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Abstract. Let R be a commutative ring with unity and W = {f(X) ∈ R[X] :

f(0) = 1}. We define R{X} = W−1R[X]. We show that the maximal ideals

of R{X} are of the form W−1(M,X) where M is a maximal ideal of R, and so

if R is finite dimensional, then dimR{X} = dimR[X]. We show that R{X} is

a Prüfer ring if and only if R is a von Neumann regular ring, and so if R{X}
satisfies one of the Prüfer conditions, it satisfies all of them.
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1. Introduction

Throughout, R will denote a commutative ring with unity and X an indeter-

minate over R. For each polynomial f(X) =
n∑

i=0

fiX
i ∈ R[X], the content of f ,

denoted by c(f) is the ideal (f0, . . . , fn). Many multiplicative closed subsets of R[X]

were defined to reduce an overring of R[X], such as S = {f(X) ∈ R[X] : c(f) = R}
and U = {f(X) ∈ R[X] : f is monic}. The Nagata ring R(X) = S−1R[X] and

Serre’s conjecture ring R ⟨X⟩ = U−1R[X] are widely known and were studied by

many mathematicians in the last decades, see for example [1], [3], [8] and for de-

tailed newly bibliography, see [6]. For more multiplicative closed subsets of R[X],

see [4] and [5]. Let W = {f(X) ∈ R[X] : f(0) = 1}. Then clearly W is a multiplica-

tive closed subset of R[X], and thus we can define an overring for R[X] using this

set. Let R{X} = W−1R[X]. This ring was suggested in [1, page 97] as it has appli-

cations in automata theory. We didn’t find any mentioning of this ring since then.

In this article, we are interested in knowing if R has a certain property whether

R{X} has this property and conversely. We characterize maximal ideals in R{X},
we show that there is a one-to-one correspondence between the maximal ideals of

R and the maximal ideals of R{X} given by M ↔ W−1(M,X). We also show that
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there is a one-to-one correspondence between the minimal prime ideals of R and

the minimal prime ideals of R{X} given by P ↔ W−1P [X]. We show that for

each M ∈ Max(R), we have RM{X} ≈ R[X](M,X) ≈ R{X}W−1(M,X)R. Thus we

conclude that if R is a finite dimensional ring, then dimR[X] = dimR{X}. Then

we turn to the problem of characterizing when R{X} satisfies any of the Prüfer

conditions. We show that a ring R is von Neumann regular if and only if R{X} is

a Prüfer ring. So we conclude if R{X} satisfies any one of the Prüfer conditions,

it satisfies all of them. There are still a lot of properties to be investigated in this

ring.

2. Construction

Let R be a ring, X an indeterminate over R, and let R[X] be the polynomial

ring of R. Let W = {f(X) ∈ R[X] : f(0) = 1}. Then W is a multiplicative closed

subset of R[X], and thus we can define an overring for R[X] using this set. Let

R{X} = W−1R[X]. One notice immediately that R{X} ⊆ R(X) ⊆ T (R[X]), the

total quotient ring of R[X], and so we can use some properties of R(X) to study

properties of R{X}, for instance the idempotents of R{X} are those of R, since

we have the same case in R(X). Also Z(R) = Nil(R) if and only if Z(R{X}) =
Nil(R{X}).

The saturation set of W is W ∗ = {f(X) ∈ R[X] : f(X) is a unit in R{X}} =

{f(X) ∈ R[X] : f(0) is a unit in R}, and in this case W ∗ is the largest multiplica-

tively closed subset of R[X] containing W such that W−1R[X] = W ∗−1

R[X]. Thus

R{X} ⊂ R(X) ⊂ T (R[X]).

It is clear that R is an integral domain if and only if so is R{X}. Similar results

are obtained if R is reduced or Noetherian, since R{X} is faithful flat over R. Note

that if
f(X)

g(X)
=

a

b
∈ R{X} ∩ T (R), then bf(0) = a, and so

f(X)

g(X)
=

f(0)

1
∈ R, that

is R{X} ∩ T (R) = R, and so if R{X} is integrally closed, then so is R. If R was

an integral domain, then the converse would be also true.

The Nagata ringR(X) = S−1R[X] and Serre’s conjecture ringR ⟨X⟩ = U−1R[X]

are very related to our new ring R{X}. Since W ⊂ S, R{X} is a subring of R(X),

while it is incomparable with R ⟨X⟩. The three rings share many properties being

overrings for R[X], faithfully flat, have the same shape of minimal prime ideals. The

ring R{X} as R(X) has a concrete shape of maximal ideals (M,X)R{X} (MR(X))

where M ∈ Max(R), while this not the only shape of maximal ideals in R ⟨X⟩.
Since X is not a unit in R{X}, unlike R(X) and R ⟨X⟩, dimR{X} = dimR[X],
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while it is dimR[X]−1 for R(X) and R ⟨X⟩. This also leads to that R{X} is never

a Hilbert ring, unlike R(X) and R ⟨X⟩.

3. Prime ideals in R{X}

We try to relate prime ideals of R{X} with those of R. We first characterize

maximal ideals in R{X}, and then use it to characterize some prime ideals. In

R(X) the maximal ideals are of the form MR(X), where M is a maximal ideal in

R, while for the ring R ⟨X⟩ the maximal ideals are of the form MR ⟨X⟩, where M

is a maximal ideal in R, or of the form QR ⟨X⟩ for some prime ideal Q of R[X]

which is an upper to a non-maximal prime ideal P of R.

Lemma 3.1. Let M be a maximal ideal in R[X] with f(0) ̸= 1 for each f(X) ∈ M.

Then M = (M,X) for some maximal ideal M of R.

Proof. Let M = {f(0) : f(X) ∈ M}. Then clearly M is a proper ideal of R.

Assume N is an ideal of R with M ⊂ N ⊆ R, and let n ∈ N −M . Then n /∈ M,

and so nR[X] + M = R[X]. Whence ng(X) + m(X) = 1 for some g(X) ∈ R[X]

and m(X) ∈ M. So 1 = ng(0) +m(0) ∈ N , hence M is a maximal ideal of R. But

M ⊆ (M,X) ⊂ R[X]. By maximality of M, we get the result. □

Theorem 3.2. There is a one-to-one correspondence between the maximal ideals

of R and the maximal ideals of R{X} given by M ↔ W−1(M,X).

Proof. Let M ∈ Max(R), and let M = W−1(M,X). Then clearly, M is a prime

ideal in R{X}. Assume N is an ideal of R{X} with M ⊂ N ⊆ R{X}. Let
f

g
∈ N −M. Then f /∈ (M,X) and so f(0) /∈ M . By maximality of M , there exist

a ∈ R and m ∈ M such that 1 = f(0)a+m, and so af+m ∈ W . But
af

g
+

m

g
∈ N .

Therefore N = R{X} and M is a maximal ideal in R{X}.

Conversely, let M ∈ Max(R{X}) and let M = {f(0) : f
g
∈ M}. Then M is a

proper ideal of R since 1 /∈ M . Assume N is an ideal of R with M ⊂ N ⊆ R, and

let n ∈ N−M . Then n /∈ M, and so nR{X}+M = R{X}. Thus 1 =
nf

α
+
m

β
with

f

α
∈ R{X} and

m

β
∈ M, which implies that αβ = nfβ+mα. Thus 1 = α(0)β(0) =

nf(0)β(0) + m(0)α(0) ∈ N , i.e., M ∈ Max(R). But M ⊆ W−1(M,X) ⊂ R{X},
and so by maximality of M, we have M = W−1(M,X). □

For the case of minimal prime ideals, we have a one-to-one correspondence be-

tween the minimal prime ideals of R and the minimal prime ideals of R (X) (R ⟨X⟩)
given by P ↔ PR (X) (P ↔ PR ⟨X⟩). A similar result is also true for R{X}.
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Theorem 3.3. There is a one-to-one correspondence between the minimal prime

ideals of R and the minimal prime ideals of R{X} given by P ↔ W−1P [X].

Proof. Let P ∈ Min(R). Then W−1P [X] is a prime ideal of R{X}. If Q ⊆
W−1P [X] is a prime ideal of R{X}, then Q = W−1I for some prime ideal I of

R[X]. Clearly, P0 = I ∩R is a prime ideal of R with P0 ⊆ P . By minimality of P ,

we must have P0 = P . So P [X] = P0[X] ⊆ I ⊆ P [X]. Thus Q = W−1P [X].

Conversely, let P ∈ Min(R{X}) and let I be a prime ideal of R[X] with P =

W−1I. The ideal P = I∩R is a prime ideal in R with P [X] ⊆ I. Thus W−1P [X] ⊆
W−1I = P. By minimality of P, we have P = W−1P [X]. Now if P0 is a prime

ideal of R with P0 ⊆ P , then W−1P0[X] ⊆ W−1P [X] = P, and so W−1P0[X] =

W−1P [X]. If a ∈ P , then
a

1
∈ W−1P [X] = W−1P0[X], and so

a

1
=

f

g
with

f ∈ P0[X] and g ∈ W . Thus a = ag(0) = f(0) ∈ P0. Hence P ∈ Min(R). □

The following result can not be found in R (X) nor R ⟨X⟩, since in these rings

X is a unit.

Theorem 3.4. If Q is a prime ideal in R{X} with X ∈ Q, then Q = W−1(P,X)

for some prime ideal P of R.

Proof. Let Q be a prime ideal of R[X] such that Q = W−1Q, and let P = Q∩R.

Then we have P [X] ⊂ (P,X) ⊆ Q. Thus Q = (P,X), since the prime ideal P has

at most two prime ideals of R[X] lying over it, see [2, Corollary 30.2]. □

Corollary 3.5. If Q is a P -primary ideal in R, then

(1) W−1(Q,X) is W−1(P,X)-primary in R{X}.
(2) W−1Q is W−1P -primary in R{X}.

For any maximal ideal M of R, we have RM (X) ≈ R[X]M [X] ≈ R(X)MR(X),

while if M is a maximal ideal of R ⟨X⟩ , Q = M ∩ R[X] and P = Q ∩ R, then

R ⟨X⟩M ≈ R[X]Q ≈ RP [X]QR\P .

Theorem 3.6. For each M ∈ Max(R), we have

RM{X} ≈ R[X](M,X) ≈ R{X}W−1(M,X).

Proof. Let φ1 : R[X](M,X) −→ RM{X} be defined by φ1

(
f

g

)
=

f
g(0)
g

g(0)

. Then

clearly, φ1 is a monomorphism.

Let

∑ ai

αi
xi∑ bi

βi
xi

∈ RM{X}, a
′

j =
aj
αj

α, b
′

j =
bj
βj

β, where α =
∏

αi and β =
∏

βi, and
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note that b
′

0 = β. Now,

φ1

(
β

α

∑
a

′

ix
i∑

b
′
ix

i

)
=

1
α
1
β

∑
a

′

ix
i∑

b
′
ix

i
=

∑ ai

αi
xi∑ bi

βi
xi

.

Thus RM{X} ≈ R[X](M,X).

Note that we can write

RM{X} =

{
f

1 + xg
: f, g ∈ RM [X]

}
.

Let φ2 : RM{X} −→ R{X}W−1(M,X) be defined by φ2

(
f

1 + xg

)
=

f
1

1+xg
1

. Then

clearly, φ2 is a monomorphism.

Let

f
1+xg

h
1+xk

∈ R{X}W−1(M,X). Then h(0) /∈ M , and so

1
h(0)f(1 + xk)

1
h(0)h(1 + xg)

∈ RM{X},

thus we have φ2

(
1

h(0)f(1 + xk)

1
h(0)h(1 + xg)

)
=

1
h(0)

f(1+xk)

1
1

h(0)
h(1+xg)

1

=

f
1+xg

h
1+xk

.

Hence RM{X} ≈ R{X}W−1(M,X). □

We end up this section with calculating the Krull dimension of R{X}.

Theorem 3.7. If R is a finite dimensional ring, then dimR{X} = dimR[X].

Proof. Let M be a maximal ideal in R[X] of maximal height. Then M = M∩R

is a maximal ideal in R. By [2, page 368] and [7, page 25], we may find a chain

of maximal length in R[X] of the form P ⊂ · · · ⊂ M [X] ⊂ M, and so P ⊂ · · · ⊂
M [X] ⊂ (M,X) is a chain of maximal length too, since there are no prime ideals

properly between M [X] and (M,X). Thus dimR{X} = dimR[X]. □

It was shown in [8, Theorem 2.1] that for a finite dimensional ring, dimR ⟨X⟩ =
dimR[X]− 1, and so for a Noetherian ring, dimR ⟨X⟩ = dimR. A similar result is

also true for the ring R(X). Thus we can conclude the following corollary.

Corollary 3.8. Let R be a Noetherian ring. Then

dimR+ 1 = dimR(X) + 1 = dimR ⟨X⟩+ 1 = dimR[X] = dimR{X}.

A ring R is called a Hilbert ring if any prime ideal of R is the intersection of all

maximal ideals containing it. It was shown in [1, Lemma 4.1] that R(X) is Hilbert

if and only if R is Hilbert and every prime ideal of R is the extension of a prime

ideal of R. Here R{X} is never a Hilbert ring, since if P is a prime ideal of R,

W−1P [X] is a prime ideal in R{X} that is not an intersection of maximal ideals,

since X /∈ W−1P [X].
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4. Prüfer conditions

In this section, we characterize the case at which the ring R{X} is a Prüfer ring.

But first we give some definitions and facts. The six well known Prüfer conditions:

(1) R is a Prüfer ring (every finitely generated regular ideal in R is invertible).

(2) R is a strongly Prüfer ring (every finitely generated dense ideal in R is

locally principal).

(3) R is a Gaussian ring (for every f, g ∈ R[X], c(fg) = c(f)c(g)).

(4) R is an arithmetical ring (every finitely generated ideal of R is locally

principal).

(5) w.dim(R) ≤ 1 (every finitely generated ideal of R is flat).

(6) R is semihereditary (every finitely generated ideal of R is projective).

It is known that if R is an integral domain, then (1) to (6) are all equivalent, but if

R is not an integral domain, then (6) ⇒ (5) ⇒ (4) ⇒ (3) ⇒ (2) ⇒ (1), while the

reverse implications are all false.

One of the main questions raised for the rings R(X) and R ⟨X⟩ were when they

satisfy one of the Prüfer conditions. Full characterizations can be found in [1] and

[6]. We now use [6, Remark 2.1] to study when R{X} satisfies the Prüfer conditions.
We first recall the correspondent results for R(X) and R ⟨X⟩ .

Proposition 4.1. ([1, Theorem 3.2]) Let R be a commutative ring with 1.

(1) R(X) is a Prüfer ring if and only if R is strongly Prüfer.

(2) R ⟨X⟩ is a Prüfer ring if and only if R is strongly Prüfer, dimR ≤ 1, and

RP is a field for every non-maximal prime ideal P of R.

Lemma 4.2. Let I be an ideal of a ring R. Then I is finitely generated and locally

principal if and only if W−1I is finitely generated and locally principal.

Proof. The result follows easily by Theorem 3.6, since for any M ∈ Max(R), we

have IM = IW−1(M,X). □

Theorem 4.3. R is von Neumann regular if and only if R{X} is a Prüfer ring.

Proof. (⇒) If R is von Neumann regular, then R[X] is a Prüfer ring, and so is its

localization R{X}.
(⇐) Assume now that R{X} is a Prüfer ring. Then R(X) Prüfer being a local-

ization of R{X} and so R is strongly Prüfer. We want to show that RM is a field

for each M ∈ Max(R). So let M ∈ Max(R), m ∈ M − {0} and I = (m,X). Then

I is a finitely generated regular ideal in R[X], and so IR{X} is invertible. Let
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M = W−1(M,X)W . Then I(M,X) = W−1IM is principal, since W−1I is invert-

ible. But R[X](M,X) ≈ R{X}W−1(M,X) is Prüfer with (M,X) is the unique regular

maximal ideal of R[X](M,X), and so it is a valuation ring (i.e., for any ideals A and

B of R[X](M,X), we have A ⊆ B or B ⊆ A). Thus I(M,X) = (X)(M,X), since we

can not have (X)(M,X) ⊆ (m)(M,X). So there exist f, g ∈ R[X], with g /∈ (M,X)

with
m

1
= X

f

g
, and hence mgh = Xfh for some h /∈ (M,X). Thus we have

mg(0)h(0) = 0, and so
m

1
=

0

1
in RM , since g(0) and h(0) are units in RM . This

yields that MM = 0 in RM , and so RM is a field for each M ∈ Max(R). □

Corollary 4.4. If R{X} satisfies any of the Prüfer conditions, then it satisfies all

the Prüfer conditions.

Proof. If R{X} satisfies any of the Prüfer conditions, then it is Prüfer, and so R

is a von Neumann regular ring. Thus it follows by [6, Remark 2.1] that R[X] is

semihereditary, which implies that R{X} is semihereditary, hence the result. □

Note that if R{X} satisfies any of the Prüfer conditions, then so are R(X) and

R ⟨X⟩, because in this case R[X] is semihereditary, which implies that R(X) and

R ⟨X⟩ are semihereditary, being localizations of R[X]. On the other hand since the

ring of integers Z is semihereditary and Z(0) = Q is a field, the integral domains

Z(X) and Z ⟨X⟩ are semihereditary, but Z{X} is not Prüfer, since Z is not a von

Neumann regular ring.
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