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Abstract. This paper describes some algebraic properties of the species of

finite topological quandles. We construct two twisted bialgebra structures on

this species, one of the first kind and one of the second kind. The obstruction

for the structure to match the double twisted bialgebra axioms is explicitly

described.

Mathematics Subject Classification (2020): 57K12, 16T05, 16T10, 16T30

Keywords: Quandle, finite topological space, species, bialgebra

1. Introduction

A quandle is a set Q with a binary operation � : Q × Q −→ Q satisfying the

three axioms

(i) for every a ∈ Q, we have a � a = a,

(ii) for every pair a, b ∈ Q there is a unique c ∈ Q such that a = c � b, and

(iii) for every a, b, c ∈ Q, we have (a � b) � c = (a � c) � (b � c).

These three conditions that define a quandle originate from the axiomatization of

the three Reidemeister moves on knot diagrams. Quandles are algebraic structures

that have various applications in knot theory and related fields. Two typical exam-

ples of quandles are the conjugation quandle and the core quandle. The conjugation

quandle is derived from any group (G, ◦), where the binary operation is given by

conjugation, i.e. x � y = y−1 ◦ x ◦ y. The core quandle, on the other hand, is

another quandle derived from any group (G, ◦), with the binary operation defined

by x � y = x ◦ y−1 ◦ x. Both of these quandles are of great importance in knot

theory and have been studied extensively. For more on quandles, see [5,6,12,14,19].

By Alexandroff’s theorem [1,17], for any finite set X, there is a bijection between

topologies on X and quasi-orders on X, where a quasi-order ≤ in X is a reflexive
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natoire Algébrique, Résurgence, Probabilités Libres et Opérades.



234 MOHAMED AYADI AND DOMINIQUE MANCHON

and transitive relation, not necessarily antisymmetric. For any x, y ∈ X, we write

x ≤T y whenever any T-open subset containing x also contains y, and we note

x ∼T y whenever both x ≤T y and y ≤T x hold. More on finite topological spaces

can be found in [2, 3, 16,18].

Given two topologies T and T′ on a finite set X, we say that T′ is finer than

T, denoted by T′ ≺ T, if every open subset of T is also an open subset of T′.

This is equivalent to saying that for any x, y ∈ X, if x ≤T′ y, then x ≤T y. The

quotient T/T′ of these two topologies is defined as follows: the associated quasi-

order relation, denoted by ≤T/T′ , is the transitive closure of the relation R, which

is defined by xRy if and only if x ≤T y or y ≤T′ x. In [7], F. Fauvet, L. Foissy and

the second author define a relation noted#≺ on the set of topologies in X as follows:

T′
#≺T if and only if

• T′ ≺ T,

• T′
|Y = T|Y for any subset Y ⊂ X connected for the topology T′,

• for any x, y ∈ X,

x ∼T/T′ y ⇐⇒ x ∼T′/T′ y.

Now let (Q,≤) be a topological space equipped with a continuous map µ :

Q × Q −→ Q, denoted by µ(a, b) = a � b, such that for every b ∈ Q the mapping

Rb : a 7→ a� b is a homeomorphism of (Q,≤). The space Q (together with the map

µ ) is called a topological quandle [15] if it satisfies for all a, b, c ∈ Q

(i) (a � b) � c = (a � c) � (b � c),

(ii) a � a = a.

A finite topological quandle [9, 13] is a topological quandle with a finite un-

derlying set. The study of finite topological quandles is important because finite

quandles arise naturally in the study of knots and links, and topological quandles

provide a way to study the geometry of these structures [4].

The species formalism, due to A. Joyal [10,11], is an important tool in combina-

torics. The idea of a species is to formalize the notion of “combinatorial equivalence”

between objects of a given type, so that one can study the properties of the objects

without worrying about their particular representations. To be precise, a linear

species is a contravariant functor from the category of finite sets with bijections to

the category of vector spaces over a given field k. Specifically, a linear species E

assigns to any finite set X a vector space EX over k, and assigns to any bijection

σ : X → Y a linear isomorphism Eσ : EY → EX , such that the awaited functorial

properties hold1. One important operation on linear species is the Cauchy tensor

1Contravariance is a matter of choice, some authors prefer covariant species.
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product, denoted by ⊗, which takes two species E and F and produces a new species

E⊗ F defined by

• (E⊗ F)A =
⊕
I⊆A

EI ⊗ FA\I ,

• for any bijection σ : B −→ A,

(E⊗ F)(σ) :





⊕
J⊆B

EJ ⊗ FB\J −→
⊕
I⊆B

EI ⊗ FB\I

x⊗ y 7−→ E(σ|I)(x)⊗ F(σ|B\I)(y).

We also recall that, for any two linear species E and F, their Hadamard tensor

product is defined by [8]:

• (E⊙ F)(A) = E(A)⊗ F(A),

• for bijection σ : B −→ A, (E⊙ F)(σ) = E(σ)⊗ F(σ).

The species QT of finite topological quandles describes finite topological quandles

up to combinatorial equivalence. Specifically, the species QT is a contravariant

functor from the category of finite sets with bijections to the category of vector

spaces, which associates to each finite set S the linear span of all finite topological

quandles with underlying set S, i.e., the species QT is defined by:

• for any finite set A, QTA is the vector space freely generated by the topo-

logical quandle stuctures on A, i.e., QTA = span(A,�,≤), where (A,�) is

a quandle and ≤ is a quasi-order compatible with (A,�),

• for any bijection σ : B −→ A, Qσ sends the topological quandle Q =

(A,�,≤) to the topological quandle Qσ(Q) = (B,◭,≤′), where ◭ and ≤′

are defined by relabeling.

The present article is organized as follows: in Section 2, we revisit some impor-

tant results related to finite quandles. Specifically, we remind the reader of the

method developed by B. Ho and S. Nelson in [9] to describe finite quandles with

at most 5 elements. Section 3 contains our main results: we construct an external

coproduct ∆ defined for all (X,T,�) ∈ QTX (where X is a finite set) by:

∆ : QTX −→ (QT⊗QT)X =
⊕

Y⊂X

QTX\Y ⊗QTY

(X,T,�) 7−→
∑

Y⊆X

(X \ Y,T|
X\Y

,�X\Y )⊗ (Y,T|
Y
,�Y ),

with an explicit quandle structure �
Z on any subset Z of a finite quandle X. We

moreover define for any finite set X an internal coproduct Γ : QTX −→ (QT ⊙
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QT)X = QTX ⊗QTX by, for all (X,T,�) ∈ QTX :

Γ(X,T,�) =
∑

T′#≺T

T
′

is Q-compatible

(X,T′,�)⊗ (X,T/T′,�).

It indeed turns out that the quandle structure is compatible with both topologies

T′ and T/T′. The associative product m of two topological quandle structures on

X and Y respectively is given by the disjoint union of the topological spaces and

the quandle structures involved: the action of elements of X on Y (and vice-versa)

is trivial. We prove that (QT,m,∆) is a commutative connected twisted bialgebra

and (QT,m,Γ) is a commutative connected twisted bialgebra on the second kind [8].

Finally, we define a map

ξ : QTX ⊗ (QT⊗QT)X −→ QTX ⊗ (QT⊗QT)X

by:

ξ
(
(X,T,�)⊗ (Y,T1,�1)⊗ (X\Y,T2,�2)

)
= (X,T, �̃)⊗ (Y,T1,�1)⊗ (X\Y,T2,�2)

where the new quandle structure �̃ is explicitly given, such that the coproduct Γ

and the map ξ make the following diagram commute:

QTX
Γ //

(Id⊗∆)δ

��

QTX ⊗QTX

Id⊗∆

��
QTX ⊗ (QT⊗QT)X

Id⊗Γ⊗Γ

��

QTX ⊗ (QT⊗QT)X

ξ

��
QTX ⊗ (QT⊗QT)X

⊕
Y⊂X

QTX ⊗QTY ⊗QTY ⊗QTX\Y ⊗QTX\Y
m2,4

// QTX ⊗QTX ⊗ (QT⊗QT)X

π

OO

i.e.,

ξ ◦ (Id⊗∆) ◦ Γ = π ◦m2,4 ◦ (Id⊗ Γ⊗ Γ) ◦ (Id⊗∆) ◦ δ,

where δ is the diagonal map (X,T,�) 7→ (X,T,�) ⊗ (X,T,�), and where π is a

linear map which will be described below. In other words, QT is nearly a twisted

double bialgebra in the sense of [8], the defect being precisely described by the maps

ξ and π.



A TWISTED HOPF ALGEBRA OF FINITE TOPOLOGICAL QUANDLES 237

2. Review of finite quandles

Let Q = {x1, x2, ..., xn} be a finite quandle with n elements. B. Ho and S. Nelson

in [9] defined the matrix of Q, denoted MQ, to be the matrix whose entry in row i

column j is xi � xj :

MQ =




x1 � x1 x1 � x2 ... x1 � xn

x2 � x1 x2 � x2 ... x2 � xn

. . ... .

. . ... .

. . ... .

xn � x1 xn � x2 ... xn � xn




Example 2.1. [9] For Q = {a, b, c}, the quandle matrices for quandles of order 3

are, up to permutations of the underlying three-element set:


a a a

b b b

c c c


 ,



a c b

c b a

b a c


 ,



a a a

c b b

b c c


 .

Definition 2.2. Let Q be a quandle. A subquandle X ⊂ Q is a subset of Q which

is itself a quandle under �. Let Q be a quandle and X ⊂ Q a subquandle. We say

that X is complemented in Q or Q-complemented if Q\X is a subquandle of Q.

Notation. Let (Q,�) be a finite quandle, for x′ ∈ Q, we note

Rx′ : Q −→ Q

x 7−→ x � x′,
and

Lx′ : Q −→ Q

x 7−→ x′
� x.

Remark 2.3. Due to the fact that any bijection from a finite set onto itself if of

finite order, any continuous bijection from a finite topological space onto itself is a

homeomorphism. The following statements are therefore equivalent for any finite

quandle Q:

• (Q,T) is a topological quandle,

• For any x ∈ Q, Rx and Lx are continuous maps,

• for all x, y, x′, y′ ∈ X, if x ≤ x′ and y ≤ y′, we have x � y ≤ x′
� y′.

3. Algebraic structure of the linear species of finite topological

quandles

Let Q = (X,�) be a finite quandle, and Z be any subset of X. Let

�
Y : Y × Y −→ Y
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be defined by a �
Y b = RαY

b (a), where αY = inf{α,Rα
b |

X\Y
= IdX\Y for any b ∈

Y }. We may shorten the notation to α when the context is clear enough.

Proposition 3.1. Let Q = (X,�) be a finite quandle. For any subset Y of Q, the

pair (Y,�Y ) is a quandle.

Proof. It is clear that, for all a ∈ Y , equality a �
Y a = a holds. Moreover for all

b ∈ Y , the map Rα
b : Y → Y is a bijection. For all a, b, c ∈ Y , we have

(a �
Y c) �

Y (b �
Y c) = Rα

c (a) �
Y Rα

c (b) = Rα
Rα

c (b) ◦R
α
c (a) (1)

and

(a �
Y b) �

Y c = Rα
c ◦Rα

b (a). (2)

Using (a � b) � c = (a � c) � (b � c), i.e., Rc ◦Rb(a) = RRc(b) ◦Rc(a), then for all

n ∈ N we have,

Rn
c ◦Rb = Rn−1

c ◦Rc ◦Rb

= Rn−1
c ◦RRc(b) ◦Rc

= Rn−2
c ◦Rc ◦RRc(b) ◦Rc

= Rn−2
c ◦RR2

c(b)
◦R2

c

.

.

.

= Rc ◦RRn−1
c (b) ◦R

n−1
c

= RRn
c (b)

◦Rn
c ,
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and for all m ∈ N we have,

Rc ◦R
m
b = Rc ◦Rb ◦R

m−1
b

= RRc(b) ◦Rc ◦Rb ◦R
m−2
b

= RRc(b) ◦RRc(b) ◦Rc ◦R
m−2
b

= R2
Rc(b)

◦Rc ◦R
m−2
b

.

.

.

= Rm−1
Rc(b)

◦Rc ◦Rb.

= Rm
Rc(b)

◦Rc.

Hence, for all n,m ∈ N we have

Rn
c ◦Rm

b = Rm
Rn

c (b)
◦Rn

c , (3)

or equivalently Rm
Rn

c (b)
= Rn

c ◦Rm
b ◦R−n

c . Applying (3) to m = n = α, we therefore

get self-distributivity in view of (1) and (2), which proves Proposition 3.1. �

Lemma 3.2. For any finite quandle (X,�) and for any Z ⊆ Y ⊆ X we have

z1(�
Y )Zz2 = z1 �

Z z2

for any z1, z2 ∈ Z.

Proof. It is clear that αY divides αZ , and we have for any z1, z2 ∈ Z:

z1(�
Y )Zz2 =

(
RαY

z2

) αZ

αY

z1 = z1 �
Z z2. �

Let X be any finite set and QX = span(X,�) the vector space of quandles in

X. We define the external coproduct ∆ by:

∆ : QX −→ (Q⊗Q)X =
⊕

Y ⊔Z=X

QY ⊗QZ

(X,�) 7−→
∑

Y ⊔Z=X

(Y,�Y )⊗ (Z,�Z), (4)

and we define an associative productm in Q bym : QX1
⊗QX2

−→ QX1⊔X2
, defined

for all Q1 = (X1,�1) ∈ QX1
, Q2 = (X2,�2) ∈ QX2

, m(Q1 ⊗Q2) = (X1 ⊔X2, �̃),

where

• a�̃b = a �1 b, for all a, b ∈ X1,

• a�̃b = a �2 b, for all a, b ∈ X2,



240 MOHAMED AYADI AND DOMINIQUE MANCHON

• a�̃b = a, for all a ∈ Xi, b ∈ Xj , i 6= j.

The product m endows the disjoint union with a quandle structure. Indeed:

(i) For any a ∈ X1 ⊔X2, we obviously have a�̃a = a.

(ii) Let x ∈ Xi, i = 1, 2, then Rx(x
′) = x′ for all x′ ∈ Xj , j 6= i and furthermore,

for every z ∈ Xi, there exists a unique x′ ∈ Xi such that z = Rx(x
′) (because Rx

is a bijection from Xi on itself). Hence Rx is a bijection from X1 ⊔X2 on itself.

(iii) Let x, y, z ∈ X1 ⊔X2. Four possible cases may arise:

• Either x, y, z ∈ Xi, it is obvious that (x�̃y)�̃z = (x�̃z)�̃(y�̃z).

• Or x ∈ Xi, y, z ∈ Xj , i 6= j, we have;

(x�̃y)�̃z = x�̃z = x and (x�̃z)�̃(y�̃z) = x�̃y = x.

• Or x, y ∈ Xi, z ∈ Xj , i 6= j, we have;

(x�̃y)�̃z = x�̃y = x �i y and (x�̃z)�̃(y�̃z) = x�̃y = x �i y.

• Or x, z ∈ Xi, y ∈ Xj , i 6= j, we have;

(x�̃y)�̃z = x�̃z = x �i z and (x�̃z)�̃(y�̃z) = (x �i z)�̃y = x �i z.

The self-distributivity

(x�̃y)�̃z = (x�̃z)�̃(y�̃z)

is therefore always verified, hence (X1 ⊔X2, �̃) is a quandle.

Example 3.3.

m






c c c

e d d

d e e


⊗

[
a b

b b

]
 =




c c c c c

e d d d d

d e e e e

a a a a b

b b b b b



,

m



[
a b

a b

]
⊗



c e d

e d c

d c e





 =




a b a a a

a b b b b

c c c e d

d d e d c

e e d c e



,

∆






a a a

c b b

b c c





 =



a a a

c b b

b c c


⊗ 1+ 1⊗



a a a

c b b

b c c




+
[
a
]
⊗

[
b b

c c

]
+
[
b
]
⊗

[
a a

c c

]
+
[
c
]
⊗

[
a a

b b

]

+

[
b b

c c

]
⊗
[
a
]
+

[
a a

c c

]
⊗
[
b
]
+

[
a a

b b

]
⊗
[
c
]
,
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∆






a c b

c b a

b a c





 =



a c b

c b a

b a c


⊗ 1+ 1⊗



a c b

c b a

b a c




+
[
a
]
⊗

[
b b

c c

]
+
[
b
]
⊗

[
a a

c c

]
+
[
c
]
⊗

[
a a

b b

]

+

[
b b

c c

]
⊗
[
a
]
+

[
a a

c c

]
⊗
[
b
]
+

[
a a

b b

]
⊗
[
c
]
.

Theorem 3.4. (Q,m,∆, u, ε) is a commutative cocommutative connected twisted

bialgebra.

Proof. Here the unit u is given by u(1) = 1 where 1 is the empty quandle, and

the counit ε is given by ε(1) = 1 and ε(Q,�) = 0 for any nonempty finite quandle.

We start by showing associativity of the disjoint union product m. Let Q1 =

(X1,�1) ∈ QX1
, Q2 = (X2,�2) ∈ QX2

and Q3 = (X3,�3) ∈ QX3
, we have

m(m⊗ Id)(Q1 ⊗Q2 ⊗Q3) = (X1 ⊔X2 ⊔X3,�), where:

• a � b = a �1 b, for all a, b ∈ X1,

• a � b = a �2 b, for all a, b ∈ X2,

• a � b = b, for all a ∈ X1, b ∈ X2,

• a � b = a, for all a ∈ X2, b ∈ X1,

• a � b = a �3 b, for all a, b ∈ X3,

• a � b = b, for all a ∈ X1 ⊔X2, b ∈ X3,

• a � b = a, for all a ∈ X3, b ∈ X1 ⊔X2.

On the other hand,

m(m⊗ Id)(Q1 ⊗Q2 ⊗Q3) = (X1 ⊔X2 ⊔X3,�), where:

• a�b = a �1 b, for all a, b ∈ X1,

• a�b = a �2 b, for all a, b ∈ X2,

• a�b = a �3 b, for all a, b ∈ X3,

• a�b = a, for all a ∈ X2, b ∈ X3,

• a�b = a, for all a ∈ X3, b ∈ X2,

• a�b = b, for all a ∈ X1, b ∈ X2 ⊔X3,

• a�b = a, for all a ∈ X2 ⊔X3, b ∈ X1.

So, m(m ⊗ Id)(Q1 ⊗ Q2 ⊗ Q3) = (X1 ⊔ X2 ⊔ X3,�) = (X1 ⊔ X2 ⊔ X3,�) =

m(m⊗ Id)(Q1 ⊗Q2 ⊗Q3).

Cocommutativity of the coproduct is clear, let us look at coassociativity. We

have for any finite quandle Q = (X,�):

(∆⊗ Id)∆(X,�) =
∑

X=A⊔B⊔C

(
A, (�A⊔B)A

)
⊗
(
B, (�A⊔B)B

)
⊗ (C,�C).
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On the other hand, we have

(Id⊗∆)∆(X,�) =
∑

X=A⊔B⊔C

(A,�A)⊗
(
B, (�B⊔C)B

)
⊗
(
C, (�B⊔C)C

)
.

From Lemma 3.2 we therefore get

(∆⊗ Id)∆(X,�) = (Id⊗∆)∆(X,�) =
∑

X=A⊔B⊔C

(A,�A)⊗ (B,�B)⊗ (C,�C),

which proves coassociativity of ∆. Finally, we show immediately that

∆ ◦m
(
(X1,�1)⊗ (X2,�2)

)
= m2,3

(
∆(X1,�1)⊗∆(X2,�2)

)
. �

The following result is a topological version of Proposition 3.1:

Proposition 3.5. For any finite topological quandle (X,T,�) and for any subset

Y ⊆ X, the triple (Y,T|
Y
,�Y ) is a topological quandle.

Proof. Let y1, y
′
1, y2, y

′
2 ∈ Y with y1 ≤T y′1 and y2 ≤T y′2. From compatibility

between the topology and the quandle structure, we have Rn
y2
y1 ≤T Rn

y′
2

y′1 for any

nonnegative integer n. In particular,

y1 �
Y y2 = Rα

y2
y1 ≤T Rα

y′
2

y′1 = y′1 �
Y y′2. �

Theorem 3.6. Let X be any finite set and QTX = span(X,T,�), where (X,�) is

a quandle and T is a topology compatible with (X,�). Let m the product defined in

QT by

m
(
(X1,T1,�1)⊗ (X2,T2,�2)

)
= (X1 ⊔X2,T1T2, �̃)

and let ∆ the coproduct defined by

∆(X,T,�) =
∑

y∈T

(
X \ Y,T|

X\Y
,�X\Y

)
⊗

(
Y,T|

Y
,�Y

)
.

Then (QT,m,∆, u, ε) is a commutative connected twisted bialgebra.

Proof. It suffices to show the coassociativity of coproduct ∆ in the species of

topological quandles QT. Let X be a finite set and Q = (X,T,�) ∈ QTX , we have

in view of Lemma 3.2:

(∆⊗ Id)∆(X,T,�) =
∑

Z,Y ∈T, Z⊆Y

(X\Y,T|X\Y ,�
X\Y )⊗ (Y \Z,T|Y \Z ,�

Y \Z)⊗ (Z,T|Z ,�
Z)

and

(Id⊗∆)∆(X,T,�) =
∑

Z,Y ∈T, Z⊆Y

(X\Y,T|X\Y ,�
X\Y )⊗ (Y \Z,T|Y \Z ,�

Y \Z)⊗ (Z,T|Z ,�
Z),

which proves Theorem 3.6. The unit and counit axioms, as well as the compatibility

with the disjoint union product, are straightforward. �
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Remark 3.7. Note that this coproduct on the species of finite topological quandles

is not cocommutative, contrarily to the coproduct defined by (4) on the species of

finite quandles.

Lemma 3.8. [7, Proposition 2.7] Let T and T′′ be two topologies on X. If T′′
#≺T,

then T′ 7−→ T′/T′′ is a bijection from the set of topologies T′ on X such that

T′′
#≺T′

#≺T , onto the set of topologies U on X such that U#≺T/T′′.

Theorem 3.9. Let Q = (X,�) be a finite quandle and let T be a topology on X.

For any T′
#≺T we have:

(1) if T and T′ are Q-compatible, then T/T′ is Q-compatible,

(2) if T and T/T′ are Q-compatible, then T′ is Q-compatible.

Proof. Let Q = (X,�) be a finite quandle and let T′
#≺T.

(1) If T and T′ are Q-compatible, then: for x, x′, y, y′ ∈ X, x ≤T/T′ x′ and y ≤T/T′

y′ imply that there exist t1, . . . , tn, s1, . . . , sm ∈ X, such that xRt1Rt2 . . .RtnRy

and x′Rs1Rs2 . . .RsmRy′. Recall that aRb means (a ≤T b or a ≥T′ b). First, we

prove that x � yRt1 � s1 or x � yRx � s1Rt1 � s1. For xRt1, and yRs1, we have

four possible cases:

• First case; x ≤T t1, and y ≤T s1. Since T is Q-compatible, we have x�y ≤T

t1 � s1, hence x � yRt1 � s1.

• Second case; x ≥T′ t1, and y ≥T′ s1. Since T′ is Q-compatible, we have

x � y ≥T′ t1 � s1, hence x � yRt1 � s1.

• Third case; x ≤T t1, and y ≥T′ s1. Since Rs1 is continuous, we have

Rs1(x) ≤T Rs1(t1), so x� s1Rt1 � s1 and since Lx is continuous, Lx(y) ≥T′

Lx(s1), so x � y ≥T′ x � s1. Therefore (x � y)R(x � s1)R(t1 � s1).

• Fourth case; x ≥T′ t1, and y ≤T s1. Since Rs1 is continuous, we have

Rs1(x) ≥T′ Rs1(t1), so x� s1Rt1 � s1 and since Lx is continuous, Lx(y) ≤T

Lx(s1), so (x � y)R(x � s1). Therefore (x � y)R(x � s1)R(t1 � s1). By

induction we find that:

(x � y)R(x � s1)R(t1 � s1)R(t1 � s2)R(t2 � s2)R(t2 � s3)R . . .

. . .R(tn−1 � sn−1)R(tn−1 � sn)R(tn � sn)R(tn � y′)R(x′
� y′).

Therefore T/T′ is Q-compatible.

(2) If T and T/T′ are Q-compatible, then: for x, x′, y, y′ ∈ X, using that T′
#≺T,

we get that (x ≤T′ x′ and y ≤T′ y′) implies (x ≤T x′ and y ≤T y′). Using that

T is Q-compatible, then x � y ≤T x′
� y′. On the other hand, (x ≤T′ x′ and

y ≤T′ y′) implies (x ∼T/T′ x′ and y ∼T/T′ y′). Using that T/T′ is Q-compatible,

then x�y ∼T/T′ x′
�y′. So x�y and x′

�y′ are in the same connected component
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for the topology T′, then: x � y ≤T x′
� y′ implies that x � y ∼T′ x′

� y′ (because

T′
|Y = T|Y for any subset Y ⊂ X connected for the topology T′). This proves that

T′ is Q-compatible. �

We define the internal coproduct Γ for all (X,T,�) ∈ QTX by:

Γ(X,T,�) =
∑

T′#≺T

T
′

is Q-compatible

(X,T′,�)⊗ (X,T/T′,�).

Theorem 3.10. (QT,m,Γ) is a commutative twisted bialgebra of the second kind.

Proof. Let X be a finite set, for (X,T,�) ∈ QTX , we have

(Γ⊗ Id)Γ(X,T,�) =
∑

T′′#≺T′#≺T

T
′′,T′

are Q-compatible

(X,T′′,�)⊗ (X,T′/T′′,�)⊗ (X,T/T′,�).

On the other hand, we have

(Id⊗ Γ)Γ(X,T,�) =
∑

T′′#≺T,U#≺T/T′′

T
′′,U are Q-compatible

(X,T′′,�)⊗ (X,U,�)⊗
(
X, (T/T′′)/U,�

)
.

The result then comes from Lemma 3.8 and Theorem 3.9. Hence, (Γ ⊗ Id)Γ =

(Id⊗ Γ)Γ, and consequently Γ is coassociative. Finally we have directly:

Γ
(
(X1,T1,�1)(X2,T2,�2)

)
= Γ(X1,T1,�1)Γ(X2,T2,�2).

�

Example 3.11. For (X,�) =



a a a

c b b

b c c


 and T =

b c

a

, then (X,T,�) is

a topological quandle and

Γ(
b c

a

) =

b c a

⊗
b c

a

+
b c

a

⊗

a b c

.
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For (X,�) =




a a a a

b b b c

c c c b

d d d d




and T = a d

b c

, (X,T,�) is a topological quandle

and

Γ( a d

b c

) = a d

b c

⊗
d b ca

+ a

b
c d ⊗

a b d

c

+ a

c
b d ⊗

a c d

b

+
a b c d

⊗ a d

b c

.

Theorem 3.12. For any finite set X, let

ξ : QTX ⊗ (QT⊗QT)X −→ QTX ⊗ (QT⊗QT)X

be the map defined by:

ξ
(
(X,T,�)⊗ (Y,T1,�1)⊗ (X\Y,T2,�2)

)
=





(X,T, �̃)⊗ (Y,T1,�1)⊗ (X\Y,T2,�2)

if T is �̃-compatible,

0 else,

(5)

where the quandle (X, �̃) is the disjoint union product of the two quandles (Y,�1)

and (X\Y,�2). The following diagram commutes:

QTX
Γ //

(Id⊗∆)δ

��

QTX ⊗QTX

Id⊗∆

��
QTX ⊗ (QT⊗QT)X

Id⊗Γ⊗Γ

��

QTX ⊗ (QT⊗QT)X

ξ

��
QTX ⊗ (QT⊗QT)X

⊕
Y⊂X

QTX ⊗QTY ⊗QTY ⊗QTX\Y ⊗QTX\Y
m2,4

// QTX ⊗QTX ⊗ (QT⊗QT)X

π

OO

i.e.,

ξ ◦ (Id⊗∆) ◦ Γ = π ◦m2,4 ◦ (Id⊗ Γ⊗ Γ) ◦ (Id⊗∆) ◦ δ,

where δ is the diagonal map (X,T,�) 7→ (X,T,�) ⊗ (X,T,�), and where π is a

linear map which will be described below.
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Proof. Let X be a finite set and (X,T,�) ∈ TQX , we have

ξ ◦ (Id⊗∆) ◦ Γ(X,T,�) = ξ ◦ (Id⊗∆)




∑

T′#≺T

T
′

is �-compatible

(X,T′,�)⊗ (X,T/T′,�)




= ξ




∑

T′#≺T, T′
�-compatible

Y ∈T/T′

(X,T′,�)⊗
(
X\Y, (T/T′)|

X\Y
,�X\Y

)
⊗
(
Y, (T/T′)|

Y
,�Y

)




=
∑

T′#≺T, T′
�-compatible

Y ∈T/T′, T′
�̃-compatible

(X,T′, �̃)⊗
(
X\Y, (T/T′)|

X\Y
,�X\Y

)
⊗
(
Y, (T/T′)|

Y
,�Y

)
.

On the other hand,

m1,3 ◦ (Γ⊗ Γ) ◦∆(X,T,�)

= m1,3 ◦ (Γ⊗ Γ)

(
∑

Y ∈T

(X\Y,T|
X\Y

,�X\Y )⊗ (Y,T|
Y
,�Y )

)

= m1,3

(
∑

Y ∈T,T1#≺T|Y
,T2#≺T|X\Y

T1 is �
Y

-comp,T2 is �
X\Y

-comp.

(X \ Y,T2,�
X\Y )⊗

⊗ (X \ Y,T|
X\Y

/T2,�
X\Y )⊗ (Y,T1,�

Y )⊗ (Y,T|
Y
/T1,�

Y )

)

=
∑

Y ∈T,T1#≺T|Y
,T2#≺T|X\Y

T1 is �
Y

-comp,T2 is �
X\Y

-comp.

(X,T1T2, �̃)⊗ (X \ Y,T|
X\Y

/T2,�
X\Y )⊗ (Y,T|

Y
/T1,�

Y )

=
∑

Y ∈T,T′#≺T|Y
⊔T|X\Y

T
′

is �̃-comp

(X,T′, �̃)⊗
(
X \ Y, (T/T′)|

X\Y
,�X\Y

)
⊗
(
Y,
(
T/T′)|

Y
,�Y

)

=
∑

T′#≺T

Y ∈T/T′, T′
�̃-compatible

(X,T′, �̃)⊗
(
X \ Y, (T/T′)|

X\Y
,�X\Y

)
⊗
(
Y, (T/T′)|

Y
,�Y

)
.

Theorem 3.12 is therefore verified with π defined by

π

(
(X,T,�)⊗ (X,T′, �̃)⊗

(
X \ Y, (T/T′)|

X\Y
,�X\Y

)
⊗
(
Y, (T/T′)|

Y
,�Y

))
=





(X,T′, �̃)⊗
(
X \ Y, (T/T′)|

X\Y
,�X\Y

)
⊗
(
Y, (T/T′)|

Y
,�Y

)

if T′ is �-compatible,

0 else. �
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We therefore notice that Γ and ∆ are not compatible, i.e. we do not get a double

twisted bialgebra. The maps ξ and π above precisely account for the defect.
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