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Abstract. Let Fq be a finite field of characteristic p > 0 with |Fq | = q = pk
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1. Introduction

Let FqG be the group algebra of a group G over a finite field Fq of order q = pk,

for some prime p and a positive integer k. The group containing invertible elements

of FqG is denoted by U(FqG). Let J(FqG) be the Jacobson radical of FqG and

V = 1 + J(FqG). For H ◁G, the canonical homomorphism ω : G → G/H can be

extended to form an epimorphism ω′ : FqG → Fq(G/H) given by ω′(
∑

g∈G αgg) =∑
g∈G αgω(g). Here, Ker(ω′) = ∆(G,H) is a two-sided ideal of FqG generated by

the set {h − 1 : h ∈ H}. For fundamental definitions and results utilized in this

paper, see [16].

The structure of the unit groups of several finite group algebras have already

been established in [1,4,5,11,14,19]. The dihedral group of order 2n is denoted by

D2n. Characterizations of U(ZD8) and U(ZD12) are provided by the authors in

[12]. Some general results describing U(F3k(Cn ×D6)), U(F2kD2p) for prime p and

U(F2kD2n) for odd integers n are given in [7,8,10]. In [2,3], the study of unitary

subgroups of some group algebras have been undertaken.

The six non-isomorphic groups of order 42 are: D42, C42, C3 × D14, C7 × D6,

C7 ⋊ C6 and C2 × (C7 ⋊ C3). The structure of U(Fq(D42)) is investigated by the
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authors in [13]. Section 3 of this paper describes the unit group U(F3k(C3 ×D2n)).

Further, we characterize the structure of the unit groups of FqC42, Fq(C3 ×D14),

Fq(C7×D6) in Section 4. Additionally, the semisimple case is discussed for the two

semidirect products C7 ⋊C6 and C2 × (C7 ⋊C3) by configuring the corresponding

Wedderburn decomposition.

2. Preliminaries

Some helpful results to explore the structure of FqG/J(FqG) were given by Ferraz

[6]. Let G be a finite group and e be the l.c.m. of the orders of all the p-regular

elements in G. Let η be the primitive e-th root of unity over Fq and B be the set of

integers t mod e for which η → ηt is an automorphism of Fq(η) over Fq. If l is the

multiplicative order of q mod e, then B = {1, q, . . . , ql−1} mod e. For a p-regular

element g, define βg to be the sum of all conjugates of g. The cyclotomic Fq-class

of βg is defined by

S(βg) = {βgt | t ∈ B}.

Lemma 2.1. [6, Proposition 1.2] The number of cyclotomic Fq-classes in G is

equal to the number of simple components of FqG/J(FqG).

Lemma 2.2. [6, Theorem 1.3] Let η be the same as defined above and d be the

number of cyclotmic Fq-classes in G. If S1, . . . , Sd are the cyclotomic Fq-classes

in G and P1, . . . , Pd are the simple components of the center of FqG/J(FqG), then

|Si| = [Pi : Fq] for a suitable ordering of the indices.

Let us recall a very useful result from [16, Proposition 3.6.11] which states that

if FqG is semisimple, then

FqG ∼= Fq(G/G′)
⊕

∆(G,G′)

where Fq(G/G′) is the sum of all the commutative simple components of FqG and

∆(G,G′) is the sum of all others.

Let Ip be the set of all p-elements including the identity element of G. Define

a map θ : G → Fq such that θ(g) = 1 if g ∈ Ip and θ(g) = 0 otherwise. We

linearly extend θ from FqG 7→ Fq such that θ(α) =
∑

g∈G αgθ(g) =
∑

g∈Ip
αg for

all α =
∑

g∈G αgg ∈ FqG.

Lemma 2.3. [21, Lemma 2.2] Let G be a finite group and θ be the map defined

above. Then,

(1) J(FqG) ⊆ Ker(θ).

(2) Ker(θ) = Ann(Îp).

(3) J(FqG) ⊆ Ann(Îp).
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3. The structure of U(F3k(C3 ×D2n))

The group C3 ×D2n of order 6n, for n ≥ 1, is represented as:

C3 ×D2n = ⟨r, s, t | rn = s2 = t3 = 1, rs = sr−1, rt = tr, st = ts⟩.

Theorem 3.1. Let Fq be a finite field of order q = 3k. Then,

U(Fq(C3 ×D2n)) ∼= ((· · · (C3nk
3 ⋊ Ck

3 )⋊ Ck
3 )⋊ · · ·⋊ Ck

3︸ ︷︷ ︸
n times

)⋊ U(FqD2n).

Proof. Let G = C3 × D2n, then N = ⟨t⟩ is a normal subgroup of G of order 3.

Let M = ⟨r, s⟩, then the factor group G/N ∼= M ∼= D2n. Now, define a map

Ψ : FqG → FqM given by

Ψ(
n−1∑
j=0

2∑
i=0

tirj(ai+3j + ai+3j+3ns)) =
n−1∑
j=0

2∑
i=0

rj(ai+3j + ai+3j+3ns).

We obtain a group epimorphism Ψ′ : U(FqG) → U(FqM) by restricting the ring

epimorphism Ψ. Again, the restriction of the inclusion map from FqM → FqG

results in a group monomorphism Φ : U(FqM) → U(FqG) defined by

Φ(
n−1∑
j=0

rj(zj + zj+ns)) =
n−1∑
j=0

rj(zj + zj+ns).

Let K = ker(Ψ′). Since Ψ′ ◦ Φ = 1U(FqM), U(FqG) ∼= K ⋊ U(FqM).

Consider v =
n−1∑
j=0

2∑
i=0

tirj(ai+3j + ai+3j+3ns) ∈ K, i.e., Ψ′(v) = 1 and this results

in the following equations:

a0 = 1− a1 − a2, a3d = −a3d+1 − a3d+2 for d = 1, . . . , 2n− 1.

Given this, an equivalent way of writing the set K is

K = {1 +
n−1∑
j=0

2∑
i=1

(ti − 1)rj(bi+2j + bi+2j+2ns) | bi ∈ Fq}.

It can be verified that K is a non-abelian group satisfying K3 = 1. The presumption

q = 3k concludes |K| = 34nk.

Consider some subgroups of K defined as:

Sd = {1 + x1t̂+ x2(t+ 2t2)rds | xi ∈ Fq} for d = 0, 1, . . . , n− 1,

and Un = K,

U0 = {1 +
n−1∑
j=0

2∑
i=1

(ti − 1)rjyi+2j + t̂
n−1∑
i=0

riyi+2n+1s | yi ∈ Fq},
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Ud = {1 +
2∑

i=1

(ti − 1)(

n−1∑
j=0

rjyi+2j +

d−1∑
j=0

rjyi+2j+2ns)

+ t̂

n−1∑
i=d

riyi+d+2n+1s | yi ∈ Fq} for d = 1, . . . , n− 1.

Here, Sd and Ud are subgroups of Ud+1 and I = Sd∩Ud = {1+x1t̂ | x1 ∈ Fq} ∼= Ck
3 ,

for d = 0, 1, . . . , n − 1. Moreover, Sd is an abelian group and therefore, for each

d = 0, 1, . . . , n−1, there exists some subgroup Rd of Sd satisfying Sd = I×Rd with

Rd
∼= Ck

3 . Considering some general elements

pd = 1 + x1t̂+ x2(t+ 2t2)rds ∈ Sd for d = 0, . . . , n− 1,

q0 = 1 +
n−1∑
j=0

2∑
i=1

(ti − 1)rjyi+2j + t̂
n−1∑
i=0

riyi+2n+1s ∈ U0,

qd = 1 +

2∑
i=1

(ti − 1)(

n−1∑
j=0

rjyi+2j +

d−1∑
j=0

rjyi+2j+2ns)

+ t̂

n−1∑
i=d

riyi+d+2n+1s ∈ Ud for d = 1, . . . , n− 1.

Let us define:

E1 =
n−1∑
j=0

2∑
i=1

(ti − 1)rjyi+2j , E
′
1 =

n−1∑
j=0

2∑
i=1

(ti − 1)r−jyi+2j ,

E2,0 = 0 = E′
2,0, E2,d =

d−1∑
j=0

2∑
i=1

(ti − 1)rjyi+2j+2n for d = 1, . . . , n− 1,

E′
2,d =

d−1∑
j=0

2∑
i=1

(ti − 1)r−jyi+2j+2n for d = 1, . . . , n− 1 and

E3,d = t̂
n−1∑
i=d

riyi+d+2n+1 for d = 0, . . . , n− 1.

Equivalently, qd can be written as:

qd = 1 + E1 + E2,ds+ E3,ds ∈ Ud for d = 0, . . . , n− 1.

The fact that Sd ⊆ K, gives us S3
d = 1. Thus, for pd ∈ Sd,

p−1
d = p2d = 1 + (2x1 + x2

2)t̂+ 2x2(t+ 2t2)rds for d = 0, . . . , n− 1.

The structure of K can be concluded by combining the information given so far

along with the following steps.
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Step 1: Let q0 ∈ U0 and p0 ∈ S0. Then,

qp0

0 = p−1
0 q0p0

= q0 + x2(t+ 2t2)(E1 − E′
1)s ∈ U0.

By definition, S0 normalizes U0. Furthermore, U0 is abelian and therefore U0
∼=

C3nk
3 . Clearly, U0 ∩R0 = {1} and hence U1

∼= U0 ⋊R0
∼= C3nk

3 ⋊ Ck
3 .

Step 2: Let q1 ∈ U1 and p1 ∈ S1. Then,

qp1

1 = p−1
1 q1p1

= q1 + x2(t+ 2t2)(E1 − E′
1)rs+ x2(t+ 2t2)(E2,1r

−1 − E′
2,1r) ∈ U1.

Again, it follows that S1 normalizes U1 and as U1 ∩ R1 = {1}, therefore U2
∼=

U1 ⋊R1
∼= (C3nk

3 ⋊ Ck
3 )⋊ Ck

3 .

In general,

qpd

d = qd + x2(t+ 2t2)(E1 − E′
1)r

ds+ x2(t+ 2t2)(E2,dr
−d − E′

2,dr
d) ∈ Ud

for d = 0, . . . , n− 1.

Proceeding in a similar manner, it can be shown that Sd normalizes Ud and

therefore Ud+1
∼= Ud ⋊ Rd for d = 2, . . . , n− 1. Consequently, Un

∼= Un−1 ⋊ Rn−1,

that is

K ∼= ((· · · (C3nk
3 ⋊ Ck

3 )⋊ Ck
3 )⋊ . . .⋊ Ck

3︸ ︷︷ ︸
n times

).

Since M ∼= D2n, we get

U(Fq(C3 ×D2n)) ∼= ((· · · (C3nk
3 ⋊ Ck

3 )⋊ Ck
3 )⋊ . . .⋊ Ck

3︸ ︷︷ ︸
n times

)⋊ U(FqD2n). □

4. Some structures of U(FqG) for |G| = 42

The results pertaining to the structures of U(FqG) for the earlier mentioned

groups G of order 42 are provided in this section.

Theorem 4.1. Let Fq be a finite field of order q = pk with characteristic p and let

G = C7 ×D6.

(1) If Char Fq = 2, then U(FqG) ∼= C7k
2 ⋊ U(FqG/J(FqG)).



THE STRUCTURE OF U(F
3k

(C3 × D2n)) AND U(FqG) FOR GROUPS G OF ORDER 42371

(2) If Char Fq = 3, then

U(FqG) ∼=



(C21k
3 ⋊ Ck

3 )⋊ C14
q−1, if q ≡ 1 mod 14;

(C21k
3 ⋊ Ck

3 )⋊ (C2
q−1 × C6

q2−1), if q ≡ −1 mod 14;

(C21k
3 ⋊ Ck

3 )⋊ (C2
q−1 × C2

q6−1), if q ≡ 3, 5 mod 14;

(C21k
3 ⋊ Ck

3 )⋊ (C2
q−1 × C4

q3−1), if q ≡ −3,−5 mod 14.

(3) If Char Fq = 7, then

U(FqG) ∼= K ⋊ (C2
q−1 ×GL(2,Fq)),

where K is a non-abelian group of order 736k satisfying K7 = 1.

(4) If Char Fq ̸= 2, 3, 7, then U(FqG) is isomorphic to

(a) C14
q−1 ×GL(2,Fq)

7, if q ≡ 1, 29 mod 42.

(b) C2
q−1 × C2

q6−1 ×GL(2,Fq)×GL(2,Fq6), if q ≡ 5, 17, 19, 31 mod 42.

(c) C2
q−1×C4

q3−1×GL(2,Fq)×GL(2,Fq3)
2, if q ≡ 11, 23, 25, 37 mod 42.

(d) C2
q−1 × C6

q2−1 ×GL(2,Fq)×GL(2,Fq2)
3, if q ≡ 13, 41 mod 42.

Proof. Let G = ⟨r, s, t | r3 = s2 = t7 = 1, rs = sr−1, rt = tr, st = ts⟩.
1. Char Fq = 2: For p = 2, we have I2 = {1, s, rs, r2s}. Then, Î2 = 1+ r̂s. Let

us consider a general element γ =
1∑

k=0

6∑
j=0

2∑
i=0

hi+3j+21kt
jrisk ∈ FqG such that

γ(1 + r̂s) = 0 i.e., γ + γr̂s = 0.

After simplifying, we get the equations:

h3i = h3i+m = h3i+m+21 for i = 0, 1, . . . , 6, and m = 0, 1, 2.

Consequently, γ =
6∑

i=0

qit
ir̂(1 + s). Thus,

Ann(Î2) = {
6∑

i=0

qit
ir̂(1 + s) | qi ∈ Fq}.

Observe that t, r̂ ∈ Z(FqG) and (1 + s)2 = 0, therefore Ann(Î2)
2 = (0). As a

result, Ann(Î2) ⊆ J(FqG). By using Lemma 2.3, we obtain Ann(Î2) = J(FqG). It

is trivial to see that V 2 = 1 and therefore V ∼= C7k
2 . Hence, with the help of [9,

Lemma 2.1], we conclude that

U(FqG) ∼= C7k
2 ⋊ U(FqG/J(FqG)).

2. Char Fq = 3: Using the result given by Gildea [7, Theorem 1.1] for the

particular case of n = 7, we get

U(F3k(C7 ×D6)) ∼= (C21k
3 ⋊ C7k

3 )⋊ U(F3k(C14)).
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Finally, we deduce our result by utilizing [18, Theorem 4.3].

3. Char Fq = 7: Let M = ⟨r, s⟩ and N = ⟨t⟩. Since N ◁ G, G/N ∼= M ∼= D6.

Now, define a map Ψ : FqG → FqM given by

Ψ(
2∑

j=0

6∑
i=0

tirj(ai+7j + ai+7j+21s)) =
2∑

j=0

6∑
i=0

rj(ai+7j + ai+7j+21s).

We obtain a group epimorphism Ψ′ : U(FqG) → U(FqM) by restricting the ring

epimorphism Ψ. Again, the restriction of the inclusion map from FqM → FqG

provides a group monomorphism Φ : U(FqM) → U(FqG) defined by

Φ(
2∑

j=0

rj(zj + zj+3s)) =
2∑

j=0

rj(zj + zj+3s).

Let K = ker(Ψ′). Since Ψ′ ◦ Φ = 1U(FqM),

U(FqG) ∼= K ⋊ U(FqM) ∼= K ⋊ U(FqD6).

Consider v =
2∑

j=0

6∑
i=0

tirj(ai+7j + ai+7j+21s) ∈ K i.e., Ψ′(v) = 1, which leads to

the following equations:

6∑
i=0

ai = 1,
6∑

i=0

ai+7d = 0 for d = 1, . . . , 5.

Thus,

K = {1 +
2∑

j=0

6∑
i=1

(ti − 1)rj(bi+6j + bi+6j+18s) | bi ∈ Fq}.

Consequently, it can be verified that K is a non-abelian group satisfying K7 = 1

with |K| = 736k. Also, by [20, Theorem 2.3], we get U(FqD6) ∼= C2
q−1 ×GL(2,Fq).

Hence,

U(FqG) ∼= K ⋊ (C2
q−1 ×GL(2,Fq)).

4. Char Fq ̸= 2, 3, 7: Since p ∤ |G|, by Maschke’s theorem FqG is a semisimple

group algebra and J(FqG) = (0). Also,

FqG ∼= Fq(G/G′)
⊕

∆(G,G′).

The conjugacy classes of G are:

[ti] = {ti} for i = 0, 1, . . . , 6;

[rti] = {rti, r2ti} for i = 0, 1, . . . , 6;

[sti] = {sti, rsti, r2sti} for i = 0, 1, . . . , 6.

Observe that G/G′ ∼= C14, thus the Wedderburn decomposition is
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FqG ∼= FqC14

m⊕
j=1

M(nj , Rj)

where nj ≥ 2 and for each j ∈ {1, . . . ,m}, Rj represents a division algebra over

Fq. Since class sums form a basis for Z(FqG), dim(Z(FqG)) = 21. This implies,

m ≤ 7. Also, for any choice of characteristic p, e = 42. The structure of FqC14 has

been given by [18, Theorem 4.3].

(a) If q ≡ 1, 29 mod 42, then B = {1} mod 42 or B = {1, 29} mod 42. This

provides |S(βg)| = 1 for all g ∈ G. Using Lemmas 2.1 and 2.2, we get

FqG ∼= F14
q

7⊕
j=1

M(nj ,Fq).

The equation generated by equating the dimensions of both sides is
7∑

j=1

n2
j = 28.

The only possible solution is nj = 2 for all j ∈ {1, . . . , 7}. Hence,

FqG ∼= F14
q

⊕
M(2,Fq)

7.

(b) If q ≡ 5, 17, 19, 31 mod 42, then B = {1, 5, 17, 25, 37, 41} mod 42 or B =

{1, 13, 19, 25, 31, 37} mod 42. Thus, |S(βg)| = 1 for g = 1, r, s, and |S(βg)| = 6 for

g = t, rt, st. Then,

FqG ∼= F2
q

⊕
F2
q6
⊕

M(n1,Fq)
⊕

M(n2,Fq6),

by using Lemmas 2.1 and 2.2. The necessary condition n2
1 + 6n2

2 = 28 is true only

when n1 = n2 = 2. Hence,

FqG ∼= F2
q

⊕
F2
q6
⊕

M(2,Fq)
⊕

M(2,Fq6).

(c) If q ≡ 11, 23, 25, 37 mod 42, then B = {1, 11, 23, 25, 29, 37} mod 42 or B =

{1, 25, 37} mod 42. This gives |S(βg)| = 1 for g = 1, r, s and |S(βg)| = 3 for

g = t, t3, rt, rt3, st, st3. Using Lemmas 2.1 and 2.2,

FqG ∼= F2
q

⊕
F4
q3
⊕

M(n1,Fq)
⊕

M(n2,Fq3)
⊕

M(n3,Fq3),

with the restriction that n2
1 + 3n2

2 + 3n2
3 = 28. The only possible solution of the

equation is n1 = n2 = n3 = 2. Hence,

FqG ∼= F2
q

⊕
F4
q3
⊕

M(2,Fq)
⊕

M(2,Fq3)
2.

(d) If q ≡ 13, 41 mod 42, then B = {1, 13} mod 42 or B = {1, 41} mod 42.

Thus, |S(βg)| = 1 for g = 1, r, s, and |S(βg)| = 2 for g = t, t2, t3, rt, rt2, rt3,

st, st2, st3. Lemmas 2.1 and 2.2 provide us

FqG ∼= F2
q

⊕
F6
q2
⊕

M(n1,Fq)
4⊕

j=2

M(nj ,Fq2),
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under the condition that n2
1 +

4∑
j=2

2n2
j = 28, which has the only solution as nj = 2

for all j ∈ {1, . . . , 4}. Hence,

FqG ∼= F2
q

⊕
F6
q2
⊕

M(2,Fq)
⊕

M(2,Fq2)
3. □

Theorem 4.2. Let Fq be a finite field of order q = pk with characteristic p and let

G = C3 ×D14.

(1) If Char Fq = 2, then

U(FqG) ∼= C3k
2 ⋊ U(FqG/J(FqG)).

(2) If Char Fq = 3, then

U(FqG) ∼=

K ⋊ (C2
q−1 ×GL(2,Fq)

3), if q ≡ ±1 mod 7;

K ⋊ (C2
q−1 ×GL(2,Fq3)), if q ≡ ±2,±3 mod 7,

where K ∼= (((((((C21k
3 ⋊ Ck

3 )⋊ Ck
3 )⋊ Ck

3 )⋊ Ck
3 )⋊ Ck

3 )⋊ Ck
3 )⋊ Ck

3 ).

(3) If Char Fq = 7, then

U(FqG) ∼= K ⋊ C6
q−1,

where K is a non-abelian group of order 736k satisfying K7 = 1.

(4) If Char Fq ̸= 2, 3, 7, then U(FqG) is isomorphic to

(a) C6
q−1 ×GL(2,Fq)

9, if q ≡ 1, 13 mod 42.

(b) C2
q−1 × C2

q2−1 ×GL(2,Fq3)×GL(2,Fq6), if q ≡ 5, 11, 17, 23 mod 42.

(c) C6
q−1×GL(2,Fq3)

3, if q ≡ 19, 25, 31, 37 mod 42.

(d) C2
q−1 × C2

q2−1 ×GL(2,Fq)
3 ×GL(2,Fq2)

3, if q ≡ 29, 41 mod 42.

Proof. Let G = ⟨r, s, t | r7 = s2 = t3 = 1, rs = sr−1, rt = tr, st = ts⟩.
1. Char Fq = 2: For p = 2, we have I2 = {1, s, rs, r2s, . . . , r6s}. Then,

Î2 = 1+r̂s. Let us consider a general element γ =
1∑

k=0

2∑
j=0

6∑
i=0

hi+7j+21kt
jrisk ∈ FqG

such that

γ(1 + r̂s) = 0 i.e., γ + γr̂s = 0.

After simplifying, we get the equations:

h7i = h7i+m = h7i+m+21 for i = 0, 1, 2, and m = 0, 1, . . . , 6.

Consequently, γ =
2∑

i=0

qit
ir̂(1 + s). Thus,

Ann(Î2) = {
2∑

i=0

qit
ir̂(1 + s) | qi ∈ Fq}.
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Observe that t, r̂ ∈ Z(FqG) and (1 + s)2 = 0, therefore Ann(Î2)
2 = (0). As a

result, Ann(Î2) ⊆ J(FqG). By using Lemma 2.3, we obtain Ann(Î2) = J(FqG). It

is trivial to show that V 2 = 1 and therefore V ∼= C3k
2 . Hence, with the help of [9,

Lemma 2.1], we conclude that

U(FqG) ∼= C3k
2 ⋊ U(FqG/J(FqG)).

2. Char Fq = 3: Specifically, for n = 7, applying Theorem 3.1 provides

U(Fq(C3 ×D14)) ∼= K ⋊ U(FqD14)

where

K ∼= (((((((C21k
3 ⋊ Ck

3 )⋊ Ck
3 )⋊ Ck

3 )⋊ Ck
3 )⋊ Ck

3 )⋊ Ck
3 )⋊ Ck

3 ).

Furthermore, based on [17, Theorem 4.1], we find

U(FqD14) ∼=

C2
q−1 ×GL(2,Fq)

3, if q ≡ ±1 mod 7;

C2
q−1 ×GL(2,Fq3), if q ≡ ±2,±3 mod 7.

3. Char Fq = 7: Let M = ⟨s, t⟩ and N = ⟨r⟩. Since N ◁ G, G/N ∼= M ∼= C6.

Now, define a map Ψ : FqG → FqM given by

Ψ(
2∑

j=0

6∑
i=0

tjri(ai+7j + ai+7j+21s)) =
2∑

j=0

6∑
i=0

tj(ai+7j + ai+7j+21s).

We obtain a group epimorphism Ψ′ : U(FqG) → U(FqM) by restricting the ring

epimorphism Ψ. Again, the restriction of the inclusion map from FqM → FqG

provides a group monomorphism Φ : U(FqM) → U(FqG) defined by

Φ(
2∑

j=0

tj(zj + zj+3s)) =
2∑

j=0

tj(zj + zj+3s).

Let K = ker(Ψ′). Since Ψ′ ◦ Φ = 1U(FqM),

U(FqG) ∼= K ⋊ U(FqM) ∼= K ⋊ U(FqC6).

Consider v =
2∑

j=0

6∑
i=0

tjri(ai+7j + ai+7j+21s) ∈ K i.e., Ψ′(v) = 1, which leads to

the following equations:

6∑
i=0

ai = 1,
6∑

i=0

ai+7d = 0 for d = 1, . . . , 5.

Thus,

K = {1 +
2∑

j=0

6∑
i=1

(ri − 1)tj(bi+6j + bi+6j+18s) | bi ∈ Fq}.
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Consequently, it can be verified that K is a non-abelian group satisfying K7 = 1

with |K| = 736k. Also, by [18, Theorem 4.1], we get U(FqC6) ∼= C6
q−1. Hence,

U(FqG) ∼= K ⋊ C6
q−1.

4. Char Fq ̸= 2, 3, 7: Since p ∤ |G|, FqG is a semisimple group algebra and

J(FqG) = (0). Also,

FqG ∼= Fq(G/G′)
⊕

∆(G,G′).

The conjugacy classes of G are:

[ti] = {ti} for i = 0, 1, 2;

[rti] = {rti, r6ti} for i = 0, 1, 2;

[r2ti] = {r2ti, r5ti} for i = 0, 1, 2;

[r3ti] = {r3ti, r4ti} for i = 0, 1, 2;

[sti] = {sti, rsti, r2sti, . . . , r6sti} for i = 0, 1, 2.

Observe that G/G′ ∼= C6, thus

FqG ∼= FqC6

m⊕
j=1

M(nj , Rj)

where nj ≥ 2 and for each j ∈ {1, . . . ,m}, Rj represents a division algebra over Fq.

Since dim(Z(FqG)) = 15, m ≤ 9. Also, for any value of characteristic p, e = 42.

By [18, Theorem 4.1], the structure of FqC6 has been determined.

(a) If q ≡ 1, 13 mod 42, then B = {1} mod 42 or B = {1, 13} mod 42. This gives

|S(βg)| = 1 for all g ∈ G. Using Lemmas 2.1 and 2.2, we get

FqG ∼= F6
q

9⊕
j=1

M(nj ,Fq).

The equation
9∑

j=1

n2
j = 36 is obtained by equating the dimensions of both sides.

The only possible solution is when nj = 2 for all j ∈ {1, . . . , 9}. Hence,

FqG ∼= F6
q

⊕
M(2,Fq)

9.

(b) If q ≡ 5, 11, 17, 23 mod 42, then B = {1, 5, 17, 25, 37, 41} mod 42 or B =

{1, 11, 23, 25, 29, 37} mod 42. Thus, |S(βg)| = 1 for g = 1, s, |S(βg)| = 2 for

g = t, st, |S(βg)| = 3 for g = r, and |S(βg)| = 6 for g = rt. Then,

FqG ∼= F2
q

⊕
F2
q2
⊕

M(n1,Fq3)
⊕

M(n2,Fq6),
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by using Lemmas 2.1 and 2.2. The necessary condition 3n2
1 +6n2

2 = 36 is true only

when n1 = n2 = 2. Hence,

FqG ∼= F2
q

⊕
F2
q2
⊕

M(2,Fq3)
⊕

M(2,Fq6).

(c) If q ≡ 19, 25, 31, 37 mod 42, then B = {1, 13, 19, 25, 31, 37} mod 42 or B =

{1, 25, 37} mod 42. This provides |S(βg)| = 1 for g = 1, s, t, t2, st, st2, and

|S(βg)| = 3 for g = r, rt, rt2. Using Lemmas 2.1 and 2.2,

FqG ∼= F6
q

3⊕
j=1

M(nj ,Fq3),

with the restriction that 3(n2
1 + n2

2 + n2
3) = 36. The only possible solution of this

equation is n1 = n2 = n3 = 2. Hence,

FqG ∼= F6
q

⊕
M(2,Fq3)

3.

(d) If q ≡ 29, 41 mod 42, then B = {1, 29} mod 42 or B = {1, 41} mod 42. Thus,

|S(βg)| = 1 for g = 1, s, r, r2, r3, and |S(βg)| = 2 for g = t, st, rt, r2t, r3t.

Lemmas 2.1 and 2.2 provide us

FqG ∼= F2
q

⊕
F2
q2

3⊕
j=1

M(nj ,Fq)
6⊕

j=4

M(nj ,Fq2),

with the condition that
3∑

j=1

n2
j +

6∑
j=4

2n2
j = 36, which only has the solution as nj = 2

for all j ∈ {1, . . . , 6}. Hence,

FqG ∼= F2
q

⊕
F2
q2
⊕

M(2,Fq)
3
⊕

M(2,Fq2)
3. □

Theorem 4.3. Let Fq be a finite field of order q = pk with characteristic p ̸= 2, 3, 7

and let G = C7 ⋊ C6. Then,

U(FqG) ∼=

C6
q−1 ×GL(6,Fq), if q ≡ 1, 13, 19, 25, 31, 37 mod 42;

C2
q−1 × C2

q2−1 ×GL(6,Fq), if q ≡ 5, 11, 17, 23, 29, 41 mod 42.

Proof. Let G = ⟨a, b | a7 = b6 = 1, bab−1 = a3⟩.
Since p ∤ |G|, FqG is a semisimple group algebra and J(FqG) = (0). Also,

FqG ∼= Fq(G/G′)
⊕

∆(G,G′).

The conjugacy classes of G are:

[1] = {1},

[a] = {a, a2, . . . , a6},

[bi] = {bi, abi, a2bi, . . . , a6bi} for i = 1, . . . , 5.
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Observe that G/G′ ∼= C6, thus

FqG ∼= FqC6

m⊕
j=1

M(nj , Rj)

where nj ≥ 2 and for each j ∈ {1, . . . ,m}, Rj represents a division algebra over Fq.

Since dim(Z(FqG)) = 7, m = 1. Also, for any choice of characteristic p, e = 42.

The structure of FqC6 has been given by ([18], Theorem 4.1).

(a) If q ≡ 1, 13, 19, 25, 31, 37mod 42, then B = {1}mod 42 or B = {1, 13}mod 42

or B = {1, 13, 19, 25, 31, 37} mod 42 or B = {1, 25, 37} mod 42. This gives |S(βg)| =
1 for all g ∈ G. Using Lemmas 2.1 and 2.2, we get

FqG ∼= F6
q

⊕
M(n1,Fq)

with the condition that n2
1 = 36. Hence, n1 = 6 and consequently

FqG ∼= F6
q

⊕
M(6,Fq).

(b) If q ≡ 5, 11, 17, 23, 29, 41 mod 42, then B = {1, 5, 17, 25, 37, 41} mod 42 or

B = {1, 11, 23, 25, 29, 37} mod 42 or B = {1, 29} mod 42 or B = {1, 41} mod 42.

This gives |S(βg)| = 1 for g = 1, a, b3, and |S(βg)| = 2 for g = b, b2. Using

Lemmas 2.1 and 2.2, we get

FqG ∼= F2
q

⊕
F2
q2
⊕

M(n1,Fq)

with the restriction that n2
1 = 36. Hence, n1 = 6 and as a result

FqG ∼= F2
q

⊕
F2
q2
⊕

M(6,Fq). □

Theorem 4.4. Let Fq be a finite field of order q = pk with characteristic p ̸= 2, 3, 7

and let G = C2 × (C7 ⋊ C3). Then,

U(FqG) ∼=



C6
q−1 ×GL(3,Fq)

4, if q ≡ 1, 25, 37 mod 42;

C2
q−1 × C2

q2−1 ×GL(3,Fq2)
2, if q ≡ 5, 17, 41 mod 42;

C6
q−1 ×GL(3,Fq2)

2, if q ≡ 13, 19, 31 mod 42;

C2
q−1 × C2

q2−1 ×GL(3,Fq)
4, if q ≡ 11, 23, 29 mod 42.

Proof. Let G = ⟨a, b, c | a7 = b3 = c2 = 1, bab−1 = a2, ac = ca, bc = cb⟩.
Since p ∤ |G|, by Maschke’s theorem FqG is a semisimple group algebra and

J(FqG) = (0). Also,

FqG ∼= Fq(G/G′)
⊕

∆(G,G′).
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The conjugacy classes of G are:

[1] = {1},

[c] = {c},

[aci] = {aci, a2ci, a4ci} for i = 0, 1;

[a3ci] = {a3ci, a5ci, a6ci} for i = 0, 1;

[bci] = {bci, abci, a2bci, . . . , a6bci} for i = 0, 1;

[b2ci] = {b2ci, ab2ci, a2b2ci, . . . , a6b2ci} for i = 0, 1.

Observe that G/G′ ∼= C6, thus

FqG ∼= FqC6

m⊕
j=1

M(nj , Rj)

where nj ≥ 2 and for each j ∈ {1, . . . ,m}, Rj represents a division algebra over Fq.

Since dim(Z(FqG)) = 10, m ≤ 4. Here, for any value of characteristic p, e = 42.

By [18, Theorem 4.1], the structure of FqC6 has been determined.

(a) If q ≡ 1, 25, 37 mod 42, then B = {1} mod 42 or B = {1, 25, 37} mod 42.

This gives |S(βg)| = 1 for all g ∈ G. Using Lemmas 2.1 and 2.2, we get

FqG ∼= F6
q

4⊕
j=1

M(nj ,Fq).

The equation
4∑

j=1

n2
j = 36 is obtained by equating the dimensions of both the sides.

The only possible solution is nj = 3 for all j ∈ {1, . . . , 4}. Hence,

FqG ∼= F6
q

⊕
M(3,Fq)

4.

(b) If q ≡ 5, 17, 41 mod 42, then B = {1, 5, 17, 25, 37, 41} mod 42 or B =

{1, 41} mod 42. Thus, |S(βg)| = 1 for g = 1, c, and |S(βg)| = 2 for g = a, ac, b, bc.

Then,

FqG ∼= F2
q

⊕
F2
q2
⊕

M(n1,Fq2)
⊕

M(n2,Fq2),

by using Lemmas 2.1 and 2.2. The necessary condition of 2(n2
1+n2

2) = 36 is satisfied

only when n1 = n2 = 3. Hence,

FqG ∼= F2
q

⊕
F2
q2
⊕

M(3,Fq2)
2.

(c) If q ≡ 13, 19, 31 mod 42, then B = {1, 13, 19, 25, 31, 37} mod 42 or B =

{1, 13} mod 42. It follows from here that |S(βg)| = 1 for g = 1, c, b, b2, bc, b2c,

and |S(βg)| = 2 for g = a, ac. Using Lemmas 2.1 and 2.2,

FqG ∼= F6
q

⊕
M(n1,Fq2)

⊕
M(n2,Fq2),
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with the restriction that 2(n2
1+n2

2) = 36. The only possible solution of the equation

is n1 = n2 = 3. Hence,

FqG ∼= F6
q

⊕
M(3,Fq2)

2.

(d) If q ≡ 11, 23, 29 mod 42, then B = {1, 11, 23, 25, 29, 37} mod 42 or B =

{1, 29} mod 42. Thus, |S(βg)| = 1 for g = 1, c, a, a3, ac, a3c, and |S(βg)| = 2 for

g = b, bc. Lemmas 2.1 and 2.2 guide us

FqG ∼= F2
q

⊕
F2
q2

4⊕
j=1

M(nj ,Fq),

with the condition that
4∑

j=1

n2
j = 36, which is only possible when nj = 3 for all

j ∈ {1, . . . , 4}. Hence,

FqG ∼= F2
q

⊕
F2
q2
⊕

M(3,Fq)
4. □

Theorem 4.5. Let Fq be a finite field of order q = pk with characteristic p and let

G = C42.

(1) If Char Fq ̸= 2, 3, 7, then

U(FqG) ∼=



C42
q−1, if q ≡ 1 mod 21;

C2
q−1 × C2

q2−1 × C4
q3−1 × C4

q6−1, if q ≡ 2, 11 mod 21;

C6
q−1 × C12

q3−1, if q ≡ 4, 16 mod 21;

C2
q−1 × C2

q2−1 × C6
q6−1, if q ≡ 5, 17 mod 21;

C14
q−1 × C14

q2−1, if q ≡ 8 mod 21;

C6
q−1 × C6

q6−1, if q ≡ 10, 19 mod 21;

C6
q−1 × C18

q2−1, if q ≡ 13 mod 21;

C2
q−1 × C20

q2−1, if q ≡ 20 mod 21.

(2) If Char Fq = 2, then

U(FqG) ∼=



C21k
2 × C21

q−1, if q ≡ 1 mod 21;

C21k
2 × Cq−1 × Cq2−1 × C2

q3−1 × C2
q6−1, if q ≡ 2, 11 mod 21;

C21k
2 × C3

q−1 × C6
q3−1, if q ≡ 4, 16 mod 21;

C21k
2 × C7

q−1 × C7
q2−1, if q ≡ 8 mod 21.
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(3) If Char Fq = 3, then

U(FqG) ∼=



C28k
3 × C14

q−1, if q ≡ 1 mod 14;

C28k
3 × C2

q−1 × C2
q6−1, if q ≡ 3, 5 mod 14;

C28k
3 × C2

q−1 × C4
q3−1, if q ≡ 9, 11 mod 14;

C28k
3 × C2

q−1 × C6
q2−1, if q ≡ 13 mod 14.

(4) If Char Fq = 7, then U(FqG) ∼= C36k
7 × C6

q−1.

Proof. Let C42 = ⟨a | a42 = 1⟩.
1. Char Fq ̸= 2, 3, 7: By Maschke’s theorem FqG is a semisimple group algebra.

Consider,

FqG ∼= Fq(C2 × C21) ∼= (FqC2)C21
∼= (Fq

⊕
Fq)C21

∼= (FqC21)
2.

Let P = C21 = ⟨b | b21 = 1⟩. Now, our goal is to determine the structure of FqP .

In view of this, all the conjugacy classes of P are p-regular and e = 21.

If q ≡ 1 mod 21, then B = {1} mod 21 and thus |S(βg)| = 1 for all g ∈ P . By

Lemmas 2.1 and 2.2, we get

FqP ∼= F21
q .

If q ≡ 2, 11 mod 21, then B = {1, 2, 4, 8, 11, 16} mod 21, which implies |S(βg)| = 1

for g = 1, |S(βg)| = 2 for g = b7, |S(βg)| = 3 for g = b3, b9, and |S(βg)| = 6 for

g = b, b5. By Lemmas 2.1 and 2.2,

FqP ∼= Fq

⊕
Fq2

⊕
F2
q3
⊕

F2
q6 .

If q ≡ 4, 16mod 21, then B = {1, 4, 16}mod 21. Thus, |S(βg)| = 1 for g = 1, b7, b14,

and |S(βg)| = 3 for g = b, b2, b3, b5, b9, b10. Using Lemmas 2.1 and 2.2,

FqP ∼= F3
q

⊕
F6
q3 .

If q ≡ 5, 17 mod 21, then B = {1, 4, 5, 16, 17, 20} mod 21. Thus, |S(βg)| = 1 for

g = 1, |S(βg)| = 2 for g = b7, and |S(βg)| = 6 for g = b, b2, b3. Using Lemmas 2.1

and 2.2,

FqP ∼= Fq

⊕
Fq2

⊕
F3
q6 .

If q ≡ 8 mod 21, then B = {1, 8} mod 21. This leads us to |S(βg)| = 1 for

g = 1, b3, b6, b9, b12, b15, b18, and |S(βg)| = 2 for g = b, b2, b4, b5, b7, b10, b13.

Lemmas 2.1 and 2.2 imply

FqP ∼= F7
q

⊕
F7
q2 .
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If q ≡ 10, 19 mod 21, then B = {1, 4, 10, 13, 16, 19} mod 21. Thus |S(βg)| = 1 for

g = 1, b7, b14, and |S(βg)| = 6 for g = b, b2, b3. By Lemmas 2.1 and 2.2,

FqP ∼= F3
q

⊕
F3
q6 .

If q ≡ 13 mod 21, then B = {1, 13} mod 21. Hence |S(βg)| = 1 for g = 1, b7, b14,

and |S(βg)| = 2 for g = b, b2, b3, b4, b6, b8, b9, b11, b16. By Lemmas 2.1 and 2.2,

FqP ∼= F3
q

⊕
F9
q2 .

If q ≡ 20 mod 21, then B = {1, 20} mod 21. Thus, |S(βg)| = 1 for g = 1, and

|S(βg)| = 2 for g = bm for m = 1, 2, . . . , 10. Lemmas 2.1 and 2.2 imply that

FqP ∼= Fq

⊕
F10
q2 .

2. Char Fq = 2: Let H = ⟨a21⟩. Then, [G : H] = 21 ̸= 0 in Fq. By [15, The-

orem 7.2.7 and Lemma 8.1.17], J(FqG) = ∆(G,H) and therefore FqG/J(FqG) ∼=
Fq(G/H) ∼= FqC21. Since dim(J(FqG)) = 21 and J(FqG)2 = (0), V 2 = 1 and

V ∼= C21k
2 . Thus,

U(FqG) ∼= C21k
2 × U(FqC21).

The structure of U(FqC21) has been derived in part 1.

3. Char Fq = 3: Let N = ⟨a14⟩. Then, [G : N ] = 14 ̸= 0 in Fq. By [15,

Theorem 7.2.7 and Lemma 8.1.17], J(FqG) = ∆(G,N) and FqG/J(FqG) ∼= FqC14.

Since dim(J(FqG)) = 28 and J(FqG)3 = (0), V 3 = 1 and V ∼= C28k
3 . Thus,

U(FqG) ∼= C28k
3 × U(FqC14).

The rest follows by [18, Theorem 4.3].

4. Char Fq = 7: Let K = ⟨a6⟩. Then, [G : K] = 6 ̸= 0 in Fq. Thus, by [15,

Theorem 7.2.7 and Lemma 8.1.17], J(FqG) = ∆(G,K) and FqG/J(FqG) ∼= FqC6.

Since dim(J(FqG)) = 36 and J(FqG)7 = (0), V 7 = 1 and V ∼= C36k
7 . Hence,

U(FqG) ∼= C36k
7 × U(FqC6).

By [18, Theorem 4.1],

U(FqG) ∼= C36k
7 × C6

q−1. □
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