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Abstract. A complete algebraic structure of FqS5

J(FqS5)
, where Fq = Fpn is a

finite field with characteristic p (a prime) and J(FqS5) is the Jacobson radical
of the group algebra FqS5 is given.
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1. Introduction

The problem of obtaining the structure of unit group of rings, in general, and
group rings, in particular, is a difficult as well as an important one that has drawn
attention of several researchers and a lot of work has been done in this direction
(see [1], [2], [7]-[18], [23], [24]). The research in this area has gone beyond simply
obtaining the structure of unit groups and efforts have also been made to inves-
tigate applications of units of group algebras. Dholakia [4] and Hurley [9] gave a
method to construct convolutional codes by using units of group rings. Due to the
complexity of the problem in the case of group algebras and group rings as well
as their importance researchers have focussed on obtaining the structure of unit
groups for specific fields and groups with special attention given to the symmetric
groups and alternating groups.

In 2007, Sharma et al. determined the unit group of the group algebra FS3 of
symmetric group S3 and also of the group algebra FA4 of alternating group A4 over
any finite field F (see [21], [22]). In 2008, Khan et al. [12] extended the result to
the symmetric group S4. In 2010, Gildea [6] determined the unit group of the group
algebra F2kA4. Makhijani et al. [19] considered the case of the alternating group
A5.

Kumar et al. [13] considered the problem of obtaining the structure in the case
of symmetric group S5 and gave the possible structure of the unit group of FpnS5,
when p is a prime > 5. In this article, we continue this discussion of the unit group
of the group algebra FpnS5 of the symmetric group S5.
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If F is a perfect field, then by Wedderburn-Malcev Theorem [3, Chapter 10,
Theorem 72.19], it is well known that

U(FG) ∼= (1 + J(FG))⋊ U( FG
J(FG)

)

where J(FG) denotes the Jacobson radical of the group algebra FG and U(A)

denotes the unit group of the F-algebra A. A Wedderburn decomposition of FG
J(FG)

can, therefore, be very helpful to determine unit group of FG. We, in this article,
give the Wedderburn decomposition of FS5

J(FS5)
for any finite field F (see Theorem

2.13).
Throughout Fq will denote the finite field Fpn , where p is a prime. We shall use

the presentation
⟨a, b | a2, b5, (ab)4, (bab−2ab)2⟩

where a = (1, 2) and b = (1, 2, 3, 4, 5) of S5. The conjugacy classes of S5 are, then,
given by the representatives e, a, b, ab, (ab)2, ab2, and abab−1. Note that the orders
of these representatives are 1, 2, 5, 4, 2, 6, and 3, respectively.

For a p-regular element g of a group G, we denote by γg, the sum of all conjugates
of g in G and SF(γg), the cyclotomic F-class of γg, that is,

SF(γg) = {γgt |t ∈ TG,F}.

We recall that the number of simple components of FG
J(FG) is equal to the number

of cyclotomic F-classes in G [5, Proposition 1.2]. For more details, we refer the
reader to Ferraz [5]. Throughout the paper, Mβ denotes the vector space spanned
by β-tabloids, Sβ represents the Specht module associated with the partition β,
and Dβ = Sβ

Sβ∩Sβ⊥ . For more details about the Specht modules, we refer the reader
to Chapter 4 of [10].

2. The structure of FqS5

J(FqS5)

Lemma 2.1. If p = 5, then dimFqJ(FqA5) = 25.

Proof. By [19, Theorem 3.6], FqA5

J(FqA5)
∼= Fq ⊕ M3(Fq) ⊕ M5(Fq). The result now

follows by dimension constraints. □

Lemma 2.2. If p = 5, then dimFq
J(FqS5) = 50.

Proof. The group G = S5 has a normal subgroup, namely A5, of index 2, and
since 5 ∤ 2, by [11, Proposition 1.8, p.108], we have

dimFqJ(FqS5) = |S5 : A5| · dimFqJ(FqA5) = 2 · 25 = 50,

as desired. □
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Theorem 2.3. If p = 5, then
FqS5

J(FqS5)
∼= Fq ⊕ Fq ⊕M3(Fq)⊕M3(Fq)⊕M5(Fq)⊕M5(Fq).

Proof. Observe that an element x ∈ S5 is 5-regular if 5 ∤ o(x). We note that except
for elements corresponding to the conjugate class of b are 5-regular. Now observe
that 5n ≡ 1 or 5(mod 12). Hence SFq

(γg) = {γg} for each 5-regular element g ∈ S5.

Also as dimFq
J(FqS5) = 50, dimFq

FqS5

J(FqS5)
= 70. Therefore FqS5

J(FqS5)
has 6 simple

components with total dimension 70, that is,
FqS5

J(FqS5)
∼= Fq ⊕Mn1

(Fq)⊕Mn2
(Fq)⊕Mn3

(Fq)⊕Mn4
(Fq)⊕Mn5

(Fq). (1)

Using dimension constraints, we see from (1)

70 = 1 + n2
1 + n2

2 + n2
3 + n2

4 + n2
5. (2)

Now observe that assignments a ↣ 1, b ↣ 1 and a ↣ 1, b ↣ −1 give two irre-
ducible Fq-representations of S5 and we know that dimensions of Specht modules
corresponding to conjugate partitions are same, that is, dimFq

D(3,2) = dimFq
D(2,2,1)

and dimFq
D(4,1) = dimFq

D(2,1,1,1). Hence the only possible solution of (2) satisfying
these conditions is 1, 3, 3, 5, 5. Thus,

FqS5

J(FqS5)
∼= Fq ⊕ Fq ⊕M3(Fq)⊕M3(Fq)⊕M5(Fq)⊕M5(Fq).

This proves the theorem. □

Corollary 2.4. If p = 5, then

U(FqS5) ∼= (1+ J(FqS5))⋊ (F∗
q × F∗

q ×GL3(Fq)×GL3(Fq)×GL5(Fq)×GL5(Fq)),

where 1+J(FqS5) is a nonabelian subgroup of U(FqS5) with order 550n and J(FqS5)

is a nilpotent ideal.

Proof. By Theorem 2.3, we have

U( FqS5

J(FqS5)
) ∼= F∗

q × F∗
q ×GL3(Fq)×GL3(Fq)×GL5(Fq)×GL5(Fq).

Since Fq is perfect,

U(FqS5) ∼= (1+ J(FqS5))⋊ (F∗
q × F∗

q ×GL3(Fq)×GL3(Fq)×GL5(Fq)×GL5(Fq)).

The non-abelian part follows from [11, Theorem 15.2, p.260]. Now |1+ J(FqS5)| =
550n, because dimFq

J(FqS5) = 50. J(FqS5) is nilpotent as S5 is finite. This com-
pletes the proof. □

Lemma 2.5. If p = 3, then dimFq
J(FqA5) = 25.
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Proof. By [19, Theorem 3.6],

FqA5

J(FqA5)
∼=

Fq ⊕M3(Fq2)⊕M4(Fq), if n is odd,

Fq ⊕M3(Fq)⊕M3(Fq)⊕M4(Fq), if n is even.

The result now follows by using dimension constraints. □

Lemma 2.6. If p = 3, then dimFq
J(FqS5) = 50.

Proof. The proof is similar to that of Lemma 2.2. □

Theorem 2.7. If p = 3, then
FqS5

J(FqS5)
∼= Fq ⊕ Fq ⊕M4(Fq)⊕M4(Fq)⊕M6(Fq).

Proof. An element x ∈ S5 is 3-regular if 3 ∤ o(x). We note that elements cor-
responding to the conjugate classes of e, a, b, ab, and (ab)2 are 3-regular. As in
Theorem 2.3, FqS5

J(FqS5)
has dimension 70 over Fq and has 5 simple components. That

is,
FqS5

J(FqS5)
∼= Fq ⊕Mn1

(Fq)⊕Mn2
(Fq)⊕Mn3

(Fq)⊕Mn4
(Fq). (3)

Using dimension constraints on (3), we have

70 = 1 + n2
1 + n2

2 + n2
3 + n2

4. (4)

Now observe that assignments a ↣ 1, b ↣ 1 and a ↣ 1, b ↣ −1 give two irreducible
Fq-representation of S5. As in Theorem 2.3, using dimension of Specht modules,
we see that only possible solution of (4) is 1, 4, 4, 6. Hence

FqS5

J(FqS5)
∼= Fq ⊕ Fq ⊕M4(Fq)⊕M4(Fq)⊕M6(Fq),

as desired. □

Corollary 2.8. If p = 3, then

U(FqS5) ∼= (1 + J(FqS5))⋊ (F∗
q × F∗

q ×GL4(Fq)×GL4(Fq)×GL6(Fq)),

where 1 + J(FqS5) is a non-abelian subgroup of U(FqS5) with order 350n and
J(FqS5) is a nilpotent ideal.

Proof. The proof is similar to that of Corollary 2.4. □

Theorem 2.9. If p = 2, then dimFq
J(FqS5) = 87 and

FqS5

J(FqS5)
∼= Fq ⊕M4(Fq)⊕M4(Fq).
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Proof. We know that 2-regular partitions of 5 are (3, 2), (4, 1) and (5). The di-
mension of an irreducible representation of S5 over any field of characteristic 2 is
given by dimensions of D(5), D(4,1) and D(3,2). Now dimFq

D(3,2) = 4 as shown
in Example 5.2 in [10]. Also dimM (5) = 1 and hence dimFq

D(5) = 1. Again
dimFq

D(4,1) = dimFq

S(4,1)

S(4,1)∩S(4,1)⊥ = 5 − 1 = 4, as dimS(n−1,1) = n − 1 and
S(n−1,1)⊥ ∼= S(n). The modular representations of S5 are then of dimension 1, 4, 4,

which means that FqS5

J(FqS5)
has dimension 33 and dimFq

J(FqS5) = 87. Also FqS5

J(FqS5)

has 3 simple components. Thus FqS5

J(FqS5)
∼= Fq⊕Mn1(Fq)⊕Mn2(Fq). Using dimension

constraints, we have
33 = 1 + n2

1 + n2
2.

Only solution of this equation is n1 = 4, n2 = 4. Hence
FqS5

J(FqS5)
∼= Fq ⊕M4(Fq)⊕M4(Fq).

This completes the proof. □

Corollary 2.10. If p = 2, then

U(FqS5) ∼= (1 + J(FqS5))⋊ (F∗
q ×GL4(Fq)×GL4(Fq)),

where 1+J(FqS5) is a non-abelian subgroup of U(FqS5) with order 287n and J(FqG)

is a nilpotent ideal.

Proof. The proof is similar to that of Corollary 2.4. □

Theorem 2.11. If p > 5, then

FqS5
∼= Fq ⊕ Fq ⊕M4(Fq)⊕M4(Fq)⊕M5(Fq)⊕M5(Fq)⊕M6(Fq).

Proof. By [20, Proposition 3.6.11], we have

FqS5 = FqS5eS′
5
⊕ FqS5(eS′

5
− 1)

where eS′
5
= eA5

=
Â

′
5

|A5| =
∑

σ∈A5
σ

60 . Note that FqS5eS′
5

is the sum of all commuta-
tive simple components of FqS5 and FqS5(eS′

5
−1) is the sum of all non-commutative

simple components of FqS5. However,

FqS5eS′
5

∼= Fq(
S5

S
′
5

) ∼= Fq(C2) ∼= Fq ⊕ Fq.

Therefore, by Wedderburn Decomposition Theorem,

FqS5
∼= Fq ⊕ Fq ⊕

5∑
i=1

Mni
(Fqki ),

where ni ≥ 2 for 1 ≤ i ≤ 5.
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Since p > 5, q = pn ≡ ±1(mod 6). Also each element of S5 is p-regular. Again
|SFq

(γg)| = 1 for each g ∈ S5. Hence each ki = 1 in the Wedderburn Decomposition
of FqS5.

Using dimension constraints, we have

dimFq
FqS5 = 1 + 1 + n2

1 + n2
2 + n2

3 + n2
4 + n2

5

120 = 1 + 1 + n2
1 + n2

2 + n2
3 + n2

4 + n2
5,

that is,

118 = n2
1 + n2

2 + n2
3 + n2

4 + n2
5 (5)

where ni ≥ 2, 1 ≤ i ≤ 5. But we know that dimension of Specht modules correspond-
ing to the conjugate partition are same. Hence we have dimFq

D(3,2) = dimFq
D(2,2,1)

and dimFq
D(4,1) = dimFq

D(2,1,1,1). The only possible solution of (5) satisfying these
conditions is 4, 4, 5, 5, 6. Thus

FqS5
∼= Fq ⊕ Fq ⊕M4(Fq)⊕M4(Fq)⊕M5(Fq)⊕M5(Fq)⊕M6(Fq).

This proves the result. □

Corollary 2.12. If p > 5, then

U(FqS5) ∼= F∗
q × F∗

q ×GL4(Fq)×GL4(Fq)×GL5(Fq)×GL5(Fq)×GL6(Fq).

Proof. Proof is a simple application of the fact that for any two rings R1 and R2,
U(R1 ⊕R2) = U(R1)× U(R2). □

Combining the results from Theorem 2.3, Theorem 2.7, Theorem 2.9, and The-
orem 2.11, we get the following.

Theorem 2.13. Let Fq be any finite field with q = pn elements and S5 denote the
symmetric group of degree 5. Then

FqS5

J(FqS5)
∼=



Fq ⊕M4(Fq)⊕M4(Fq), if p = 2

Fq ⊕ Fq ⊕M4(Fq)⊕M4(Fq)⊕M6(Fq), if p = 3

Fq ⊕ Fq ⊕M3(Fq)⊕M3(Fq)⊕M5(Fq)⊕M5(Fq), if p = 5

Fq ⊕ Fq ⊕M4(Fq)⊕M4(Fq)⊕M5(Fq)⊕M5(Fq)⊕M6(Fq), if p > 5.

Finally, we remark that all calculations are verified by using GAP version 4.7.8

of 09-Jun-2015.
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