

International Electronic Journal of Algebra Volume 37 (2025) 297-312 DOI: 10.24330/ieja.1555106

ON A GENERALIZATION OF z-IDEALS IN MODULES OVER COMMUTATIVE RINGS

Seyedeh Fatemeh Mohebian and Hosein Fazaeli Moghimi

Received: 18 November 2023; Revised: 10 July 2024; Accepted: 17 July 2024 Communicated by Meltem Altun Özarslan

Dedicated to the memory of Professor Syed M. Tariq Rizvi

ABSTRACT. In this article, we introduce and study the concept of z -submodules as a generalization of z -ideals. Let M be a module over a commutative ring with identity R . A proper submodule N of M is called a z-submodule if for any $x \in M$ and $y \in N$ such that every maximal submodule of M containing y also contains x, then $x \in N$ as well. We investigate the properties of z -submodules, particularly considering their stability with respect to various module constructions. Let $\mathcal{Z}(R,M)$ denote the lattice of z-submodules of M ordered by inclusion. We are concerned with certain mappings between the lattices $\mathcal{Z}(R_R)$ and $\mathcal{Z}(R_M)$. The mappings in question are $\phi : \mathcal{Z}(R_R) \to \mathcal{Z}(R_M)$ defined by setting for each z-ideal I of R, $\phi(I)$ to be the intersection of all zsubmodules of M containing IM and $\psi : \mathcal{Z}_{R}(R) \to \mathcal{Z}_{R}(R)$ defined by $\psi(N)$ is the colon ideal $(N : M)$. It is shown that ϕ is a lattice homomorphism, and if M is a finitely generated multiplication module, then ψ is also a lattice homomorphism. In particular, $\mathcal{Z}(R,M)$ is a homomorphic image of $\mathcal{R}(R,M)$, the lattice of radical submodules of M . Finally, we show that if Y is a finite subset of a compact Hausdorff P-space X, then every submodule of the $C(X)$ module \mathbb{R}^Y is a z-submodule of \mathbb{R}^Y .

Mathematics Subject Classification (2020): 13C13, 13C99, 06B99, 54C30 Keywords: z-Submodule, z-ideal, multiplication module, lattice homomorphism

1. Introduction

We assume all rings are commutative with identity and all modules are unitary. In 1957, Kohls [\[11\]](#page-14-0) was the first to use the concept of z -ideals in the study of the ring of real-valued continuous functions $C(X)$ on a completely regular Hausdorff space X. Nearly two decades later, Mason [\[13\]](#page-14-1) extended the concept of z -ideals to any commutative ring with identity. In recent years, the theory of z -ideals has been developed in several directions (see, for example, [\[1,](#page-14-2)[2,](#page-14-3)[3,](#page-14-4)[5,](#page-14-5)[6,](#page-14-6)[10,](#page-14-7)[14\]](#page-14-8)). In this article,

we introduce the concept of z -submodules generalizing z -ideals. This article consists of four sections. In section 2, we study the basic properties of z -submodules and investigate their behavior under some standard operations in commutative algebra. Let R be a ring and M an R-module. Also, let $Max(M)$ denote the set of maximal submodules of M. For each $x \in M$, we set

$$
\mathcal{M}(x) := \{ K \in \text{Max}(M) \mid x \in K \}.
$$

A proper submodule N of M is called a z-submodule if for any $x \in M$ and $y \in N$, $\mathcal{M}(x) \supseteq \mathcal{M}(y)$ implies that $x \in N$. If $\mathcal{M}(y) = \emptyset$ for some $y \in N$, then N is a z-submodule of M if and only if $N = M$. Evidently, z-submodules of the Rmodule R coincide with the z-ideals of R. Maximal submodules of any R-module M are z-submodules of M. For any two submodules N and L of M, we take $(N : L) := \{r \in R \mid rL \subseteq N\}$ which is the colon ideal of L into N. It is shown that if N is a z-submodule of M, then $(N : M)$ is a z-ideal of R (Lemma [2.2\)](#page-3-0). For any submodule N of M, the z-taking of N, denoted N_z , is the intersection of all z-submodules of M containing N. It is clear that N is a z-submodule of M if and only if $N_z = N$.

Let M be an R-module. A proper submodule P of M is called a prime submodule if for $p = (P : M)$, whenever $rm \in P$ for $r \in R$ and $m \in M$, we have $r \in p$ or $m \in P$. The *radical* of a submodule N of M, denoted rad N, is the intersection of all prime submodules of M containing N or, in case there are no such prime submodules, rad N is M. For an ideal I of a ring R, we assume that \sqrt{I} denotes the radical of I. A submodule N of M is called a *radical submodule* if rad $N = N$ (For more information on prime and radical submodules, the reader may consult [\[12\]](#page-14-9) for example). It is shown that every z -submodule of a multiplication module is a radical submodule (Proposition [2.4\)](#page-4-0). It is seen that the z -taking of submodules enjoy analogs of many properties of radical submodules. For instance, it is shown that for any ideal I of R, $(IM)_z = (I_z M)_z$ (Theorem [2.6\)](#page-4-1). For any subset S of an R-module M, let $\mathcal{M}(S)$ denote the set of maximal submodules of M containing S. As a generalization of z-submodules, any submodule N of M is called a *strongly* z-submodule of M or briefly sz -submodule if for any two finite subsets S and T of M such that $S \subseteq N$ and $\mathcal{M}(S) \subseteq \mathcal{M}(T)$, we have $T \subseteq N$. Also, an I of R is called a sz-ideal if it is a z-submodule of the R-module R. It is shown that, if M is a finitely generated faithful multiplication R -module and I is a sz-ideal of R , then IM is a z-submodule of M (Theorem [2.7\)](#page-4-2). Note that if $R = C(X)$, then by [\[1,](#page-14-2) p. 255 | the concept of z-ideal coincides with the sz -ideal. Using this fact, it is proved that if $R = C(X)$, then every sz-submodule of a finitely generated faithful

multiplication R-module is an intersection of prime z -submodules (Corollary [2.9\)](#page-5-0). It is shown that if F is a free R-module, then for any z-ideal I of R, IF is a z-submodule of F (Corollary [2.16\)](#page-8-0) and in particular, $(IF)_z = I_zF$ (Corollary [2.17\)](#page-8-1).

Let M be an R-module. The collection $\mathcal{Z}(R,M)$ consisting of all z-submodules of M forms a lattice with the operations $N \vee L = (N + L)z$ and $N \wedge L = N \cap L$, for all z-submodules N and L of M. Recently, various properties of certain mappings between different types of module lattices have been examined by the second author and others (see [\[9](#page-14-10)[,15,](#page-14-11)[16,](#page-14-12)[17,](#page-14-13)[20\]](#page-15-0)) whose motivation sterns back to P. F. Smith's works (see [\[23,](#page-15-1)[24,](#page-15-2)[25\]](#page-15-3)). In section 3, we will deal with the mappings $\phi : \mathcal{Z}(R_R) \to \mathcal{Z}(R_R)$ defined by $\phi(I) = (IM)_z$ and $\psi : \mathcal{Z}(_RM) \to \mathcal{Z}(_RR)$ defined by $\psi(N) = (N : M)$. It is shown that ϕ is a lattice homomorphism (Lemma [3.1\)](#page-9-0), but ψ is not in general (Example [3.3\)](#page-10-0). In particular, if M is a finitely generated multiplication R -module, then $\mathcal{Z}(R,M)$ is a homomorphic image of the lattice $\mathcal{R}(R,M)$ consisting of all radical submodules of M (Corollary [3.2\)](#page-9-1). It is also shown that if $R = C(X)$ and M is a finitely generated multiplication R-module, then ψ is a lattice homomorphism (Theorem [3.4\)](#page-10-1). In particular, if M is a finitely generated faithful multiplication R-module, then ϕ is a lattice isomorphism, and ψ is its inverse (Corollary [3.11\)](#page-12-0).

Finally, in Section 4, we present a non-trivial example of a finitely generated faithful multiplication module over the ring of continuous functions $C(X)$, where X is a compact Hausdorff P -space, all of whose submodules are z -submodules. Indeed, if Y is a finite subset of a compact Hausdorff space X, then \mathbb{R}^Y consisting of all real-valued functions with domain Y is a multiplication $C(X)$ -module (Theorem [4.1\)](#page-12-1), and if in addition X is a P-space, then \mathbb{R}^Y is a flat $C(X)$ -module (Theorem [4.2\)](#page-13-0). In particular, \mathbb{R}^Y is a finitely generated faithful multiplication $C(X)$ -module (Corollary [4.3\)](#page-13-1), and therefore every submodule of it is a z-submodule of \mathbb{R}^Y (Corollary [4.4\)](#page-13-2).

2. *z*-Submodules

Let M be an R-module and N be a submodule of M. Recall that $\mathcal{M}(x)$ denotes the set of all maximal submodules of M containing x . To begin, let's consider the following lemma.

Lemma 2.1. Let R be a ring and M an R-module. If for any $r, s \in R$, $\mathcal{M}(r) \subseteq$ $\mathcal{M}(s)$, then $\mathcal{M}(rm) \subseteq \mathcal{M}(sm)$ for all $m \in M$.

Proof. Let $m \in M$ and $K \in \mathcal{M}(rm)$. If $m \in K$, then $sm \in K$ and so $K \in \mathcal{M}(sm)$, otherwise $(K: Rm)$ is a maximal ideal of R and in particular, $(K: Rm) \in \mathcal{M}(r)$

(note that if K is a maximal submodule of M, then M/K is a non-zero simple Rmodule, and hence $(K : M) = Ann(M/K)$ is a maximal ideal of R. In particular, since $(K : M) \subseteq (K : Rm)$ for all $m \in M$, it follows that $(K : Rm)$ is a maximal ideal of R). So by the assumption $(K: Rm) \in \mathcal{M}(s)$. Hence we have sm $\in K$ which implies that $K \in \mathcal{M}(sm)$.

The next result relates the z -submodules of an R -module M to the z -ideals of R.

Lemma 2.2. Let M be an R-module. If N is a z-submodule of M, then $(N : M)$ is a z-ideal of R .

Proof. Assume that $\mathcal{M}(r) \subset \mathcal{M}(s)$ for $r \in (N : M)$ and $s \in R$. By Lemma [2.1,](#page-2-0) we have $\mathcal{M}(rm) \subseteq \mathcal{M}(sm)$ for all $m \in M$. Now, since N is a z-submodule of M, we conclude that $sm \in N$ for all $m \in M$, and so $s \in (N : M)$.

The following lemma collects some frequently used facts on z -taking of submodules.

Lemma 2.3. Let N and L be submodules of an R-module M and $\{N_i\}_{i\in I}$ be a collection of submodules of M. Then:

(1) $N \subseteq N_z$; (2) If $N \subseteq L$, then $N_z \subseteq L_z$; (3) $N_z = (N_z)_z$; (4) $(\bigcap_{i\in I}N_i)_z\subseteq \bigcap_{i\in I}(N_i)_z;$ (5) $(\sum_{i \in I} N_i)_z = (\sum_{i \in I} (N_i)_z)_z;$ (6) $(N : M)_z \subseteq (N_z : M);$ (7) $\sqrt{(N : M)} \subseteq (N_z : M).$

Proof. (1)-(5) are straightforward.

(6) It is clear that for any submodule N of M, $(N : M) \subseteq (N_z : M)$. Thus by Lemma [2.2,](#page-3-0) $(N : M)_z \subseteq (N_z : M)_z = (N_z : M)$.

(7) Since every z-ideal is radical, we conclude by Lemma [2.2](#page-3-0) that $\sqrt{(N : M)} \subseteq$ $\sqrt{(N_z : M)} = (N_z : M).$

An R-module M is called a *multiplication R*-module, if for every submodule N of M, there exists an ideal I of R such that $N = IM$. It is easy to see that M is a multiplication R-module if and only if for each submodule N of M, $N = (N : M)M$. Cyclic modules, ideals of Dedekind domains, and ideals of regular rings are wellknown examples of multiplication modules. It is noted that by Lemma [2.2](#page-3-0) and [\[5,](#page-14-5)

Corollary 1, every z-submodule of a multiplication R-module M is of the form nM for some square-free integer n .

As shown in [\[13,](#page-14-1) p. 281], every z-ideal of a ring R is a radical ideal of R . Using this fact, we give a similar result for z-submodules of multiplication modules.

Proposition 2.4. Every *z*-submodule of any multiplication R-module M is a radical submodule of M.

Proof. Let N be a z-submodule of M. Then by [\[7,](#page-14-14) Theorem 2.12] and Lemma [2.2,](#page-3-0) we have rad $N = \sqrt{(N : M)}M = (N : M)M = N$.

As stated in [\[12,](#page-14-9) Proposition 3.1], for each radical ideal I of a ring R and any finitely generated R-module M, we have $(IM : M) = I$ if and only if $I \supseteq Ann(M)$. This fact is used in the following proposition.

Proposition 2.5. Let M be a finitely generated R-module and let I be an ideal of R. Then $(IM : M)_z = (I + \text{Ann}(M))_z$.

Proof. Let J be a z-ideal of R containing $(IM : M)$. Then Ann $(M) \subseteq J$ and $I \subseteq (IM : M) \subseteq J$ which implies $(I + Ann(M)) \subseteq J$. Therefore $(I + Ann(M))_z \subseteq$ $(IM: M)_z$. For the revers inclusion, let J be a z-ideal of R containing $(I + Ann(M))$. Then since J is a radical ideal of R, $(IM : M) \subseteq (JM : M) = J$. Hence we have $(IM: M)_z \subseteq (I + \text{Ann}(M))_z.$

Theorem 2.6. Let M be an R-module. For any ideal I of R, $(IM)_z = (I_z M)_z$. In particular, if M is a multiplication R-module, then for each submodule N of M , $N_z = ((N : M)_z M)_z$.

Proof. Assume that K is a z-submodule of M containing IM. Since $(K : M)$ is a z-ideal of R, $I_z \subseteq (K : M)$ and hence $I_zM \subseteq (K : M)M \subseteq K$. It follows that $(I_zM)_z \subseteq (IM)_z$. The reverse inclusion is obvious. The "in particular" part follows by taking $I = (N : M)$.

Let M be an R-module. For any subset S of M, we recall that $\mathcal{M}(S)$ is the set of maximal submodules of M containing S. Let \mathcal{M}_S denote the intersection of all elements of $\mathcal{M}(S)$. Evidently, N is a sz-submodule of M iff for any finite subset S of N, $\mathcal{M}_S \subseteq N$ (see for example [\[1](#page-14-2)[,2\]](#page-14-3) for more details about sz-ideals).

Theorem 2.7. Let R be a ring and M be a finitely generated R -module. Then:

(1) If M is a faithful multiplication R-module and I is a sz-ideal of R, then IM is a sz-submodule (and therefore a z-submodule) of M ;

302 SEYEDEH FATEMEH MOHEBIAN AND HOSEIN FAZAELI MOGHIMI

(2) If M is a faithful R-module and IM is a z-submodule of M, then I is a z -ideal of R.

Proof. (1) Let $M = Rx_1 + Rx_2 + \cdots + Rx_n$. Moreover, let $S = \{y_1, \dots, y_s\}$ and $T = \{z_1, \dots, z_t\}$ be two subsets of M such that $S \subseteq IM$ and $\mathcal{M}(S) \subseteq \mathcal{M}(T)$. Since $S \subseteq IM$, there exist $r_{ij} \in I$ such that for any $1 \leq i \leq s$, $y_i = \sum_{j=1}^n r_{ij} x_j$. Also, since $T \subseteq (RT : M)M$, there exist $s_{ij} \in (RT : M)$ such that for any $1 \leq i \leq t, z_i = \sum_{j=1}^n s_{ij} x_j$. We set $U = \{r_{i,j} \mid 1 \leq i \leq s, 1 \leq j \leq n\}$ and $V = \{s_{i_j} \mid 1 \leq i \leq t, 1 \leq j \leq n\}$, and show that $\mathcal{M}(U) \subseteq \mathcal{M}(V)(*)$. For this, we assume that $m \in \mathcal{M}(U)$. It follows that $S \subseteq UM \subseteq mM$. Now, since by [\[7,](#page-14-14) Theorem 2.5] mM is a maximal submodule of M, we have mM $\in \mathcal{M}(S)$ and so m $M \in \mathcal{M}(T)$. Therefore $V \subseteq (RT : M) \subseteq (mM : M) = m$, which yields that $m \in \mathcal{M}(V)$. Thus (*) holds and since I is a sz-ideal, we have $V \subseteq I$. Then $T \subseteq IM$, as desired.

(2) Since I is a radical ideal of R, we have $(IM : M) = I$ by [\[12,](#page-14-9) Proposition 3.1]. Thus, the result follows from Lemma [2.2.](#page-3-0) \Box

Let M be an R-module. For any submodule N of M, we let N_{sz} denote the intersection of all sz -submodules of M containing N . Note that, since any sz submodule is a z-submodule, we have $N_z \subseteq N_{sz}$.

Corollary 2.8. Let R be a ring and M be a finitely generated faithful multiplication R-module and N a submodule of M. Then $(N : M)_z \subseteq (N_z : M) \subseteq (N : M)_{sz}$. In particular, if $R = C(X)$, then $(N : M)_z = (N_z : M) = (N : M)_{sz}$.

Proof. By Lemma [2.3\(](#page-3-1)6), $(N : M)_z \subseteq (N_z : M)$. To establish the reverse inclusion, we assume that I is a sz-ideal of R containing $(N : M)$. Then $N \subseteq IM$, and hence by Theorem [2.7\(](#page-4-2)1), we have $N_z \subseteq IM$, and so $(N_z : M) \subseteq I$. Therefore $(N_z : M) \subseteq (N : M)_{sz}$, as required. The "in particular part" follows from the pre-vious part and a fact given in [\[1,](#page-14-2) p. 225] which follows that the concept of z -ideal coincides with the sz-ideal in $C(X)$. □

Corollary 2.9. Let $R = C(X)$ and M be a finitely generated faithful multiplication R-module. Then every sz-submodule of M is an intersection of prime z-submodules of M.

Proof. Let N be a sz-submodule of M. Then N is a z-submodule of M and so $(N:$ M) is a radical ideal of R. Thus $(N: M) = \bigcap_{p \in \text{Min}(N:M)} p$. Since $(N: M)$ is a z-ideal of R, it is also a sz-ideal of R, and hence by [\[1,](#page-14-2) Theorem 3.13], every $p \in \text{Min}(N :$ M) is a sz-ideal of R. Thus by [\[7,](#page-14-14) Lemma 2.10 and Corollary 2.11] $pM \in \text{Min}(N)$

for all $p \in \text{Min}(N : M)$, and by Theorem [2.7\(](#page-4-2)1), these pM 's are z-submodules of M. Now, since $N = (N : M)M = (\bigcap_{p \in \text{Min}(N:M)} p)M = \bigcap_{p \in \text{Min}(N:M)} pM$ by [\[7,](#page-14-14) Theorem 1.6], we conclude that N is an intersection of prime z-submodules of M. \Box

Theorem 2.10. If I and J are two ideals in R, then

 $(IJM)_z = ((I \cap J)M)_z = (IM)_z \cap (JM)_z$.

In particular, for any positive integer n, $(I^nM)_z = (IM)_z$.

Proof. To establish the given equality, it suffices to show that $(IM)_z \cap (JM)_z$ is the smallest z-submodule containing IJM . For this, let K be a z-submodule of M containing IJM . Then $(K : M)$ is a z-ideal of R containing IJ , and so $(K: M) = \bigcap_{p \in \text{Min}(K:M)} p$. Consequently, for every $p \in \text{Min}(K:M)$, we have $I \subseteq p$ or $J \subseteq p$. In any case, $I_zM \subseteq pM$ or $J_zM \subseteq pM$. Thus for any $p \in \text{Min}(K : M)$, we have $(I_zM)_z \subseteq (pM)_z$ or $(J_zM)_z \subseteq (pM)_z$ which implies that $(IM)_z \subseteq K$ or $(JM)_z \subseteq K$. Therefore $(IM)_z \cap (JM)_z \subseteq K$, as required. The "in particular" part is obtained easily by induction on n. \Box

Theorem 2.11. Let M and M' be R-modules. Let $f : M \longrightarrow M'$ be a surjective R-module homomorphism, and Ker f is contained in each maximal submodule of M. Then:

- (1) If M is a finitely generated R -module and N' is a z-submodule of M' , then $f^{-1}(N')$ is a z-submodule of M;
- (2) If M' is a finitely generated R-module and N is a submodule of M such that $N + \text{Ker } f$ is a z-submodule of M, then $f(N)$ is a z-submodule of M'.

Proof. (1) Suppose that N' is a z-submodule of M', and $\mathcal{M}(a) \subseteq \mathcal{M}(b)$ for $a \in$ $f^{-1}(N')$ and $b \in M$. We show that $\mathcal{M}(f(a)) \subseteq \mathcal{M}(f(b))$. For this, we let $K' \in$ Max(M) and $f(a) \in K'$. Since M is finitely generated and $f^{-1}(K') \neq M$, there exists a maximal submodule K of M containing $f^{-1}(K')$. Note that if $f(K) = M'$, we get $M = K + \text{Ker } f = K$, which is a contradiction. Hence, we have $f(K) = K'$. Then, by hypothesis, $f^{-1}(K') = K$. Since $a \in f^{-1}(K')$, we have $f^{-1}(K') \in \mathcal{M}(a)$. So, $b \in f^{-1}(K')$, and $f(b) \in K'$.

(2) Suppose that $N + \text{Ker } f$ is a z-submodule of M, $\mathcal{M}(f(a)) \subseteq \mathcal{M}(f(b))$ for $f(a) \in f(N)$ and $b \in M$. We show that $\mathcal{M}(a) \subseteq \mathcal{M}(b)$. For this, we assume that $K \in \text{Max}(M)$ and $a \in K$. It is noted that if $f(K) = M'$, since f is surjective, we have $M = K + \text{Ker } f = K$, a contradiction. Thus since M' is finitely generated and $f(K) \neq M'$, there exists $L' \in \text{Max}(M')$ such that $f(K) \subseteq L'$. Letting $L' = f(L)$, we conclude that $K \subseteq L + \text{Ker } f \subseteq M$. Consequently, $K = L + \text{Ker } f$ (note that

if $L + \text{Ker } f = M$, then we get $L' = f(L) = f(M) = M'$ which is a contradiction). Hence we have $f(K) \in Max(M')$ and $f(K) \in \mathcal{M}(f(a))$. It follows that $f(b) \in$ $f(K)$ and so $b \in K + \text{Ker } f = K$, we are done. Now, since $\mathcal{M}(a) \subseteq \mathcal{M}(b)$ and $a \in N + \text{Ker } f$, we have $b \in N + \text{Ker } f$. Thus $f(b) \in f(N)$, as required.

The following example illustrates Theorem [2.11.](#page-6-0)

Example 2.12. Let \mathbb{Z} be the ring of integers and $M_n = \mathbb{Z}/p^n\mathbb{Z}$ be the \mathbb{Z} -module of integers modulo $p^n \mathbb{Z}$. Since M_n is cyclic, it is clear that every proper submodule of M_n is of the form (p^k) for some $1 \leq k < n$. In particular, (\bar{p}) is the only maximal submodule of M_n , and so $\mathcal{M}(p^k) \subseteq \mathcal{M}(\overline{p})$. It follows that if $k > 1$, then (p^k) is not a z-submodule of M_n . Now, for any two positive integers m, n with $m > n$, we consider the mapping $f: M_m \longrightarrow M_n$ defined by $f(x+p^m\mathbb{Z})=x+p^n\mathbb{Z}$. Evidently, f is a surjective non-isomorphism whose kernel is contained in (\bar{p}) , and Theorem [2.11](#page-6-0) holds by considering $N = (\bar{p})$ modulo $p^n \mathbb{Z}$ and $N' = (\bar{p})$ modulo $p^m \mathbb{Z}$.

Corollary 2.13. Let M be a finitely generated R -module and L be a submodule of M contained in each maximal submodule of M. If N is a z-submodule of M containing L, then N/L is a z-submodule of M/L .

Proof. Consider the natural projection $\pi : M \to M/L$ and apply Theorem [2.11\(](#page-6-0)2). □

As usual, $Spec(M)$ denotes the set of prime submodules of M.

Proposition 2.14. Let R be a ring, M a multiplication R-module and $S = R \setminus \mathbb{R}$ $\cup_{P \in \text{Spec}(M)}(P : M)$. If N is a z-submodule of M, then $S^{-1}N$ is a z-submodule of $S^{-1}M$.

Proof. Suppose that N is a z-submodule of M, $\mathcal{M}(\frac{x}{x})$ $\frac{x}{s}) \subseteq \mathcal{M}(\frac{y}{t})$ $\frac{y}{t}$) and $\frac{x}{s} \in S^{-1}N$. Then $\frac{x}{s} = \frac{n}{s'}$ $\frac{n}{s'}$ for some $n \in N$ and $s' \in S$. It follows that $us'x = usn \in N$ for some $u \in S$. We first show that $\mathcal{M}(us'x) \subseteq \mathcal{M}(y)$. For this, we let $P \in \text{Max}(M)$ and $us'x \in P$. Now since $us' \notin (P : M)$, then we get $x \in P$. This implies that \boldsymbol{x} $\frac{x}{s} \in S^{-1}P$. Since M is a multiplication R-module, $S^{-1}M$ is clearly a multiplication $S^{-1}R$ -module, and thus by [\[7,](#page-14-14) Theorem 2.5], $S^{-1}P \subseteq S^{-1}Q$ for some maximal submodule $S^{-1}Q$ of $S^{-1}M$. In particular, by [\[18,](#page-14-15) Theorem 3.1], Q is a prime submodule of M and $(Q : M) \cap S = \emptyset$. Therefore $P \subseteq Q$ and so by maximality of $P, P = Q$. It follows that $S^{-1}P = S^{-1}Q$, and so $S^{-1}P \in \mathcal{M}(\frac{x}{\cdot})$ $\frac{x}{s}$). Hence we have \hat{y} $\frac{dy}{dt} \in S^{-1}P$ which implies that $y \in P$, and therefore $P \in \mathcal{M}(y)$. Now, since N is a z-submodule of M we have $y \in N$, and so $\frac{y}{t} \in S^{-1}N$, as required. \square

Theorem 2.15. Let $\{M_i\}_{i\in I}$ be a non-empty collection of R-modules and M = $\bigoplus_{i\in I}M_i$. If N_i is a z-submodule of M_i for each $i \in I$, then $N = \bigoplus_{i\in I}N_i$ is a z -submodule of M.

Proof. Let $\{x_i\} \in N$, $\{y_i\} \in M$, and assume that $\mathcal{M}(\{x_i\}) \subseteq \mathcal{M}(\{y_i\})$. We first show that $\mathcal{M}(x_i) \subseteq \mathcal{M}(y_i)$ for all $i \in I$. For this, we let $K \in \mathcal{M}(x_i)$ for fixed $j \in I$. Thus $\{x_i\} \in K \oplus (\oplus_{i \neq j} M_i)$. Now since $K \oplus (\oplus_{i \neq j} M_i) \in \mathcal{M}(\{x_i\})$, we have $\{y_i\} \in K \oplus (\oplus_{i \neq j} M_i)$. Consequently, we can conclude that $y_j \in K$, which means that $\mathcal{M}(x_j) \subseteq \mathcal{M}(y_j)$. Now, since N_i 's are z-submodules and $x_i \in N_i$, we have $y_i \in N_i$. Therefore $\{y_i\} \in N$, as desired. \Box

Corollary 2.16. Let F be a free R -module and I be a z -ideal of R . Then IF is a z -submodule of F .

Proof. It is clear that for any ideal I , the R -module IF is isomorphic to a direct sum of I's. Now the result follows from Theorem [2.15.](#page-8-2) \Box

Corollary 2.17. Let F be a free R-module and I be an ideal of R. Then $(IF)_z$ = I_zF .

Proof. First note that for any ideal I, we have $I_z = (IF : F)_z \subseteq ((IF)_z : F)$ which shows $I_zF \subseteq (IF)_z$. For the reverse inclusion, let J be a z-ideal of R containing I. By Corollary [2.16,](#page-8-0) JF is a z-submodule of F containing $(IF)_{z}$ and so $(IF)_z \subseteq \bigcap \{JF \mid J \text{ is a } z\text{-ideal of } R\}$. Thus, by [\[21,](#page-15-4) p. 51], $(IF)_z \subseteq (\bigcap J)F$ where J runs through the set of z-ideals containing I, namely $(IF)_z \subseteq I_zF$, as required. \Box

3. Mappings between lattices of z -submodules

Let R be a ring and M be an R-module. We recall that the collection of z submodules of M forms a lattice with respect to inclusion order for which $N \vee L =$ $(N+L)_z$ and $N \wedge L = N \cap L$ are respectively the supremum and infimum of any two element set $\{N, L\}$ of z-submodules of M. We shall denote the lattice of zsubmodules by $\mathcal{Z}(R,M)$. It should be noted that by [\[3,](#page-14-4) Example 2.3], the finite sum of z-ideals of a ring R is not necessarily a z-ideal, and so $\mathcal{Z}(_R M)$ is not in general a sublattice of the usual lattice $\mathcal{L}(n)$ consisting of all submodules of M. (Of course, if $R = C(X)$ is the ring of continuous functions on a completely regular Hausdorff space X, then by [\[8,](#page-14-16) p. 198], any finite sum of z-ideals is a z-ideal.)

For lattices L and L', a map $f: L \to L'$ is a homomorphism of lattices, if $f(x \vee y) = f(x) \vee f(y)$ and $f(x \wedge y) = f(x) \wedge f(y)$. Note the following result.

Lemma 3.1. Let R be a ring and M an R -module. Then

- (1) The mapping $\phi : \mathcal{Z}({}_RR) \to \mathcal{Z}({}_RM)$ defined by $\phi(I) = (IM)_z$ is a lattice homomorphism;
- (2) The mapping $\psi : \mathcal{Z}_{R}(M) \to \mathcal{Z}_{R}(R)$ defined by $\psi(N) = (N : M)$ is a lattice homomorphism if and only if $((N+L)_z : M) = ((N:M) + (L:M))_z$ for all z -submodules N and L of M .

Proof. (1) First, we verify that ϕ preserves the operation \vee . For this, let $I, J \in$ $\mathcal{Z}(R_R)$. Using Lemma [2.3\(](#page-3-1)5) and Theorem [2.6,](#page-4-1) we have

$$
\begin{array}{rcl}\n\phi(I \vee J) & = & \phi((I+J)_z) = ((I+J)_z M)_z = ((I+J)M)_z \\
& = & (IM+JM)_z = ((IM)_z + (JM)_z)_z \\
& = & (IM)_z \vee (JM)_z = \phi(I) \vee \phi(J).\n\end{array}
$$

Moreover, by Theorem [2.10,](#page-6-1) we have

$$
\phi(I \wedge J) = \phi(I \cap J) = ((I \cap J)M)_z = (IM)_z \cap (JM)_z = \phi(I) \wedge \phi(J).
$$

(2) Clearly for any $N, L \in \mathcal{Z}({}_R M)$ we have

$$
\psi(N \wedge L) = (N \cap L : M) = (N : M) \cap (L : M) = \psi(N) \wedge \psi(L).
$$

Thus ψ is a lattice homomorphism if and only if $\psi(N \vee L) = \psi(N) \vee \psi(L)$ if and only if $((N+L)_z : M) = ((N : M) + (L : M))_z$.

Let M be an R-module. It is easy to see that the set $\mathcal{R}(R_M)$ consisting of radical submodules of M is a lattice with the operations $N \vee L = \text{rad}(N + L)$ and $N \wedge L = N \cap L$ for all radical submodules N and L of M. As shown in [\[15,](#page-14-11) Theorem 2.11], if M is a finitely generated multiplication R -module, then $\sigma : \mathcal{R}(R_R) \to \mathcal{R}(R_M)$ given by $\sigma(N) = (N : M)$ is a lattice homomorphism. Also, as stated in [\[10,](#page-14-7) page 5], $\kappa : \mathcal{R}(R_R) \to \mathcal{Z}(R_R)$ defined by $\kappa(I) = I_z$ is a lattice homomorphism. Considering these lattice homomorphisms, we have the following result:

Corollary 3.2. Let M be an R -module. If M is a finitely generated multiplication R-module. Then the assignment $N \mapsto N_z$ is a lattice epimorphism from $\mathcal{R}(R,M)$ to $\mathcal{Z}({}_R M)$.

Proof. Considering the composition $\mathcal{R}(R M) \stackrel{\sigma}{\to} \mathcal{R}(R R) \stackrel{\kappa}{\to} \mathcal{Z}(R R) \stackrel{\phi}{\to} \mathcal{Z}(R M)$ of lattice homomorphisms ϕ , σ and κ , and by using Theorem [2.6,](#page-4-1) we get that

$$
(\phi \kappa \sigma)(N) = \phi \kappa((N : M)) = \phi((N : M)_z) = ((N : M)_z M)_z = ((N : M)M)_z = N_z,
$$

which indicates the rule of $\phi \kappa \sigma$. Moreover, by Proposition [2.4,](#page-4-0) the lattice homomorphism $\phi \kappa \sigma$ is surjective. \Box

Note that ψ is not generally a lattice homomorphism, as the following example shows.

Example 3.3. Let V be a vector space with a dimension greater than one over a field F, and N and L be two proper subspaces of V such that $V = N \oplus L$. Then $((N+L)_z: V) = (V: V) = F$, while $((N: M) + (L: M))_z = ((0)_z = (0)$. Thus by Lemma [3.1,](#page-9-0) $\psi : \mathcal{Z}_{(R)}(R) \to \mathcal{Z}_{(R)}(R)$ is not a lattice homomorphism.

It will be convenient for us to call an R-module M a ψ -module if the mapping ψ , given in Lemma [3.1,](#page-9-0) is a homomorphism.

Theorem 3.4. Let $R = C(X)$ and M a finitely generated multiplication R-module. Then M is a ψ -module. In particular, every cyclic module is a ψ -module.

Proof. Let N and L be submodules of M. Now by Proposition [2.5](#page-4-3) and Corollary [2.8,](#page-5-1) we have

$$
((N : M) + (L : M))_z = ((N : M) + (0 : M/L))_z
$$

= ((N : M)(M/L) : M/L)_z
= (((N : M)M + L)/L : M/L)_z
= ((N : M)M + L : M)_z
= (N + L : M)_z
= ((N + L)_z : M).

Thus by Lemma [3.1,](#page-9-0) M is a ψ -module. The first part obtains the "in particular" \Box

Corollary 3.5. Let $R = C(X)$ and M be an R-module. If every finitely generated submodule of M is a ψ -module, then $R = (Rx : Ry) + (Ry : Rx)$ for all elements $x, y \in M$. If, in addition, every submodule of M is multiplication, then the converse holds.

Proof. For the first part, let $x, y \in M$. Since $Rx + Ry$ is a ψ -module, we have

$$
R = ((Rx + Ry)_{z} : Rx + Ry)
$$

= $((Rx : Rx + Ry) + (Ry : Rx + Ry))_{z}$
= $((Rx : Rx) \cap (Rx : Ry) + (Ry : Rx) \cap (Ry : Ry))_{z}$
= $((Rx : Ry) + (Ry : Rx))_{z}.$

Thus $R = (Rx : Ry) + (Ry : Rx)$. For the converse, M is a ψ -module by Theorem [3.4](#page-10-1) and [\[23,](#page-15-1) Corollary 3.9]. \Box **Theorem 3.6.** Let ϕ and ψ be a before. Then, the following hold.

(1) $\psi \phi \psi = \psi$. (2) $\phi \psi \phi = \phi$.

Proof. (1) Let N be a z-submodule of M. Then

$$
\psi \phi \psi(N) = \psi \phi((N : M)) = \psi(((N : M)M)_z) = (((N : M)M)_z : M).
$$

Now since N is a z-submodule of M, we have $((N : M)M)_z \subseteq N$, and so $(((N : M)M)_z)$ $(M)M)_z$: $M) \subseteq (N : M)$. Moreover, $(N : M) \subseteq ((N : M)M : M) \subseteq (((N : M)$ $(M)M)_z$: M). Therefore $(N : M) = ((N : M)M)_z : M) = \psi(N)$ which shows that $\psi \phi \psi(N) = \psi(N).$

(2) Let I be a z-ideal of R . Then

$$
\phi\psi\phi(I) = \phi\psi((IM)_z) = \phi(((IM)_z: M)) = (((IM)_z: M)M)_z.
$$

Now, $((IM)_z : M)M \subseteq (IM)_z$, implies that $(((IM)_z : M)M)_z \subseteq ((IM)_z)_z =$ $(IM)_z$. Also, $IM \subseteq (IM)_z$ implies that $I \subseteq ((IM)_z : M)$ which gives $(IM)_z \subseteq$ $(((IM)_z : M)M)_z$. Thus $(((IM)_z : M)M)_z = (IM)_z = \phi(I)$, and hence $\phi \psi \phi =$ ϕ .

The next two results are obtained immediately.

Corollary 3.7. Let M be an R-module. Then the following statements are equivalent:

- (1) ϕ is a surjection.
- (2) $\phi \psi = 1$.
- (3) $N = ((N : M)M)_z$ for every z-submodule N of M.
- (4) ψ is an injection.

Corollary 3.8. Let M be an R-module. Then the following statements are equivalent:

- (1) ϕ is an injection.
- (2) $\psi \phi = 1$.
- (3) $I = ((IM)_z : M)$ for every z-ideal I of R.
- (4) ψ is a surjection.

Corollary 3.9. If ϕ is an injection, then $((0): M)_z = ((0)_z : M)$.

Proof. By Corollary [3.8\(](#page-11-0)3) and Theorem [2.6,](#page-4-1) we have

$$
((0): M)_z = (((0): M)_z M)_z : M) = (((0): M)M)_z : M) = ((0)_z : M).
$$

Corollary 3.10. Let M be an R-module. Then the mapping ϕ is a bijection if and only if ψ is a bijection. In particular, if ϕ is a bijection, then ϕ is a lattice isomorphism and ψ is its inverse.

Proof. The first part follows from Corollary [3.7](#page-11-1) and Corollary [3.8.](#page-11-0) These and Lemma [3.1](#page-9-0) conclude the "in particular" part. \Box

Corollary 3.11. Let $R = C(X)$ and M be a finitely generated faithful multiplication R-module. Then, ϕ is a lattice isomorphism.

Proof. Firstly by Corollary [2.8](#page-5-1) and Proposition [2.5,](#page-4-3) we have $((IM)_z : M) = (IM :$ $M)_z = I_z = I$ for all z-ideals I of R which implies that ϕ is an injection by Corollary [3.8.](#page-11-0) On the other hand, since M is multiplication, we have $((N : M)M)_z = N_z = N$ for every z-submodule N of M which shows that ϕ is a surjection by Corollary [3.7.](#page-11-1) Thus, the assertion holds by Corollary [3.10.](#page-12-2) \Box

4. A finitely generated multiplication module over $C(X)$

Let m be a maximal ideal of R . An R -module M is called m-cyclic provided there exist $x \in M$ and $a \in m$ such that $(1 - a)M \subseteq Rx$. By [\[7,](#page-14-14) Theorem 1.2], every m-cyclic module is a multiplication module. Assume that Y is a subset of a topological space X. Then \mathbb{R}^Y consisting of all functions from Y to R is a $C(X)$ module with the usual multiplication of functions as the scalar multiplication. If Y is a finite subset of a compact Hausdorff space X and $m_x := \{f \in C(X) \mid f(x) = 0\}$ for each fixed point $x \in X$, we show that the $C(X)$ -module \mathbb{R}^Y (consisting of all functions from Y to R) is m_x-cyclic (see [\[4,](#page-14-17) Exercise 26, p. 14] for that m_x is a maximal ideal of $C(X)$). In particular, we have the following result:

Theorem 4.1. If Y is a finite subset of a compact Hausdorff space X, then \mathbb{R}^Y is a multiplication $C(X)$ -module.

Proof. Since X is Hausdorff, the finite subset Y is closed in X , and the subspace topology of Y is discrete. Therefore $C(Y) = \mathbb{R}^Y$. Now if $f \in m_x$ and $g \in \mathbb{R}^Y$, then $(1-f)g = (1-f)|_Y \tilde{g}$, where $(1-f)|_Y$ denotes the restriction of $(1-f)$ to Y and \tilde{g} is the Tietze extension of g [\[19,](#page-15-5) Theorem 3.2]. It implies that $(1-f)\mathbb{R}^Y \subseteq$ $C(X)(1-f)|_Y$, as required. Thus \mathbb{R}^Y is an m_x -cyclic $C(X)$ -module, and so by [\[7,](#page-14-14) Theorem 1.2, \mathbb{R}^Y is a multiplication $C(X)$ -module. \square

Recall that any completely regular space X is said to be a P -space if every prime ideal of $C(X)$ is a maximal ideal. If X is a compact Hausdorff P-space, then by [\[8,](#page-14-16)

4J] and [\[13,](#page-14-1) Theorem 1.2], $C(X)$ is a regular ring. This fact is used in the following result.

Theorem 4.2. If Y is a finite subset of a compact Hausdorff P-space X, then \mathbb{R}^Y is a flat $C(X)$ -module.

Proof. First, we consider the mapping $\phi : \mathbb{R}^Y \to \prod_{x \in Y} C(X)/m_x$ defined by $\phi(g) = (C_{g(x)} + m_x)_{x \in Y}$, where $C_{g(x)}$ is the constant function which maps the whole of X to $g(x)$. Clearly, ϕ is a $C(X)$ -module homomorphism and its inverse is the mapping $\psi : \prod_{x \in Y} C(X)/m_x \to \mathbb{R}^Y$ defined by $\psi((f_x + m_x)_{x \in Y})(y) = f_y(y)$, i.e., ϕ is a $C(X)$ -module isomorphism. Now, since $C(X)$ is regular and $C(X)/m_x$ is a simple $C(X)$ -module, we conclude that $C(X)/m_x$ is an injective $C(X)$ -module by [\[26,](#page-15-6) Theorem 2]. But by [\[22,](#page-15-7) Proposition 1.4], the injectivity of $C(X)/m_x$ is equivalent to its flatness. Consequently, $\prod_{x \in Y} C(X)/m_x$ is a flat $C(X)$ -module and so is \mathbb{R}^Y . □

It is clear that for any non-empty finite subset Y of a compact Hausdorff P -space X and for any $x \in X$, the submodule $m_x \mathbb{R}^Y$ of the $C(X)$ - module \mathbb{R}^Y dose not contain the non-zero constant functions from Y to R, and so $(m_x \mathbb{R}^Y : \mathbb{R}^Y) = m_x$ for all $x \in X$. Now, by Theorem [4.1,](#page-12-1) \mathbb{R}^Y is a multiplication $C(X)$ -module, and so the flatness of the $C(X)$ -module \mathbb{R}^Y (Theorem [4.2\)](#page-13-0) implies that \mathbb{R}^Y is a finitely generated $C(X)$ -module by [\[12,](#page-14-9) Propositions 2.4 and 3.8]. Thus, we have the following without further proof.

Corollary 4.3. If Y is a finite subset of a compact Hausdorff P-space X, then \mathbb{R}^Y is a finitely generated faithful multiplication $C(X)$ -module.

Corollary 4.4. Let X be a compact Hausdorff P-space and Y be a finite subset of X. Then every submodule of the $C(X)$ -module \mathbb{R}^Y is a z-submodule of \mathbb{R}^Y .

Proof. Let N be a submodule of \mathbb{R}^{Y} . By Theorem [4.1,](#page-12-1) $N = IM$ for some ideal I of $C(X)$. But, since X is a P-space, I is a z-ideal of $C(X)$ by [\[8,](#page-14-16) 4J], and so by [\[3,](#page-14-4) page 1], I is a sz-ideal of $C(X)$. Hence N is a z-submodule by Theorem [2.7\(](#page-4-2)1) and Corollary [4.3.](#page-13-1) \Box

Acknowledgement. The authors are deeply grateful to the referee for a careful reading of the article and useful suggestions.

Disclosure statement. The authors report there are no competing interests to declare.

References

- [1] A. R. Aliabad, M. Badie and S. Nazari, An extension of z-ideals and z^0 -ideals, Hacet. J. Math. Stat., 49(1) (2020), 254-272.
- [2] A. R. Aliabad and R. Mohamadian, On z-ideals and z^0 -ideals of power series rings, J. Math. Ext., 7(2) (2013), 93-108.
- [3] A. R. Aliabad and R. Mohamadian, Prime z-ideal rings (pz-Rings), Bull. Iranian Math. Soc., 48(3) (2022), 1177-1192.
- [4] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., 1969.
- [5] A. Benhissi and A. Maatallah, A question about higher order z -ideals in commutative rings, Quaest. Math., 43(8) (2020), 1155-1157.
- [6] T. Dube and O. Ighedo, On lattices of z -ideals of function rings, Math. Slovaca, 68(2) (2018), 271-284.
- [7] Z. A. El-Bast and F. P. Smith, Multiplication Modules, Comm. Algebra, 16(4) (1988), 755-779.
- [8] L. Gillman and M. Jerison, Rings of Continuous Functions, Univ. Ser. Higher Math., D. Van Nostrand Co., New York, 1960.
- [9] J. B. Harrehdashti and H. F. Moghimi, Complete homomorphisms between the lattices of radical submodules, Math. Rep., 20(70)(2) (2018), 187-200.
- [10] O. Ighedo and W. Wm. McGovern, On the lattice of z -ideals of a commutative ring, Topology Appl., 273 (2020), 106969 (16 pp).
- [11] C. W. Kohls, *Ideals in rings of continuous functions*, Fund. Math., 45 (1957), 28-50.
- [12] C. P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math., 33(1) (2007), 125-143.
- [13] G. Mason, *z*-ideals and prime ideals, J. Algebra, 26 (1973), 280-297.
- [14] G. Mason, Prime z-ideals of $C(X)$ and related rings, Canad, Math. Bull., 23(4) (1980), 437-443.
- [15] H. F. Moghimi and J. B. Harehdashti, Mappings between lattices of radical submodules, Int. Electron. J. Algebra, 19 (2016), 35-48.
- [16] H. F. Moghimi and M. Noferesti, Mappings between the lattices of varieties of submodules, J. Algebra Relat. Topics, 10(1) (2022), 35-50.
- [17] H. F. Moghimi and M. Noferesti, On the distributivity of the lattice of radical submodules, J. Mahani Math. Res., 13(1) (2024), 347-355.
- [18] M. E. Moore and S. J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra, 30(10) (2002), 5037-5064.
- [19] J. R. Munkres, Topology: A First Course, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.
- [20] M. Noferesti, H. F. Moghimi and M. H. Hosseini, Mappings between the lattices of saturated submodules with respect to a prime ideal, Hacet. J. Math. Stat., 50(1) (2021), 243-254.
- [21] J. Ohm and D. E. Rush, *Content modules and algebras*, Math. Scand., 31 (1972), 49-68.
- [22] V. S. Ramamurthi, On the injectivity and flatness of certain cyclic modules, Proc. Amer. Math. Soc., 48 (1975), 21-25.
- [23] P. F. Smith, Mapping between module lattices, Int. Electron. J. Algebra, 15 (2014), 173-195.
- [24] P. F. Smith, Complete homomorphisms between module lattices, Int. Electron. J. Algebra, 16 (2014), 16-31.
- [25] P. F. Smith, Anti-homomorphisms between module lattices, J. Commut. Algebra, 7(4) (2015), 567-592.
- [26] E. M. Vechtomov, Modules of all functions over the ring of continuous functions, Mathematical notes of the Academy of Sciences of the USSR, 28 (1980), 701-705.

Seyedeh Fatemeh Mohebian and Hosein Fazaeli Moghimi (Corresponding Author) Department of Mathematics University of Birjand Birjand, Iran e-mails: seyedeh-fatemehmohebian@birjand.ac.ir (S. F. Mohebian) hfazaeli@birjand.ac.ir (H. F. Moghimi)