
International Electronic Journal of Algebra

Volume 37 (2025) 59-69

DOI: 10.24330/ieja.1480447

QUADRATIC DESCENT OF GENERALIZED QUADRATIC

FORMS

Amir Hossein Nokhodkar

Received: 13 November 2023; Revised: 16 March 2024; Accepted: 29 April 2024

Communicated by Meltem Altun Özarslan
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1. Introduction

Over fields of characteristic two, the theory of quadratic forms divides into two

distinct theories, that of quadratic forms and symmetric bilinear forms (which are

otherwise equivalent). Involutions on central simple algebras appear as twisted

forms of symmetric (or alternating) bilinear forms, up to a scalar factor [5]. Again,

when the base field has characteristic two, one has the distinct notion of quadratic

pairs on central simple algebras. This notion may be regarded as twisted analogues

of quadratic forms, up to a scalar factor (see [5, §5.B]). Using the natural corre-

spondence between central simple algebras with involution and hermitian forms

over division algebras with involution, quadratic pairs correspond to generalized

quadratic forms, introduced first in [11].

Let (D, θ) be a central division algebra with involution of the first kind over a field

F and let (V, h) be a hermitian space over (D, θ). Then for every ϕ ∈ HomF (D,F ),

the map ϕ ◦ h : V → F is a quadratic form over F . Fixing an F -basis B of D

and letting B∗ ⊆ HomF (D,F ) denote its dual basis, a system of quadratic forms

qh := {ϕ ◦ h | ϕ ∈ B∗} was associated to h in [6] and used to study the isometry

class and the isotropy behaviour of hermitian forms. Similarly, for a generalized



60 AMIR HOSSEIN NOKHODKAR

quadratic space (V, ρ) over (D, θ), a system of quadratic forms qρ was defined in [9].

It was shown that this system determines ρ, up to isomorphism, as well as reflects

its isotropy behaviour.

Let K/F be a quadratic field extension such that DK = D ⊗F K is a division

algebra. Hermitian forms can be extended from F to K in a straightforward man-

ner. Let (V, h) be a generalized quadratic space over (DK , θK). We say that (V, h)

has a descent to (D, θ) if it is extended from a hermitian space over (D, θ). In

[7], it was shown that (V, h) has a descent to (D, θ) if and only if the system of

quadratic forms qh over K is extended from a system of quadratic forms over F .

In this work, we study a similar descent problem for generalized quadratic forms.

Our main result is Theorem 4.5, which shows that a generalized quadratic spaces

over (DK , θK) has a descent to (D, θ) if and only if the system qρ can be descended

to F .

2. Systems of quadratic forms

Throughout this work, all fields are implicitly supposed to be of characteristic

two.

Let V be a finite dimensional vector space over a field F . A quadratic form on

V is a map q : V → F satisfying

(i) q(av) = a2q(v) for all a ∈ F and v ∈ V ;

(ii) the map bq : V × V → F defined by bq(u, v) = q(u + v) − q(u) − q(v) is a

bilinear form.

The bilinear form bq is called the polar form of q. Set

rad(bq) = {v ∈ V | bq(v, w) = 0 for all w ∈ V }.

The form q is called nonsingular if rad(bq) = {0} and totally singular if bq is trivial.

Also, q is called regular if q(v) ̸= 0 for every nonzero vector v ∈ rad(bq).

By an (m-fold) system of quadratic forms on V we mean an m-tuple Q =

(q1, · · · , qm), where every qi : V → F is a quadratic form. Note that we may

identify Q with a quadratic map Q : V → Fm, which induces in turn a bilinear

map bQ : V ×V → Fm given by bQ(u, v) = Q(u+ v)−Q(u)−Q(v). As in the case

of a single quadratic form, one can define the set

rad(bQ) = {v ∈ V | bQ(v, w) = 0 for all w ∈ V }.

We say that Q is nonsingular if rad(bQ) = {0} and totally singular if bQ is trivial.

Also, as in [9], we say that Q is strongly nonsingular if qi is nonsingular for some i,

and totally nonsingular if every qi is nonsingular.
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A system of quadratic forms Q on V is called metabolic if there exists a subspace

L of V such that dimF L ⩾ 1
2 dimF V and Q|L = 0. The orthogonal sum of two

systems of quadratic forms Q and Q′ is denoted by Q ⊥ Q′. We also write Q ≃ Q′

to say that Q and Q′ are isometric (see [10, Ch. 9] for more details). Let Q be a

system of quadratic forms on V and let W be a complement of rad(bQ) in V . Then

Q ≃ Q|rad(b) ⊥ Q|W . Hence, every system of quadratic forms decomposes as an

orthogonal sum of a totally singular and a nonsingular system of quadratic forms.

It is easy to see that the totally singular part in this decomposition is unique.

Lemma 2.1. Let (V,Q) be a system of quadratic forms over F . If Q ≃ Qts ⊥ Qns,

where Qts is totally singular and Qns is nonsingular, then Qts ≃ Q|rad(bQ).

Proof. Let W and W ′ be underlying vector spaces of Qts and Qns, respectively.

We may identify W and W ′ with subspaces of V so that V = W +W ′, Qts = Q|W
and Qns = Q|W ′ . It is enough to prove that W = rad(bQ). Clearly, W ⊆ rad(bQ).

To prove the converse inclusion, let v ∈ rad(bQ) and write v = w + w′ for some

w ∈ W and w′ ∈ W ′. Let w′′ ∈ W ′. Then

bQns
(w′, w′′) = 0 + bQns

(w′, w′′) = bQ(w,w
′′) + bQns

(w′, w′′) = bQ(v, w
′′) = 0.

Since Qns in nonsingular, one concludes that w′ = 0, hence v ∈ W . □

Corollary 2.2. Let Qts ⊥ Qns ≃ Q′
ts ⊥ Q′

ns be an isometry of systems of quadratic

forms, where Qts and Q′
ts are totally singular and Qns and Q′

ns are nonsingular.

Then Qts ≃ Q′
ts. Also, if Qns is strongly nonsingular (resp. totally nonsingular)

then so is Q′
ns.

Proof. The first statement follows from Lemma 2.1. The second one follows from

the fact that if q is a single quadratic form on a vector space V and V ≃ rad(bq)⊕W

for some subspace W of V , then q|W is nonsingular. □

Let L/F be a field extension and let (V,Q) be a system of quadratic forms over F .

Then there exists a system of quadratic forms (VL, QL) over L, where VL = V ⊗F L

and QL(v⊗α) = α2Q(v) for every v ∈ V and α ∈ L. Note that if Q = (q1, · · · , qm),

then QL = ((q1)L, · · · , (qm)L), where every (qi)L : VL → L is the scalar extension

of the quadratic form qi to L. Let (V,Q) be a system of quadratic forms over L.

We say that (V,Q) (or simply Q) has a descent to F if there exists a system of

quadratic forms (V ′, Q′) over F such that (V,Q) ≃ (V ′, Q′)L.

Let L/F be a finite field extension and let s : L → F be a nonzero F -linear

functional. The transfer s∗(q) of a quadratic form q : V → L is the quadratic

form s∗(q) : V → F defined by (s∗(q))(v) = s(q(v)) for v ∈ V . It is easily seen
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that bs∗(q) = s∗(bq), where s∗(bq) : V × V → F is the bilinear form given by

s∗(bq)(u, v) = s(bq(u, v)) for all u, v ∈ V . Also, as in [8], we define the transfer of a

system of quadratic forms Q = (q1, · · · , qn) over L as s∗(Q) := (s∗(q1), · · · , s∗(qn)).
Note that s∗(Q) is a system of quadratic forms over F . It is readily seen that if

Q is totally singular (resp. totally nonsingular, strongly nonsingular), then so is

s∗(Q).

3. Generalized quadratic forms

Let D be a finite dimensional central division algebra over a field F and let θ be

an involution of the first kind on D, i.e., an antiautomorphism of D of period two

which restricts to the identity on F . Set

Symd(D, θ) = {x+ θ(x) | x ∈ A}.

Let V be a finite dimensional right vector space over D. A generalized quadratic

form over (D, θ) is a map ρ : V → D/Symd(D, θ) satisfying

(i) ρ(vα) = θ(α)ρ(v)α for every v ∈ V and α ∈ D;

(ii) ρ(u + v) − ρ(u) − ρ(v) = hρ(u, v) + Symd(D, θ) for every u, v ∈ V , where

hρ : V × V → D is a hermitian form.

The form hρ is called the polar form of ρ. The pair (V, ρ) is also called a generalized

quadratic space over (D, θ).

Let (V, ρ) be a generalized quadratic space over (D, θ). Set

rad(hρ) = {v ∈ V | hρ(v, w) = 0 for all w ∈ V }.

We say that ρ is nonsingular if rad(hρ) = {0} and regular if ρ(v) ̸= 0 ∈ D/Symd(D, θ)

for every nonzero vector v ∈ rad(hρ). The form ρ is also called totally singular if

hρ is trivial.

An isometry between two generalized quadratic spaces (V, ρ) and (V ′, ρ′) over

(D, θ) is an isomorphism of right vector spaces f : V → V ′ satisfying ρ′(f(v)) =

ρ(v) for all v ∈ V . A generalized quadratic space (V, ρ) (or the form ρ itself) is

called isotropic if there exists a nonzero vector v ∈ V such that ρ(v) = 0 and

anisotropic otherwise. A generalized quadratic space (V, ρ) is called hyperbolic if it

is nonsingular and there exists a D-subspace L of V with dimD L = 1
2 dimD V such

that ρ|L = 0. Such a subspace L is called a lagrangian of (V, ρ). It is easy to see

that every hyperbolic generalized quadratic form of dimension 2n is isometric to

nH(D,θ), where H(D,θ) is the 2-dimensional generalized quadratic form over (D, θ)

given by (x, y) 7→ θ(x)y (see [4, Ch. I, (5.6.1)]).
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Let ρ be a generalized quadratic forms on V and let W be a complement of

rad(hρ) in V . Then ρ ≃ ρ|rad(hρ) ⊥ ρ|W . Hence, every generalized quadratic form

decomposes as an orthogonal sum of a totally singular and a nonsingular generalized

quadratic forms.

We now fix (D, θ) as a finite dimensional division algebra with involution of the

first kind over a field F . As in [9], for d ∈ D we denote the element d+Symd(D, θ)

in the quotient D/Symd(D, θ) by d̄. We also denote D/Symd(D, θ) by D. Fix

L/F as a finite field extension such that DL is a division ring.

Let s : L → F be a nonzero F -linear map and extend it to a D-linear map

sD : DL → D. Let (V, h) be a hermitian space over (D, θ)L. The hermitian form

s∗(h) : V × V → D defined by

s∗(h)(u, v) = sD(h(u, v)) for all u, v ∈ V,

is called the transfer of h. Note that if h is nonsingular, then so is s∗(h) (see [1, p.

362]).

We now proceed to define the transfer of a generalized quadratic form over

(D, θ)L. Observe first that Symd((D, θ)L)) = Symd(D, θ) ⊗ L. Also, identifying

D ⊆ DL, one has sD|D = id, so

sD(Symd((D, θ)L)) ⊆ Symd(D, θ).

Hence, the map sD induces a well-defined map s̄ : DL → D given by

s̄(α+ Symd((D, θ)L)) = sD(α),

where DL = DL/Symd((D, θ)L). By abuse of notation, for α ∈ DL, we denote the

element α+ Symd((D, θ)L)) ∈ DL/Symd((D, θ)L by ᾱ. Hence,

s̄(ᾱ) = sD(α) for ᾱ ∈ DL.

Let ρ : V → DL be a generalized quadratic space over (D, θ)L. Define the map

s∗(ρ) : V → D via

s∗(ρ)(v) = s̄(ρ(v)) for all v ∈ V.

We call s∗(ρ) the transfer of ρ.

Lemma 3.1. The map s∗(ρ) is a generalized quadratic form over (D, θ) with the

polar form hs∗(ρ) = s∗(hρ). Moreover, if ρ is nonsingular (resp. totally singular),

then so is s∗(ρ).

Proof. Let v ∈ V . Then for every α ∈ D, we have

s∗(ρ)(vα) = s̄(ρ(vα)) = s̄(θ(α) · ρ(v) · α) = θ(α) · s̄(ρ(v)) · α = θ(α) · s∗(ρ)(v) · α.
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Also, for every u, v ∈ V , we have

hs∗(ρ)(u, v) = s∗(ρ)(u+ v)− s∗(ρ)(u)− s∗(ρ)(v) = s̄(ρ(u+ v)− ρ(u)− ρ(v))

= s̄(hρ(u, v)) = sD(hρ(u, v)) = s∗(hρ(u, v)).

By [3, (1.1)], the polar form of a generalized quadratic form is unique. Hence,

hs∗(ρ) = s∗(hρ). The rest statements of the result are now evident. □

Remark 3.2. If the form ρ in Lemma 3.1 is regular, then s∗(ρ) is not necessarily

regular. For example, let ρ be a regular generalized quadratic form with rad(hρ) ̸=
0. Suppose that there exists v ∈ rad(hρ) with ρ(v) = α, where α is a nonzero

element of D. Then for every linear map s : L → F with s(1) = 0, we have

s∗(ρ)(v) = 0, hence s∗(ρ) is not regular.

Corollary 3.3. Let (V, ρ) be a generalized quadratic space over (D, θ)L. If ρ is

hyperbolic, then so is s∗(ρ).

Proof. If ρ is hyperbolic, then it is nonsingular and there exists a DL-subspace

L of V with dimDL
L = 1

2 dimDL
V such that ρ|L = 0. By Lemma 3.1, s∗(ρ) is

nonsingular. We also have dimD L = 1
2 dimD V and s∗(ρ)|L = 0, hence s∗(ρ) is

hyperbolic. □

4. The main result

Throughout this section, (D, θ) is a finite dimensional division algebra with in-

volution of the first kind over a field F . We recall some constructions forms [9].

Let (V, ρ) be a generalized quadratic space over (D, θ). Let B = {u1, · · · , um} be

a basis of D over F and denote by {π1, · · · , πm} its dual basis of Hom(D,F ). For

i = 1, · · · ,m, define the map qui

ρ,B : V → F via qui

ρ,B(v) = πi(ρ(v)). Let

Qρ,B = (qu1

ρ,B, · · · , q
um

ρ,B).

As observed in [9, p. 380], Qρ,B is a system of quadratic forms. We now fix K/F as

a separable quadratic extension such that DK is a division ring. For i = 1, · · · ,m,

write ui = u′
i, where u′

i ∈ D. Then the set

{u′
1 ⊗ 1 + Symd((D, θ)K), · · · , u′

m ⊗ 1 + Symd((D, θ)K)},

is a basis of DK = DK/ Symd((D, θ)K). By abuse of notation, we denote u′
i ⊗ 1 +

Symd((D, θ)K) by ui ⊗ 1, i = 1, · · · ,m. Set BK = {u1 ⊗ 1, · · · , um ⊗ 1}. Clearly,

BK is a basis of DK .
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Let (V, ρ) be a generalized quadratic space over (D, θ). Then there exists a

unique generalized quadratic form ρK : VK → DK satisfying

ρK(v ⊗ α) = ρ(v)⊗ α2 for all v ∈ V and α ∈ K.

Now, let (V, ρ) be a generalized quadratic space over (D, θ)K . We say that (V, ρ)

(or the form ρ itself) has a descent to (D, θ) if there exists a generalized quadratic

space (V ′, ρ′) over (D, θ) such that (V, ρ) ≃ (V ′
K , ρ′K).

Lemma 4.1. Let (V, ρ) be a totally singular generalized quadratic space over (D, θ)K .

If there exists a basis B of D for which Qρ,BK
has a descent to F , then ρ has a

descent to (D, θ).

Proof. Write B = {u1, · · · , um} for some u1, · · · , um ∈ D and let qi = qui⊗1
ρ,BK

,

i = 1, · · · ,m. Let (V ′, Q′) be a descent of (V,Qρ,BK
). Write Q′ = (q′1, · · · , q′m), so

that every q′i is a descent of qi. Let {v1, · · · , vn} be a basis of V ′ over F . Since

the set {v1 ⊗ 1, · · · , vn ⊗ 1} generates V as a vector space over DK , it contains a

basis of V over DK . By re-indexing we may assume that {v1 ⊗ 1, · · · , vr ⊗ 1} is

a DK-basis of V . Set W = v1D + · · · + vrD and let ρ′ : W → D be the totally

singular generalized quadratic form over (D, θ) induced by ρ′(vj) =
∑r

i=1 q
′
i(vj)ui,

j = 1, · · · , r. Then ρ ≃ ρ′K , proving the claim. □

The following result is analogous to [8, (2.1)] with essentially the same proof.

Lemma 4.2. Let (V, ρ) be a generalized quadratic space over (D, θ)K and let B be

a basis of D. If s : K → F is a nonzero F -linear map, then s∗(Qρ,BK
) = Qs∗(ρ),B.

Proof. Let B = {u1, · · · , um}, where u1, · · · , um ∈ D. Fix an index 1 ⩽ i ⩽ m

and a vector v ∈ V . It is enough to prove that s∗(q
ui⊗1
ρ,BK

)(v) = qui

s∗(ρ),B(v). Write

K = F (η) for some η ∈ K and ρ(v) = α+ ηβ ∈ DK for some α, β ∈ D. Choose

aj , bj ∈ F , j = 1, · · · ,m, such that

α =
∑m

j=1 ajuj and β =
∑m

j=1 bjuj .
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Since Symd((D, θ)K) = Symd(D, θ)⊗K, one can extend πi : D → F to a K-linear

map (πi)K : DK → K. Then

s∗(q
ui⊗1
ρ,BK

)(v) = s((πi)K(ρ(v)))

= s((πi)K(
∑m

j=1(ajuj + bjujη)))

= s(ai + biη) = ais(1) + bis(η)

= πi(
∑m

j=1 ajujs(1) +
∑m

j=1 bjujs(η))

= πi(αs(1) + βs(η)) = πi(s̄(α+ βη))

= πi(s(ρ(v))) = πi(s∗(ρ)(v)) = qui

s∗(ρ),B(v). □

Lemma 4.3. Let (V, ρ) be a generalized quadratic form over (D, θ)K and s : K → F

be a nonzero F -linear map with s(1) = 0. If v is an isotropic vector of s∗(ρ), then

ρ(v) ∈ D̄.

Proof. Write ρ(v) = α+ βη for some α, β ∈ D. Since s(1) = 0, we have

0 = s∗(ρ)(v) = βs(η) = βs(η).

The assumption s ̸= 0 implies that β = 0, i.e., ρ(v) = ᾱ ∈ D. □

The following result is analogous to [8, (2.2)].

Proposition 4.4. Let (V, ρ) be a nonsingular generalized quadratic form over

(D, θ)K and let s : K → F be a nonzero F -linear map with s(1) = 0. Then ρ

has a descent to (D, θ) if and only if s∗(ρ) is hyperbolic.

Proof. Suppose first that (V, ρ) ≃ (V ′, ρ′)K for some generalized quadratic space

(V ′, ρ′) over (D, θ). Identifying D ⊆ DK , the assumption s(1) = 0 implies that

sD|D = 0, hence s̄|D = 0. Considering V ′ ⊆ V , this means that s∗(ρ)|V ′ = 0. Note

that dimD V ′ = 1
2 dimD V , so s∗(ρ) is hyperbolic.

To prove the converse, write ρ ≃ ρan ⊥ ρhyp, where ρan is anisotropic and ρhyp is

hyperbolic (see [4, Ch. I, (6.5.1)]). Observe first that ρhyp has a descent to (D, θ),

because

ρhyp ≃ (mH(D,θ))K ,

where m = 1
2 dimDK

ρhyp. Hence, it is enough to prove that ρan has a descent to

(D, θ). By Corollary 3.3, s∗(ρhyp) is hyperbolic. Since s∗(ρ) ≃ s∗(ρan) ⊥ s∗(ρhyp),

the form s∗(ρan) is also hyperbolic. Let W be an underlying vector space of ρan

and set n = dimDK
W = dimDK

ρan. Then dimD s∗(ρan) = 2n. Let L ⊆ W be a
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lagrangian of s∗(ρan) with a D-basis {v1, · · · , vn}. We claim that {v1, · · · , vn} is

linearly independent over DK . Suppose that

n∑
i=1

vi(ai + biη) = 0, for ai, bi ∈ D, i = 1, · · · , n.

Then
∑n

i=1 viai =
∑n

i=1 vibiη, which implies that

ρan(

n∑
i=1

viai) = ρan(

n∑
i=1

vibiη) = η2ρan(

n∑
i=1

vibi). (1)

Since K/F is separable, one has η2 = λη + µ for some λ, µ ∈ F with λ ̸= 0. Using

(1), one concludes that

ρan(

n∑
i=1

viai) + µρan(

n∑
i=1

vibi) = ληρan(

n∑
i=1

vibi).

In view of Lemma 4.3, ρan(v) ∈ D̄ for every v ∈ L. Hence, the left side of the above

relation belongs to D̄. Since λ ̸= 0, this implies that ρan(
∑n

i=1 vibi) = 0. However,

ρan is anisotropic, hence
∑n

i=1 vibi = 0, which implies that
∑n

i=1 viai = 0, thanks

to (1). It follows that ai = bi = 0 for i = 1, · · · , n, because {v1, · · · , vn} is linearly

independent over D. This proves the claim.

Now, let ρ′ : L → D̄ be the generalized quadratic form over (D, θ) defined by

ρ′(v) = ρan(v) ∈ D̄. Note that the above claim implies that LK = W . Hence,

ρan = ρ′K , i.e., ρan has a descent to (D, θ). This completes the proof. □

The following result is analogous to [7, (4.2)].

Theorem 4.5. Let ρ be a generalized quadratic form over (D, θ)K . Then ρ has a

descent to (D, θ) if and only if there exists a basis B of D for which Qρ,BK
has a

descent to F .

Proof. Suppose first that ρ has a descent ρ′ to (D, θ). Then for every basis B of

D, we have Qρ,BK
≃ (Qρ′,B)K , thanks to [9, (4.2)].

Conversely, suppose that there exists a basis B ofD for whichQρ,BK
has a descent

to F . Write ρ ≃ ρts ⊥ ρns, where ρts is totally singular and ρns is nonsingular. Then

Qρ,BK
≃ Qρts,BK

⊥ Qρns,BK
. By [9, (4.7)], the system Qρts,BK

is totally singular

and Qρns,BK
is strongly nonsingular. Let Q′ be a descent of Qρ,BK

and write

Q′ ≃ Q′
ts ⊥ Q′

ns, where Q′
ts is totally singular and Q′

ns is nonsingular. Then

Qρts,BK
⊥ Qρns,BK

≃ (Q′
ts)K ⊥ (Q′

ns)K . (2)

In view of Lemma 2.1, the isometry (2) implies that Qρts,BK
≃ (Q′

ts)K , i.e., Qρts,BK

has a descent to F . Hence, the form ρts has a descent ρ′ to (D, θ) by Lemma 4.1.
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Let s : K → F be a nonzero F -linear map with s(1) = 0. Then the isometry (2)

implies that

s∗(Qρts,BK
) ⊥ s∗(Qρns,BK

) ≃ s∗((Q
′
ts)K) ⊥ s∗((Q

′
ns)K). (3)

On the other hand, the system Qρns,BK
in (2) is strongly nonsingular, hence the

system (Q′
ns)K is also strongly nonsingular by Corollary 2.2. It follows from [2,

(20.4)] that s∗((Q
′
ns)K) is strongly nonsingular. Also, the system s∗((Q

′
ns)K) is

metabolic by [8, (2.3)]. Hence, in view of [9, (3.1)], the isometry (3) implies that

s∗(Qρns,BK
) is metabolic. It follows from Lemma 4.2 that Qs∗(ρns),B is metabolic.

Hence, s∗(ρns) is hyperbolic, thanks to [9, (4.8)]. By Proposition 4.4, this means

that ρns has a descent to (D, θ). Hence, ρ ≃ ρts ⊥ ρns has a descent to (D, θ),

completing the proof. □
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