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ABSTRACT. Let R be a commutative ring and M be an R-module. In this
paper, we define minimal submodules graph of M, denoted by I'pin (M), in
which the vertex set is the set of nonzero proper submodules of M. Two
distinct vertices A and B are adjacent provided that A N B is a minimal
submodule of M. In this study, we associate some properties of the graph
from the properties of module and vice versa. Moreover, if we have an R-
module homomorphism from M to M’, we compare some invariant numbers
and properties of I'pyin (M) and Tpyin (M').
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1. Introduction

Associating certain algebraic structure to a certain graph is the most recent
research area which combines two different concepts, algebraic structure and graph
theory. One of the most often algebraic structures which is involved to a certain
graph is module. Modules over rings can be used to construct some graphs. The
vertices of the graphs can be the elements of the module or the nonzero submodules,
see for example [1], [2], [5], [6] and [17].

Assume that R is a commutative ring. The ring R can be considered as a module
over itself and its ideals can be thought as submodules. As a result, we may think
of a module over a ring as a ring generalization. There are some researches related
to certain graphs of rings which are extended into the graphs of modules. E. Mehdi-
Nezhad and A. M. Rahimi in [12] defined comaximal submodule graphs of unitary
modules which is a generalization of comaximal ideal graph of a commutative ring.
In this paper, E. Mehdi-Nezhad and A. M. Rahimi compared the graph properties of
rings and modules. Besides, a generalization of zero divisor graphs of commutative
rings, zero divisor graphs for modules over commutative rings are observed in [7].
In this article, it was investigated the relationships between the module and its
graph.

In [13], a simple-intersection graph GS(R) of a ring R is defined. The vertex
set of GS(R) is V(GS(R)) = {I|I < R,I # 0} and two distinct vertices X and YV
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are adjacent if X NY is a simple ideal. We develop the simple-intersection graph
of rings to modules. If two submodules intersect in a minimal submodule, this
minimal submodule becomes a crucial part of the overall structure of the module.
In this article, we study minimal submodules graph of modules over commutative
rings M (designated with T',,,;,, (M)). However, we only consider the nonzero proper
submodules as vertices of the graph. Two submodules are adjacent if their inter-
section is minimal. These graphs will help illuminate the structure of the modules.
We observe the interplay of properties of module M with the properties of graph
T nin(M). We also compare some invariant numbers and decomposition of minimal

submodules graph of domain and codomain from given module homomorphism.

2. Preliminary

Some basic concepts which will be used in this study are modules and graph

theory.

2.1. Module theory. In this section, we will give some basic theories of modules
which are taken from [16]. Let M be an R-module. A nontrivial module M is
called a simple module if 0 and M are the only submodules of M. An R-module
M is called cyclic if there exists m € M such that M = Rm. A torsion-free module
is a module in which 0 is the only element of M which is annihilated by a nonzero
element of a ring R. Let My, Ms,--- , M, be any submodules of M. The module
M is called the direct sum of My, Mo, --- , M, if it satisfies the following properties.
(1) M =i, M.
(2) M;NX;2M; =0.
If M is a direct sum of M;, Ms,--- , M,, then it can be denoted by M = &}, M,.
Furthermore, for any element m € M, it can be uniquely written as my + ms +
.-+ +m, where m; € M,.

A uniserial module is a module in which any two submodules can be ordered by
inclusion [9]. An R-module M is called a multiplication module if for every nonzero
submodules N of M, N = IM for some ideal I of R. If we have an R-submodule
N of M, we can make an ideal of R, namely (N : M) = {a € RlaM C N}. If M is
a multiplication module, then the submodule N can be written as N = (N : M) M
[4].

A relatively divisible submodule (RD-submodule) D of an R-module M is a
submodule which satisfies rD = D NrM for every r € R [11]. An essential sub-
module NN is an R-submodule of M which meets the condition N N A # 0 for every
nonzero submodule A of M [15]. An R-submodule N of M is called a minimal
submodule if N is simple as an R-module. Let M be a finite R-module. Then M
contains a minimal submodule. In this study, we will only consider finite modules

over commutative rings with unity.



186 DWI MIFTA MAHANANI, DEWI ISMIARTI AND SYAIFUL ANAM

There are some lemmas which will be used in the main results. The lemmas are
taken from [10] and [14].

Lemma 2.1. Assume that A, B, N are nonzero proper submodules of M. If N C A
and N C B, then A/INNB/N = (AN B)/N.

Proof. It is obvious that (AN B)/N C A/N N B/N. Now take any element
x+N e A/NNB/N. Thenx+ N =a+N =b+ N for some a € A,b € B. We can
write (z — a) = nq, (x — b) = ny for some ny,ny € N. From those equations and
the fact that N C A N C B, wecanmakex =ny +ta€ Aandx =ny, +b€ B. It
is proved that € AN B which implies z + N € (AN B)/N. Hence A/NNB/N =
(AN B)/N. O

Lemma 2.2. Let N1, Ny be any nonzero submodules of an R-module M. Then the
following properties hold.

(1) If Ny C N, then (N7 : M) C (Ny: M).

(2) (NN Ny:M)=(Ny:M)N(Ny: M).

Proof. (1) Suppose that r € (N; : M) andm € M. We have rm € rM C N; C Ns.
Thus r € (N2 : M).

(2) Let r € (Ny NNy : M). Then rM C Ny N No which means rM C N; and
rM C Ny. Thusr € (Ny : M)N(Ny : M). Now take any element s € (Ny :
M)N (N2 : M). We have sM C Ny and sM C N, which implies sM C Nj N Na.
Therefore, (N; : M) N (N : M) C (N1 NNy : M). O

Lemma 2.3. Suppose that 8 : M — M’ is an R-module homomorphism and
Ny, Ny are submodules of M. If B is injective, then B(N1 N Na) = B(N1) N B(N2).

Proof. It is clear that S(N; N Na) C B(Ny) N B(Nz2). Let B(z) be an arbitrary
element of S(N1) N B(Nz2). We can write B(x) = B(n1) = B(nz2) for some n; € Ny
and ng € Ny. By the injectivity of 5, we get x = ny = ny € Ny N Na. Therefore,
BN N Ng) = B(N1) N B(Ne). H

2.2. Graph theory. There are some concepts of graph theory which will be used
in this study and referred from [8]. A graph G is a pair of sets V = V(G) and
E = E(G) where V is a nonempty set of objects that we call vertices and E is
a set of pair of vertices that we call edge. An edge of a graph G which connects
the vertices u and v will be denoted by (u,v), (v,u) or e. A graph G is said to be
simple if it does not contain loop and multiple edge. A null graph is a graph with
no edge. A bipartite graph is a graph in which the vertex set can be divided into
two disjoint sets and the endpoints of every edge belong to those two disjoint sets.
A complete bipartite graph is a bipartite graph with every two vertices in different
set are adjacent. A complete bipartite graph with n and m vertices is denoted by
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Ky, m. A star graph is a special case of complete bipartite graph and is denoted by
K.

Walk form vertex u to v is a sequence u = u; — us — U3 — - -+ — U = v where u;
and u; 1 are adjacent. In this case, the length of walk from u to v is equal to k—1.
A path is a walk with different vertices. A graph G is said to be connected if there
exists a path between any two vertices of the graph G. The distance between two
vertices u,v € V', denoted by d(u,v), is defined to be the length of the shortest path
between u and v. The number of edges which connect to a vertex w is called degree
of u and is denoted by deg(u). The maximum degree of a graph G is denoted by
A(G). Let G1,Go,- -+ ,Gy be subgraphs of G with E(G;) N E(G;) = 0 for i # j.
The collection G1,Gs,--- , G, is a decomposition of the graph G if every edge of G

belongs to one and only one of G; [3].

3. Main results

We will start by defining a minimal submodules graph of modules over commu-

tative rings and by giving some examples of the graphs.

Definition 3.1. Let M be an R-module. The graph of minimal submodule of M is
a graph Iy, (M) with vertex set V/(I'ypin(M)) = {N|N is a submodule of M, N #
0, N # M} and two distinct vertices N1, Ny € V(T (M)) are adjacent if N1 N Ny
is a minimal submodule.

By Definition 3.1, the graph of minimal submodule is a simple graph. In this
study, we only consider the graph of minimal submodule of non-simple modules.

The following are some examples of the graph of minimal submodule of modules.
Example 3.2. Given Z-module Z,. Note that

V(Conin(Z12)) = {72,72.3,74,76}.
The graph of minimal submodule of Zi5 is in Figure 1.

73 zZ4

FIGURE 1. Tyin(Z12)
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Example 3.3. Consider the Z-module Z3g. The set of vertices is
V(Cmin(Z30)) = {72,723,75,76, 710, Z15}.

The graph of minimal submodule of Zgq is in Figure 2.

76 710 715

7
FIGURE 2. Tpnin(Zso)

Example 3.4. Let Z,, be a Z-module where p and ¢ are distinct prime numbers.
Then I'yin(Zyq) is a null graph. This is because the only nontrivial submodules of
Zpq are Zp and Zq. Therefore, the graph of minimal submodules of Z,, is a null

graph.

Theorem 3.5. Let M be an R-module and N be a nonzero proper submodule of
M. If N is not a minimal submodule, then Tpyin(N) is a subgraph of Tppin(M).

Proof. Note that every submodule of N is also a submodule of M which implies
V(Tmin(N)) € V(Tmin(M)). Now take an arbitrary edge of I'y,in(IN), namely
(A, B). Since AN B is a minimal submodule of N, we have that AN B is also a
minimal submodule of M. Hence (A, B) € E(Tpin(M)). O

Lemma 3.6. Let M be an R-module and S, T be any distinct minimal submodules
of M. Then S and T are not adjacent in Tpin(M).

Proof. Assume that S and T are adjacent. Then S NT is a minimal submodule
satisfying 0 C SNT C Sand 0 C SNT C T. Since S and T are also minimal
submodules, we have SNT = S and SNT = T. It implies S = T which is a
contradiction. Hence S and T" are not adjacent. d

Theorem 3.7. Let M be an R-module. If Ty, (M) is connected, then M has a

non minimal proper submodule.

Proof. Let Iy (M) be a connected graph. It implies E(Typn(M)) # 0. We can
take any edge (A, B) € E(T')in(M)). By Lemma 3.6, either A or B are not minimal

submodules. Therefore the result follows. O
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Theorem 3.8. If M is a finite uniserial R-module, then Ty (M) is a star graph.
Proof. Let 0 £ M; C My C --- C M,, = M be the chain of all submodules of M.

Then M; is the unique minimal submodule of M. Hence for i = 2,3,--- ,n, M;
is adjacent to My and M; is not adjacent to M; for all j = 2,3,--- ,n. Therefore,
[pnin (M) is a star graph with M as the center. O

Example 3.9. Let Z,» be a module over Z where p is a prime and n > 2. Note that
the only nonzero submodules of Zyn are Zyn itself, Zp"—1 Zpn=2,--- | Zp. These
submodules form a chain

Zpn—t C Zpn2 C --- C ZLp? C Zp' C Zp® = Zypn.

Hence Z,» is a uniserial Z-module. Note that the minimal submodule of Zy~ is

unique, namely Zp™. The graph of minimal submodule of Z,» is represented on
Figure 3.

Ficure 3. szn(Zp”) = Kl,n—l

Theorem 3.10. Let N be a nonzero proper R-submodule of M.
(1) If (N, A) € E(Tin(M)) for every A € V(Lppin(M)), then N is an essential
submodule of M.
(2) Assume that A,B € V(I'ypin(M)) where A # B and ANB # 0. If (A+
N,B+ N) € E(Tin(M)), then (A, B) € E(Tmin(M)).

Proof. (1) Assume that N is adjacent to every nonzero proper submodule of M.
Then NN A is a minimal submodule which means NN A # 0. We have thus proved
that N is an essential submodule of M.

(2) Suppose that (A+ N, B+ N) € E(Tin(M)). It implies (A+ N)N (B + N)
is a minimal submodule. Note that since 0 C AN B C (A+ N)N (B + N) and
(A+ N)N(B+ N) is minimal, AN B = (A+ N)N (B + N) which is also minimal.
Thus (4, B) € E(T'min(M)). O
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Theorem 3.11. Suppose that A, B, N be R-submodules of M where N is minimal
and N C AJN C B. If A/N is adjacent to B/N in Uppin(M/N), then A is not
adjacent to B in Ty (M).

Proof. It is given that (A/N,B/N) € T'yin(M/N) which means (AN B)/N =
A/N N B/N is a minimal submodule of M/N. Since (AN B)/N is a minimal
submodule, AN B # N. Remember that 0 C N C AN B, which implies that AN B
cannot be a minimal submodule. Thus A is not adjacent to B in Ty, (M). a

Theorem 3.12. Suppose that M is a torsion-free R-module and M = Rm for some
mé&e M,m #0. Let I and J be proper nonzero ideals of R. Then as submodules, I
is adjacent to J in Upin(R) if and only if Im is adjacent to Jm in Ty (M).

Proof. Let N be any submodule of M satisfying 0 C N C ImnNJm. We can make
a nonempty set
K ={reR|rme N}

which is a nonzero ideal of R. It is evident that N = Km. Now we will prove that
KCIndJ. Let s€ K. Then sm € N C Im N Jm. We can write sm = am and
sm = m for some o € I and 8 € J or equivalently (s—a)m = 0 and (s—g)m = 0.
Since M is torsion-free, we have s = o« = 8 € I N J. We thus have proved that
K CINnJ. As it is known that I N J is minimal and K # 0, we get K = I N J.

Now take any element x € I'm N Jm. Then we can write * = am and = = bm for

some a € [ and b € J. From those two equations, we get
am = bm
am —bm =0
(a—b)m =0.

Since M is torsion-free, we can conclude that a =b € INJ = K. It implies x € Km
which means Km = I'm N Jm. Thus Im N Jm is a minimal submodule of M or
equivalently, (Im, Jm) € T'pin(M).

Conversely, assume that (I'm, Jm) € E(I'y(M)). Let L be any nonzero ideal of
R such that 0 C L € I'NJ. Since M is a torsion-free module and L # 0, we have
Lm # 0. Moreover, it is also satisfied that Lm C I'm N Jm since L C I'NJ. By the
minimality of I'm N Jm and the fact that Lm # 0, we have Lm = I'm N Jm. Now
take an arbitrary element r € I N J. Note that rm € Im N Jm = Lm. It implies
that we can write rm = Im for some [ € L. Then we get (r —)m =0. As M is a
torsion-free module, we can conclude that r =1 € L which means L = I N J. Thus
I is adjacent to J in [y, (R). O

Theorem 3.13. Assume that S, T be any nonzero proper R-submodules of torsion-

free multiplication module M. If every submodule of M 1is relatively divisible and
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(S : M) is adjacent to (T : M) in Thpin(R), then S is also adjacent to T in

Proof. Let W be any nonzero submodule of M satisfying 0 C W C SNT. Then by
Lemma 22, 0C (W :M)C (SNT: M) =(S: M)N(T: M). By the minimality of
(S:M)N(T:M)and (W :M)#0,weget (W :M)=(S: M)N(T: M). Assume
that « is an arbitrary element of SNT and r € (W : M) = (S : M)N (T : M) where
r # 0. Note that rx € rM C W. Since W is a relatively divisible submodule, we
have rz € rW. We can write rx = rw for some w € W or equivalently, r(z—w) = 0.
As M is a torsion-free module, we thus have x = w € W which implies W = SNT.
Therefore, (S,T) € E(Tyin(M)). O

Theorem 3.14. If M is isomorphic to M' as R-modules, then Ty (M) is iso-
morphic to Typpin(M').

Proof. Let « : M — M’ be an R-module isomorphism. We define a map & :
Cin(M) — Thin(M’) where @(N) = a(N). Assume that Nj is adjacent to Ny
in Ty (M), Tt implies that Ny N Ny is a minimal submodule of M. We will show
that a(N7) Nea(Nz) is a minimal submodule of M’. Note that since Ny, No # 0 and
« is injective, a(N7), a(N3) # 0. Suppose that there exists a nonzero submodule H
of M’ such that 0 C H C a(N7)Na(N2). By the bijectivity of o, we have a nonzero
submodule a1 (H) of M. Let x € a~'(H). Then a(x) € H C a(Ny) N a(Ns).
We can write a(x) = a(n1) = a(ng) for some ny € Ny and ny € Ny. By the
injectivity of a, we get # = n; = ny € Ny N Ny. Hence a~'(H) € Ny N Ns.
By the minimality of N7 N Na, we can conclude that a=!(H) = N; N Ny and
therefore H = a(a™!)(H) = (N1 N Ns). By Lemma 2.3, we thus have proved that
H = a(Ny) N a(Nz) which means a(N7) is adjacent to a(N3) in 'y (M7). Hence

@ is a graph homomorphism. Since « is bijective, & is also bijective. ]

Corollary 3.15. Let 0 : M — M’ be an R-module monomorphism. If (N1, Ns) €
E(Tpin(M)), then (0(N1),0(N2)) € E(Tpin(M')).

Proof. Note that if § is a monomorphism from M to M’, then M is isomorphic
to O(M). If (N1,Na) € E(Tpmin(M)), then by Theorem 3.14, (8(N1),0(N2)) €
E(Tpin(0(M))). Furthermore, since (Ny) N 6(N2) is minimal in 0(M), we have
that 0(N1)NO(N2) is also minimal in M’. Hence (§(N1),0(N2)) € E(Tpin(M')). O

Theorem 3.16. Let 6 : M — M’ be an R-module monomorphism. If (L1, Ly) €
E(Tpin(M") and §7Y(Ly),071(Ls) are proper nonzero submodules of M, then
(071(L1),07 1 (L2)) € E(Tpnin(M)).

Proof. Assume that (L, Ly) € E(T'yin(M’)). Then by Definition 3.1, Ly N Ly is

a minimal submodule in M’. Tt is clear that §~'(L;) and §~!(Ls) are submodules
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of M. Assume that there exists a nonzero submodule N of M such that N C
6~1(L1)NO~1(Ly). Since N # 0 and 6 is injective, O(N) # 0 and especially (N) is
a proper submodule of M’. Let (n) be an arbitrary element of §(N). This means
n €N C O (L) NO1(Ly) which implies 8(n) € Ly N Ly. Thus O(N) C Ly N Lo.
Since Ly N Ls is a minimal submodule, #(N) = L; N Ly. Now take any element
x €071 (L1)NO71(Ly). It means O(x) € L1NLy = O(N). We can write 0(z) = 0(n')
for some n’ € N. By the injectivity of §, we can conclude that z = n’ € N. Hence
N = 07Y(L;)NO~(Ly) which means 6~1(L1)NO~ (L) is a minimal submodule. [

Theorem 3.17. If 0 : M — M’ is an R-module monomorphism and N is a
nonzero proper R-submodule of M, then deg(N) < deg(6(N)).

Proof. Note that since N # 0 and 6 is a monomorphism, (N) # 0 and 6(N)
is a proper submodule of M'. Let deg(N) = m and N be adjacent to distinct
proper submodules Ly, Ly, -« , Ly, of M. Then by Theorem 3.15, () is adjacent
to 8(L;) # 0 for ¢ = 1,2,--- ,m. Note that 6(L;) # 6(L;) for ¢ # j since 0 is
a monomorphism. Now let S be any nonzero proper submodule of M’ which is
adjacent to O(N). If 71(S) = 0 or 671(S) = M, then 071(S) & V(Lppin(M)).
It means 6~1(S) is not adjacent to N. If 71(S) # 0, by Theorem 3.16 we have
0=1(S) is adjacent to 6719(N) = N. Hence deg(N) < deg(8(N)). O

Theorem 3.18. Let 0 : M — M’ be an R-module monomorphism and T be a
nonzero R-submodule of M'. If 0=*(T) is adjacent to submodule W of M, then T
is either adjacent to O(W) or 00~1(T) NO(W).

Proof. Assume that ~1(T) is adjacent to W. According to Corollary 3.15, 00~1(T)
is adjacent to §(W). This means §0~1(T) N (W) is a minimal submodule of M’.
Note that 00=1(T) N O(W) C T NOW). If 00~Y(T) N OW) = T N H(W), then
(T,0(W)) € E(Toin(M’)). Now let (09—1(T) me(W)) c (Tme(W)). We will
prove that 80~1(T)NO(W) is adjacent to T by showing that <99_1(T)HH(W)) NT =
00-1(T) N O(W). It is evident that (ea—l(T) N 9(W)) AT C 00-1(T) N O(W).
Now take any element z € 0= (T) N O(W). It implies that z = 0(a) for some
a € ~Y(T) which means z = 6(a) € T. It is proved that (99_1(T) N H(W)) NnT =
00=1(T)NO(W). Thus T is adjacent to 0~ (T) N H(W). O

Theorem 3.19. Suppose that 0 : M — M’ is an R-module monomorphism. Then

(1) d(0(N1),0(N2)) < d(N1, Na),
(2> A(Fmin(M)) < A(Fmin<M/>)-

Proof. (1) Assume that Ny — A — As —--- — A,, — N» is a shortest path from
N1 to Ny. Since 6 is a monomorphism, 8(Ny) # 6(A;) # 0(A;) # 6(Na) for an
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arbitrary i,j = 1,2,--- ,n and ¢ # j. Then by Corollary 3.15, we have the path
O(Ny) — 0(A1) — 0(As) — -+ — 0(A,) — 6(N3). Thus d(0(Ny),0(N2)) < d(Ny, Na).
(2) Let A(T'nin(M)) = deg(N) = m. Note that by Theorem 3.17,

deg(N) < deg(6(N))

and we know that
deg(8(N)) < A(Fmin(M/))-
Hence A(Tpnin(M)) = deg(N) < A(Tpin(M")). O

Let X = {I'1,T2,---,T,} be a graph decomposition of I';,;, (M) for an R-
module M. Suppose that 6 is a module monomorphism from M to M’. Since 6 is a
monomorphism, for S, T nonzero proper submodules of M, it satisfies 0(S), 0(T) #
0 and 6(S),6(T) # M’. We define the graph 6(T;) for i = 1,2,--- ,n as

(o) = { (005),0(7)) |(8.7) € E(y)}.
By Corollary 3.15, the set E(6(T';)) is not empty.

Theorem 3.20. Let 0 be an R-module monomorphism from M to M’ and X =
{T'1,Tq,--- T} be a graph decomposition of T'pin(M). We define

Y= {Q(Fi)
and subgraph Q of Tpin(M') in which
E(Q) = E(Tpin(M')) — E(O(T;)) fori=1,2,--- ,n.

Then Y U {Q} is a graph decomposition of Tpin(M').

1:1,2,~-~,n}

Proof. It is obvious that E(6(T;)) N E(2) = 0 for every i. Suppose that
(005).6(1)) € B6(T:) 0 E@O(Ty))

for i # j. Then by definition, (S,T) € E(I';) N E(I';) which is a contradiction.
Thus E(0(T;)) N E(0(T';j)) = 0. Now we will prove that every edge of T'pin(M’) is
in one and only one 0(T';) or §2. Take any edge (A, B) of T, (M'). We will divide
into some cases.

(1) If there are no 0 C S, T C M such that 6(S) = A and 6(T) = B, then
(A,B) € E(Q).

(2) Now assume that there are submodules S, T with 0 C S,T C M such that
0(S) = A and 0(T) = B. By Theorem 3.16, (S,T) € E(Tnin(M)). There
exists I'; such that (S,T) € T';. Therefore, (A, B) = (O(S),H(T)) €o(Iy).

(3) Assume that there is no nonzero proper submodule S of M such that 8(S) =
A. Let 8(T) = B for a nonzero proper submodule 7" of M. Then it is clear
that (A4, B) € E(Q).

Therefore, Y U {Q} is a graph decomposition of Ty (M'). O
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Let X be an R-module and Y, Z be R-submodules of X such that X =Y & Z.
Let A be any nonzero submodule of X. For every a € A, we can write a = y + 2
uniquely for some y € Y,z € Z. We define B={y € Y|y+2 € A,3z € Z} and
C={z€Zly+z€ A,Jy €Y} It is obvious that B is a submodule of Y and C is

a submodule of Z. Moreover, we can see clearly that A= B® C.

Theorem 3.21. Let X be an R-module and Y, Z be R-submodules of X such that
X =Y®Z. Assume that Ay = B1 ®C1, Ay = By ® Cs are submodules of X where

By, By are nonzero submodules of Y and Cq,Cs are nonzero submodules of Z. If
(Al,Ag) € E(Fmin<X)), then (Bl,BQ) € E(szn(Y)) and (01,02) € E(me(Z))

Proof. First, we will prove that B; N By is a minimal submodule of Y. Let D be
any submodule of Y in which 0 € D C By N By. Note that D & C; C A; and
D & Oy C As. Since the sum is direct, we have

D& (CinCy) = (D@Cl) N (D@Cz)
and
(31 @ C’l) n (32 @ 02) — (31 n Bg) & (01 n 02).

Therefore, we have the following conditions

D& (CiNCy) C (BlﬂBg> @ (cmcg).

Since AjNAy = (Bl ﬂBg) @ (C’l ﬂC’g) is a minimal submodule, D& (C1NCs) =0
or D& (C1NCy) = (BlﬁBg) &) (Clﬂcz). Hence D = 0 or D = By N By,
especially, D = By N By. It implies (B1, B2) € E(I'nin(Y)). By the similar way,
we can show that (C1,Cs) € E(Tmin(Z)). O

Corollary 3.22. If Ay = B, ®C} is adjacent to By C By, then By is also adjacent
to Bj.

Proof. We can write B} = B} @0. Since A; = By @ is adjacent to B} = B} @0,
by Theorem 3.21, By is also adjacent to Bj.

Theorem 3.23. Assume that X =Y & Z is an R-module, X1, X5 are nonzero
submodules of X, Y1,Ys are monzero submodules of Y, and Zi,Zs are nonzero
submodules of Z such that X1 = Y1 @& Z1 and Xo = Yo ® Zy. If X5 is adjacent to
Y7, then X1 is adjacent to (Y1 NY3).

Proof. It is given that Xy = Y5 ® Z5 is adjacent to Y;. This means (Yo @ Z2) NY;
is a minimal submodule. Let a be an arbitrary element of (Yo @ Z2) NY;. Then we
can write a = yo + 29 and a = y; for some ys € Yo, 20 € Zo,y1 € Y7. Note that
Y1 = Y2 + 22
Yy1— Yo =2€YNZ=N0.
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Thus 25 = 0 and a = y; = y2 € Y1 NY5 and we can conclude that (Yo ® Z3)NY; C
YoNY;. Now suppose that b € Y1 NY5. We can consider that b = b+0 where b € Y5
and 0 € Zy. It implies that b € (Yo ® Z3) NY7. Hence YonNY; = (Yo ® Z3)NY; is
minimal. Next we will prove that Y; NY5 is adjacent to Y1 & Z; by showing that
(V1NY2)N(Y1® Z1) = YiNYa. Itis clear that ((Y1NY2)N(Y1®Z1)) € Y1NYa. Now
take any element x € (Y3 NY2). Then we can write = x4+ 0 where x € Y7,0 € Z;.
Hence Y1NY, C ((Y1 NY2)N(Y; @Zl)) and therefore ((Y1 NY)N(Y: @Zl)) =Y1NY;
which is also a minimal submodule. We can conclude that Y; N'Ys is adjacent to
Y10 Z1 = X;. |

Corollary 3.24. If a submodule Y{ of Y1 is adjacent to Y1, then Y{ is also adjacent
to Yl D Zl .

Proof. We can assume that Xy = Y7 @& 0. Then by Theorem 3.23, Y/ NY; = Y] is
adjacent to Y1 & Z;. O

Theorem 3.25. Let X =Y @® Z be an R-module and A be a nonzero R-submodule
of X. If A=B & C where BCY,C C Z, then deg(A) < deg(B) + deg(C).

Proof. Assume that deg(4) = m and A is adjacent to A; = B; ® C; for i =
1,2,--- ,m. If B;,C; # 0 for every 4, then by Theorem 3.21, we can conclude that
B is adjacent to B; and C'is adjacent to C; for every i. Even though there exists j
such that B; = 0, we still have the edge (C, C;). Therefore m < deg(B) + deg(C)
and the result follows. O
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