCkAwCt where the subword
AwCt may be replaced by qwtCtAw using (72). The result is (74), as desired. □

Remark 5.7. [Hilbert space representations in a q-oscillator] For interested read-
ers, we mention here a realization, or more precisely, a representation of the alge-
bras Uq(1, 0) and Uq(0, 1) in terms of Hilbert space operators. We refer the reader
to [4, Section 3] for the details on how two operators a and a+ act on a fixed
complete orthonormal basis of an infinite-dimensional seperable Hilbert space such
that the relation aa+− qa+a = 1 holds, where 1 is the identity operator. If we now
introduce the number operator N := a+a, then the relations aN − qNa = a and
Na+−qa+N = a+ hold. Thus, we have a representation of Uq(1, 0) given by A 7→ a

and B 7→ N , and a representation of Uq(0, 1), for which, A 7→ N and B 7→ a+.

6. Constructing Lie polynomials in A,B of Uq(1, 0)

Let L(1,0) denote the Lie subalgebra of Uq(1, 0) generated by A and B. Fix an
element U ∈ L(1,0). We recall the linear map ad U that sends V 7→ [U, V ] for
any V ∈ L(1,0). We exhibit some important elements of the Lie subalgebra L(1,0)

generated by A and B.



LIE POLYNOMIALS IN A q-DEFORMED UNIVERSAL ENVELOPING ALGEBRA 19

Proposition 6.1. For any m ∈ Z+,

(ad C)mA = (1− q)mCmA, (76)

(ad C)mB = (q − 1)mBCm + (q − 1)m−1Cm. (77)

Proof. Use induction on m, with routine computations that involve the relations
(56) and (58) with r = 1. □

Lemma 6.2. For any m ∈ Z+, the following holds in Uq(1, 0):

qm[CmA,B] = {m+ 1}qCm+1. (78)

Proof. Use (55) and (59) on [CmA,B] = CmAB −BCmA given r = 1. □

Proposition 6.3. For any m ∈ Z+,

Cm, BCm, CmA ∈ L(1,0). (79)

Proof. Equation (76) implies that CmA ∈ L(1,0). With Lemma 6.2, we conse-
quently have all elements of the form Cm for any m ∈ Z+ are in L(1,0) . Isolat-
ing the term with BCm in equation (77), we find that BCm ∈ L(1,0) since Cm,
(ad C)mB ∈ L(1,0). □

Lemma 6.4. Fix m ∈ Z+. For any n ∈ Z+,

(−ad A)n(CmA) = (1− qm)nCmAn+1, (80)

(ad B)n(BCm) = ((1− qm)B − {m}q)nBCm. (81)

Proof. Use (72) and (73) and induction on n. □

Theorem 6.5. The following elements

A,B,BnCm, CmAk, (m, k ∈ Z+, n ∈ N), (82)

form a basis for Lie algebra L(1,0).

Proof. Let K be the span of the elements in (82). Notice that elements in (82)
are linearly independent as they are basis elements of Uq(1, 0). To show that K is
equal to L(1,0), we only have to show that the following conditions are satisfied:

(i) A,B ∈ K,
(ii) K is a Lie subalgebra of Uq(1, 0),
(iii) K ⊆ L(1,0).

The condition (i) immediately follows from the definition of K. For condition (ii),
we show that K is closed under the Lie bracket operation. That is, we show that
for any basis elements L,R of K from(82), [L,R] is a linear combination of the
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elements in (82). Given t, u, v, w ∈ Z+ and x, y ∈ N, routine use of Corollary 5.4
gives us [

Cu, Ct
]

= 0, (83)

[Cu, A] = (1− qu)CuA, (84)

[CuAw, A] = (1− qu)CuAw+1, (85)[
CuAw, Ct

]
= (qtw − 1)Ct+uAw, (86)[

CuAw, CtAv
]

= (qtw − quv)Ct+uAv+w, (87)

[Cu, B] = (qu − 1)BCu + {u}qCu, (88)[
BtCu, B

]
= (qu − 1)Bt+1Cu + {u}qBtCu, (89)[

Cu, BwCt
]

=

w∑
i=0

(
w

i

)
quw−ui({u}q)iBw−iCt+u −BwCt+u, (90)

[
BvCu, BwCt

]
=

w∑
i=0

(
w

i

)
quw−ui({u}q)iBv+w−iCt+u

−
v∑

i=0

(
v

i

)
qtv−ti({t}q)iBw+v−iCt+u, (91)

[
BtCu, A

]
= BtCuA−

t∑
i=0

(
t

i

)
qt+u−iBt−iCuA, (92)

[CuAw, B] = CuAwB −BCuAw, (93)[
CuAw, ByCt

]
= CuAwByCt −ByCt+uAw. (94)

The commutation relations of the basis elements of K in (82) are summarized in
the following table.

[·, ·] A B ByCt CtAv

A 0

B −C 0

BxCu (92), (84) (89), (88) (91), (90), (83)
CuAw (85) (93) (94), (86) (87)

For each of the right-hand sides of the relations (83)–(91), we find that the result
of the Lie bracket is a linear combination of (82), and is hence in K. For the last
three relations (92)–(94), we use Theorem 5.5 and Proposition 5.6 to deduce that
the right-hand sides are also linear combinations of (82). Hence, condition (ii) is
satisfied.

To prove (iii), we show that every basis element of K is in L(1,0). The basis
elements A,B,C have this property by the definition of L(1,0). The rest of the
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basis elements of K are in L(1,0) because of Lemma 6.4. At this point, we have
proven K ⊆ L(1,0). This completes the proof. □

From the standpoint of this study, the introduction of a q-deformation from the
Lie algebra relation AB −BA = A to the “q-relation” AB − qBA = A results to a
rich Lie-algebraic structure, an infinite-dimensional space of Lie polynomials in A

and B which contrasts the reduction to a low-dimensional Lie algebra for the non-
deformed case. The interplay between the associative and nonassociative algebraic
structures in the same space is one important mathematical perspective that comes
from studying Lie polynomial characterization problems.
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