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Abstract. Let R be a commutative ring and M be an R-module. In this

paper, we define minimal submodules graph of M , denoted by Γmin(M), in

which the vertex set is the set of nonzero proper submodules of M . Two

distinct vertices A and B are adjacent provided that A ∩ B is a minimal

submodule of M . In this study, we associate some properties of the graph

from the properties of module and vice versa. Moreover, if we have an R-

module homomorphism from M to M ′, we compare some invariant numbers

and properties of Γmin(M) and Γmin(M
′).
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1. Introduction

Associating certain algebraic structure to a certain graph is the most recent

research area which combines two different concepts, algebraic structure and graph

theory. One of the most often algebraic structures which is involved to a certain

graph is module. Modules over rings can be used to construct some graphs. The

vertices of the graphs can be the elements of the module or the nonzero submodules,

see for example [1], [2], [5], [6] and [17].

Assume that R is a commutative ring. The ring R can be considered as a module

over itself and its ideals can be thought as submodules. As a result, we may think

of a module over a ring as a ring generalization. There are some researches related

to certain graphs of rings which are extended into the graphs of modules. E. Mehdi-

Nezhad and A. M. Rahimi in [12] defined comaximal submodule graphs of unitary

modules which is a generalization of comaximal ideal graph of a commutative ring.

In this paper, E. Mehdi-Nezhad and A. M. Rahimi compared the graph properties of

rings and modules. Besides, a generalization of zero divisor graphs of commutative

rings, zero divisor graphs for modules over commutative rings are observed in [7].

In this article, it was investigated the relationships between the module and its

graph.

In [13], a simple-intersection graph GS(R) of a ring R is defined. The vertex

set of GS(R) is V (GS(R)) = {I|I ⊴ R, I ̸= 0} and two distinct vertices X and Y
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are adjacent if X ∩ Y is a simple ideal. We develop the simple-intersection graph

of rings to modules. If two submodules intersect in a minimal submodule, this

minimal submodule becomes a crucial part of the overall structure of the module.

In this article, we study minimal submodules graph of modules over commutative

rings M (designated with Γmin(M)). However, we only consider the nonzero proper

submodules as vertices of the graph. Two submodules are adjacent if their inter-

section is minimal. These graphs will help illuminate the structure of the modules.

We observe the interplay of properties of module M with the properties of graph

Γmin(M). We also compare some invariant numbers and decomposition of minimal

submodules graph of domain and codomain from given module homomorphism.

2. Preliminary

Some basic concepts which will be used in this study are modules and graph

theory.

2.1. Module theory. In this section, we will give some basic theories of modules

which are taken from [16]. Let M be an R-module. A nontrivial module M is

called a simple module if 0 and M are the only submodules of M . An R-module

M is called cyclic if there exists m ∈ M such that M = Rm. A torsion-free module

is a module in which 0 is the only element of M which is annihilated by a nonzero

element of a ring R. Let M1,M2, · · · ,Mn be any submodules of M . The module

M is called the direct sum of M1,M2, · · · ,Mn if it satisfies the following properties.

(1) M = Σn
i=1Mi.

(2) Mi

⋂
Σj ̸=iMj = 0.

If M is a direct sum of M1,M2, · · · ,Mn, then it can be denoted by M = ⊕n
i=1Mi.

Furthermore, for any element m ∈ M , it can be uniquely written as m1 + m2 +

· · ·+mn where mi ∈ Mi.

A uniserial module is a module in which any two submodules can be ordered by

inclusion [9]. An R-module M is called a multiplication module if for every nonzero

submodules N of M , N = IM for some ideal I of R. If we have an R-submodule

N of M , we can make an ideal of R, namely (N : M) = {a ∈ R|aM ⊆ N}. If M is

a multiplication module, then the submodule N can be written as N = (N : M)M

[4].

A relatively divisible submodule (RD-submodule) D of an R-module M is a

submodule which satisfies rD = D ∩ rM for every r ∈ R [11]. An essential sub-

module N is an R-submodule of M which meets the condition N ∩A ̸= 0 for every

nonzero submodule A of M [15]. An R-submodule N of M is called a minimal

submodule if N is simple as an R-module. Let M be a finite R-module. Then M

contains a minimal submodule. In this study, we will only consider finite modules

over commutative rings with unity.
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There are some lemmas which will be used in the main results. The lemmas are

taken from [10] and [14].

Lemma 2.1. Assume that A,B,N are nonzero proper submodules of M . If N ⊆ A

and N ⊆ B, then A/N ∩B/N = (A ∩B)/N .

Proof. It is obvious that (A ∩ B)/N ⊆ A/N ∩ B/N . Now take any element

x+N ∈ A/N ∩B/N . Then x+N = a+N = b+N for some a ∈ A, b ∈ B. We can

write (x − a) = n1, (x − b) = n2 for some n1, n2 ∈ N . From those equations and

the fact that N ⊆ A,N ⊆ B, we can make x = n1 + a ∈ A and x = n2 + b ∈ B. It

is proved that x ∈ A∩B which implies x+N ∈ (A∩B)/N . Hence A/N ∩B/N =

(A ∩B)/N . □

Lemma 2.2. Let N1, N2 be any nonzero submodules of an R-module M . Then the

following properties hold.

(1) If N1 ⊆ N2, then (N1 : M) ⊆ (N2 : M).

(2) (N1 ∩N2 : M) = (N1 : M) ∩ (N2 : M).

Proof. (1) Suppose that r ∈ (N1 : M) andm ∈ M . We have rm ∈ rM ⊆ N1 ⊆ N2.

Thus r ∈ (N2 : M).

(2) Let r ∈ (N1 ∩ N2 : M). Then rM ⊆ N1 ∩ N2 which means rM ⊆ N1 and

rM ⊆ N2. Thus r ∈ (N1 : M) ∩ (N2 : M). Now take any element s ∈ (N1 :

M) ∩ (N2 : M). We have sM ⊆ N1 and sM ⊆ N2 which implies sM ⊆ N1 ∩ N2.

Therefore, (N1 : M) ∩ (N2 : M) ⊆ (N1 ∩N2 : M). □

Lemma 2.3. Suppose that β : M −→ M ′ is an R-module homomorphism and

N1, N2 are submodules of M . If β is injective, then β(N1 ∩N2) = β(N1) ∩ β(N2).

Proof. It is clear that β(N1 ∩ N2) ⊆ β(N1) ∩ β(N2). Let β(x) be an arbitrary

element of β(N1) ∩ β(N2). We can write β(x) = β(n1) = β(n2) for some n1 ∈ N1

and n2 ∈ N2. By the injectivity of β, we get x = n1 = n2 ∈ N1 ∩ N2. Therefore,

β(N1 ∩N2) = β(N1) ∩ β(N2). □

2.2. Graph theory. There are some concepts of graph theory which will be used

in this study and referred from [8]. A graph G is a pair of sets V = V (G) and

E = E(G) where V is a nonempty set of objects that we call vertices and E is

a set of pair of vertices that we call edge. An edge of a graph G which connects

the vertices u and v will be denoted by (u, v), (v, u) or e. A graph G is said to be

simple if it does not contain loop and multiple edge. A null graph is a graph with

no edge. A bipartite graph is a graph in which the vertex set can be divided into

two disjoint sets and the endpoints of every edge belong to those two disjoint sets.

A complete bipartite graph is a bipartite graph with every two vertices in different

set are adjacent. A complete bipartite graph with n and m vertices is denoted by
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Kn,m. A star graph is a special case of complete bipartite graph and is denoted by

K1,n.

Walk form vertex u to v is a sequence u = u1 − u2 − u3 − · · · − uk = v where ui

and ui+1 are adjacent. In this case, the length of walk from u to v is equal to k−1.

A path is a walk with different vertices. A graph G is said to be connected if there

exists a path between any two vertices of the graph G. The distance between two

vertices u, v ∈ V , denoted by d(u, v), is defined to be the length of the shortest path

between u and v. The number of edges which connect to a vertex u is called degree

of u and is denoted by deg(u). The maximum degree of a graph G is denoted by

∆(G). Let G1, G2, · · · , Gn be subgraphs of G with E(Gi) ∩ E(Gj) = ∅ for i ̸= j.

The collection G1, G2, · · · , Gn is a decomposition of the graph G if every edge of G

belongs to one and only one of Gi [3].

3. Main results

We will start by defining a minimal submodules graph of modules over commu-

tative rings and by giving some examples of the graphs.

Definition 3.1. Let M be an R-module. The graph of minimal submodule of M is

a graph Γmin(M) with vertex set V (Γmin(M)) = {N |N is a submodule of M,N ̸=
0, N ̸= M} and two distinct vertices N1, N2 ∈ V (Γmin(M)) are adjacent if N1∩N2

is a minimal submodule.

By Definition 3.1, the graph of minimal submodule is a simple graph. In this

study, we only consider the graph of minimal submodule of non-simple modules.

The following are some examples of the graph of minimal submodule of modules.

Example 3.2. Given Z-module Z12. Note that

V (Γmin(Z12)) = {Z2,Z3,Z4,Z6}.

The graph of minimal submodule of Z12 is in Figure 1.

Z2

Z3 Z4

Z6

Figure 1. Γmin(Z12)
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Example 3.3. Consider the Z-module Z30. The set of vertices is

V (Γmin(Z30)) = {Z2,Z3,Z5,Z6,Z10,Z15}.

The graph of minimal submodule of Z30 is in Figure 2.

Z2

Z3

Z5

Z6 Z10 Z15

Figure 2. Γmin(Z30)

Example 3.4. Let Zpq be a Z-module where p and q are distinct prime numbers.

Then Γmin(Zpq) is a null graph. This is because the only nontrivial submodules of

Zpq are Zp and Zq. Therefore, the graph of minimal submodules of Zpq is a null

graph.

Theorem 3.5. Let M be an R-module and N be a nonzero proper submodule of

M . If N is not a minimal submodule, then Γmin(N) is a subgraph of Γmin(M).

Proof. Note that every submodule of N is also a submodule of M which implies

V (Γmin(N)) ⊆ V (Γmin(M)). Now take an arbitrary edge of Γmin(N), namely

(A,B). Since A ∩ B is a minimal submodule of N , we have that A ∩ B is also a

minimal submodule of M . Hence (A,B) ∈ E(Γmin(M)). □

Lemma 3.6. Let M be an R-module and S, T be any distinct minimal submodules

of M . Then S and T are not adjacent in Γmin(M).

Proof. Assume that S and T are adjacent. Then S ∩ T is a minimal submodule

satisfying 0 ⊂ S ∩ T ⊆ S and 0 ⊂ S ∩ T ⊆ T . Since S and T are also minimal

submodules, we have S ∩ T = S and S ∩ T = T . It implies S = T which is a

contradiction. Hence S and T are not adjacent. □

Theorem 3.7. Let M be an R-module. If Γmin(M) is connected, then M has a

non minimal proper submodule.

Proof. Let Γmin(M) be a connected graph. It implies E(Γmin(M)) ̸= ∅. We can

take any edge (A,B) ∈ E(Γmin(M)). By Lemma 3.6, either A or B are not minimal

submodules. Therefore the result follows. □
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Theorem 3.8. If M is a finite uniserial R-module, then Γmin(M) is a star graph.

Proof. Let 0 ̸= M1 ⊆ M2 ⊆ · · · ⊆ Mn = M be the chain of all submodules of M .

Then M1 is the unique minimal submodule of M . Hence for i = 2, 3, · · · , n, Mi

is adjacent to M1 and Mi is not adjacent to Mj for all j = 2, 3, · · · , n. Therefore,

Γmin(M) is a star graph with M1 as the center. □

Example 3.9. Let Zpn be a module over Z where p is a prime and n ≥ 2. Note that

the only nonzero submodules of Zpn are Zpn itself, Zpn−1,Zpn−2, · · · ,Zp. These

submodules form a chain

Zpn−1 ⊂ Zpn−2 ⊂ · · · ⊂ Zp2 ⊂ Zp1 ⊂ Zp0 = Zpn .

Hence Zpn is a uniserial Z-module. Note that the minimal submodule of Zpn is

unique, namely Zpn. The graph of minimal submodule of Zpn is represented on

Figure 3.

Zpn−1

Zp1
Zp2

Zp3

Zp4

. . .Zp5

Zpn−2

Figure 3. Γmin(Zpn) = K1,n−1

Theorem 3.10. Let N be a nonzero proper R-submodule of M .

(1) If (N,A) ∈ E(Γmin(M)) for every A ∈ V (Γmin(M)), then N is an essential

submodule of M .

(2) Assume that A,B ∈ V (Γmin(M)) where A ̸= B and A ∩ B ̸= 0. If (A +

N,B +N) ∈ E(Γmin(M)), then (A,B) ∈ E(Γmin(M)).

Proof. (1) Assume that N is adjacent to every nonzero proper submodule of M .

Then N ∩A is a minimal submodule which means N ∩A ̸= 0. We have thus proved

that N is an essential submodule of M .

(2) Suppose that (A+N,B +N) ∈ E(Γmin(M)). It implies (A+N)∩ (B +N)

is a minimal submodule. Note that since 0 ⊂ A ∩ B ⊆ (A + N) ∩ (B + N) and

(A+N)∩ (B +N) is minimal, A∩B = (A+N)∩ (B +N) which is also minimal.

Thus (A,B) ∈ E(Γmin(M)). □
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Theorem 3.11. Suppose that A,B,N be R-submodules of M where N is minimal

and N ⊆ A,N ⊆ B. If A/N is adjacent to B/N in Γmin(M/N), then A is not

adjacent to B in Γmin(M).

Proof. It is given that (A/N,B/N) ∈ Γmin(M/N) which means (A ∩ B)/N =

A/N ∩ B/N is a minimal submodule of M/N . Since (A ∩ B)/N is a minimal

submodule, A∩B ̸= N . Remember that 0 ⊂ N ⊂ A∩B, which implies that A∩B

cannot be a minimal submodule. Thus A is not adjacent to B in Γmin(M). □

Theorem 3.12. Suppose that M is a torsion-free R-module and M = Rm for some

m ∈ M,m ̸= 0. Let I and J be proper nonzero ideals of R. Then as submodules, I

is adjacent to J in Γmin(R) if and only if Im is adjacent to Jm in Γmin(M).

Proof. Let N be any submodule of M satisfying 0 ⊂ N ⊆ Im∩Jm. We can make

a nonempty set

K = {r ∈ R|rm ∈ N}

which is a nonzero ideal of R. It is evident that N = Km. Now we will prove that

K ⊆ I ∩ J . Let s ∈ K. Then sm ∈ N ⊆ Im ∩ Jm. We can write sm = αm and

sm = βm for some α ∈ I and β ∈ J or equivalently (s−α)m = 0 and (s−β)m = 0.

Since M is torsion-free, we have s = α = β ∈ I ∩ J . We thus have proved that

K ⊆ I ∩ J . As it is known that I ∩ J is minimal and K ̸= 0, we get K = I ∩ J .

Now take any element x ∈ Im ∩ Jm. Then we can write x = am and x = bm for

some a ∈ I and b ∈ J . From those two equations, we get

am = bm

am− bm = 0

(a− b)m = 0.

Since M is torsion-free, we can conclude that a = b ∈ I∩J = K. It implies x ∈ Km

which means Km = Im ∩ Jm. Thus Im ∩ Jm is a minimal submodule of M or

equivalently, (Im, Jm) ∈ Γmin(M).

Conversely, assume that (Im, Jm) ∈ E(Γmin(M)). Let L be any nonzero ideal of

R such that 0 ⊂ L ⊆ I ∩ J . Since M is a torsion-free module and L ̸= 0, we have

Lm ̸= 0. Moreover, it is also satisfied that Lm ⊆ Im∩Jm since L ⊆ I ∩J . By the

minimality of Im ∩ Jm and the fact that Lm ̸= 0, we have Lm = Im ∩ Jm. Now

take an arbitrary element r ∈ I ∩ J . Note that rm ∈ Im ∩ Jm = Lm. It implies

that we can write rm = lm for some l ∈ L. Then we get (r − l)m = 0. As M is a

torsion-free module, we can conclude that r = l ∈ L which means L = I ∩ J . Thus

I is adjacent to J in Γmin(R). □

Theorem 3.13. Assume that S, T be any nonzero proper R-submodules of torsion-

free multiplication module M . If every submodule of M is relatively divisible and
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(S : M) is adjacent to (T : M) in Γmin(R), then S is also adjacent to T in

Γmin(M).

Proof. Let W be any nonzero submodule of M satisfying 0 ⊂ W ⊆ S∩T . Then by

Lemma 2.2, 0 ⊂ (W : M) ⊆ (S∩T : M) = (S : M)∩ (T : M). By the minimality of

(S : M)∩ (T : M) and (W : M) ̸= 0, we get (W : M) = (S : M)∩ (T : M). Assume

that x is an arbitrary element of S∩T and r ∈ (W : M) = (S : M)∩ (T : M) where

r ̸= 0. Note that rx ∈ rM ⊆ W . Since W is a relatively divisible submodule, we

have rx ∈ rW . We can write rx = rw for some w ∈ W or equivalently, r(x−w) = 0.

As M is a torsion-free module, we thus have x = w ∈ W which implies W = S ∩T .

Therefore, (S, T ) ∈ E(Γmin(M)). □

Theorem 3.14. If M is isomorphic to M ′ as R-modules, then Γmin(M) is iso-

morphic to Γmin(M
′).

Proof. Let α : M −→ M ′ be an R-module isomorphism. We define a map α̃ :

Γmin(M) −→ Γmin(M
′) where α̃(N) = α(N). Assume that N1 is adjacent to N2

in Γmin(M). It implies that N1 ∩N2 is a minimal submodule of M . We will show

that α(N1)∩α(N2) is a minimal submodule of M ′. Note that since N1, N2 ̸= 0 and

α is injective, α(N1), α(N2) ̸= 0. Suppose that there exists a nonzero submodule H

of M ′ such that 0 ⊂ H ⊆ α(N1)∩α(N2). By the bijectivity of α, we have a nonzero

submodule α−1(H) of M . Let x ∈ α−1(H). Then α(x) ∈ H ⊆ α(N1) ∩ α(N2).

We can write α(x) = α(n1) = α(n2) for some n1 ∈ N1 and n2 ∈ N2. By the

injectivity of α, we get x = n1 = n2 ∈ N1 ∩ N2. Hence α−1(H) ⊆ N1 ∩ N2.

By the minimality of N1 ∩ N2, we can conclude that α−1(H) = N1 ∩ N2 and

therefore H = α(α−1)(H) = α(N1∩N2). By Lemma 2.3, we thus have proved that

H = α(N1) ∩ α(N2) which means α(N1) is adjacent to α(N2) in Γmin(M
′). Hence

α̃ is a graph homomorphism. Since α is bijective, α̃ is also bijective. □

Corollary 3.15. Let θ : M −→ M ′ be an R-module monomorphism. If (N1, N2) ∈
E(Γmin(M)), then (θ(N1), θ(N2)) ∈ E(Γmin(M

′)).

Proof. Note that if θ is a monomorphism from M to M ′, then M is isomorphic

to θ(M). If (N1, N2) ∈ E(Γmin(M)), then by Theorem 3.14, (θ(N1), θ(N2)) ∈
E(Γmin(θ(M))). Furthermore, since θ(N1) ∩ θ(N2) is minimal in θ(M), we have

that θ(N1)∩θ(N2) is also minimal inM ′. Hence (θ(N1), θ(N2)) ∈ E(Γmin(M
′)). □

Theorem 3.16. Let θ : M −→ M ′ be an R-module monomorphism. If (L1, L2) ∈
E(Γmin(M

′)) and θ−1(L1), θ
−1(L2) are proper nonzero submodules of M , then

(θ−1(L1), θ
−1(L2)) ∈ E(Γmin(M)).

Proof. Assume that (L1, L2) ∈ E(Γmin(M
′)). Then by Definition 3.1, L1 ∩ L2 is

a minimal submodule in M ′. It is clear that θ−1(L1) and θ−1(L2) are submodules
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of M . Assume that there exists a nonzero submodule N of M such that N ⊆
θ−1(L1)∩ θ−1(L2). Since N ̸= 0 and θ is injective, θ(N) ̸= 0 and especially θ(N) is

a proper submodule of M ′. Let θ(n) be an arbitrary element of θ(N). This means

n ∈ N ⊆ θ−1(L1) ∩ θ−1(L2) which implies θ(n) ∈ L1 ∩ L2. Thus θ(N) ⊆ L1 ∩ L2.

Since L1 ∩ L2 is a minimal submodule, θ(N) = L1 ∩ L2. Now take any element

x ∈ θ−1(L1)∩θ−1(L2). It means θ(x) ∈ L1∩L2 = θ(N). We can write θ(x) = θ(n′)

for some n′ ∈ N . By the injectivity of θ, we can conclude that x = n′ ∈ N . Hence

N = θ−1(L1)∩θ−1(L2) which means θ−1(L1)∩θ−1(L2) is a minimal submodule. □

Theorem 3.17. If θ : M −→ M ′ is an R-module monomorphism and N is a

nonzero proper R-submodule of M , then deg(N) ≤ deg(θ(N)).

Proof. Note that since N ̸= 0 and θ is a monomorphism, θ(N) ̸= 0 and θ(N)

is a proper submodule of M ′. Let deg(N) = m and N be adjacent to distinct

proper submodules L1, L2, · · · , Lm of M . Then by Theorem 3.15, θ(N) is adjacent

to θ(Li) ̸= 0 for i = 1, 2, · · · ,m. Note that θ(Li) ̸= θ(Lj) for i ̸= j since θ is

a monomorphism. Now let S be any nonzero proper submodule of M ′ which is

adjacent to θ(N). If θ−1(S) = 0 or θ−1(S) = M , then θ−1(S) /∈ V (Γmin(M)).

It means θ−1(S) is not adjacent to N . If θ−1(S) ̸= 0, by Theorem 3.16 we have

θ−1(S) is adjacent to θ−1θ(N) = N . Hence deg(N) ≤ deg(θ(N)). □

Theorem 3.18. Let θ : M −→ M ′ be an R-module monomorphism and T be a

nonzero R-submodule of M ′. If θ−1(T ) is adjacent to submodule W of M , then T

is either adjacent to θ(W ) or θθ−1(T ) ∩ θ(W ).

Proof. Assume that θ−1(T ) is adjacent toW . According to Corollary 3.15, θθ−1(T )

is adjacent to θ(W ). This means θθ−1(T ) ∩ θ(W ) is a minimal submodule of M ′.

Note that θθ−1(T ) ∩ θ(W ) ⊆ T ∩ θ(W ). If θθ−1(T ) ∩ θ(W ) = T ∩ θ(W ), then

(T, θ(W )) ∈ E(Γmin(M
′)). Now let

(
θθ−1(T ) ∩ θ(W )

)
⊂

(
T ∩ θ(W )

)
. We will

prove that θθ−1(T )∩θ(W ) is adjacent to T by showing that
(
θθ−1(T )∩θ(W )

)
∩T =

θθ−1(T ) ∩ θ(W ). It is evident that
(
θθ−1(T ) ∩ θ(W )

)
∩ T ⊆ θθ−1(T ) ∩ θ(W ).

Now take any element z ∈ θθ−1(T ) ∩ θ(W ). It implies that z = θ(a) for some

a ∈ θ−1(T ) which means z = θ(a) ∈ T . It is proved that
(
θθ−1(T ) ∩ θ(W )

)
∩ T =

θθ−1(T ) ∩ θ(W ). Thus T is adjacent to θθ−1(T ) ∩ θ(W ). □

Theorem 3.19. Suppose that θ : M −→ M ′ is an R-module monomorphism. Then

(1) d(θ(N1), θ(N2)) ≤ d(N1, N2),

(2) ∆(Γmin(M)) ≤ ∆(Γmin(M
′)).

Proof. (1) Assume that N1 − A1 − A2 − · · · − An − N2 is a shortest path from

N1 to N2. Since θ is a monomorphism, θ(N1) ̸= θ(Ai) ̸= θ(Aj) ̸= θ(N2) for an
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arbitrary i, j = 1, 2, · · · , n and i ̸= j. Then by Corollary 3.15, we have the path

θ(N1)− θ(A1)− θ(A2)− · · · − θ(An)− θ(N2). Thus d(θ(N1), θ(N2)) ≤ d(N1, N2).

(2) Let ∆(Γmin(M)) = deg(N) = m. Note that by Theorem 3.17,

deg(N) ≤ deg(θ(N))

and we know that

deg(θ(N)) ≤ ∆(Γmin(M
′)).

Hence ∆(Γmin(M)) = deg(N) ≤ ∆(Γmin(M
′)). □

Let X = {Γ1,Γ2, · · · ,Γn} be a graph decomposition of Γmin(M) for an R-

module M . Suppose that θ is a module monomorphism from M to M ′. Since θ is a

monomorphism, for S, T nonzero proper submodules of M , it satisfies θ(S), θ(T ) ̸=
0 and θ(S), θ(T ) ̸= M ′. We define the graph θ(Γi) for i = 1, 2, · · · , n as

E(θ(Γi)) =
{(

θ(S), θ(T )
)∣∣∣(S, T ) ∈ E(Γi)

}
.

By Corollary 3.15, the set E(θ(Γi)) is not empty.

Theorem 3.20. Let θ be an R-module monomorphism from M to M ′ and X =

{Γ1,Γ2, · · · ,Γn} be a graph decomposition of Γmin(M). We define

Y =
{
θ(Γi)

∣∣∣i = 1, 2, · · · , n
}

and subgraph Ω of Γmin(M
′) in which

E(Ω) = E(Γmin(M
′))− E(θ(Γi)) for i = 1, 2, · · · , n.

Then Y ∪ {Ω} is a graph decomposition of Γmin(M
′).

Proof. It is obvious that E(θ(Γi)) ∩ E(Ω) = ∅ for every i. Suppose that(
θ(S), θ(T )

)
∈ E(θ(Γi)) ∩ E(θ(Γj))

for i ̸= j. Then by definition, (S, T ) ∈ E(Γi) ∩ E(Γj) which is a contradiction.

Thus E(θ(Γi)) ∩ E(θ(Γj)) = ∅. Now we will prove that every edge of Γmin(M
′) is

in one and only one θ(Γi) or Ω. Take any edge (A,B) of Γmin(M
′). We will divide

into some cases.

(1) If there are no 0 ⊂ S, T ⊂ M such that θ(S) = A and θ(T ) = B, then

(A,B) ∈ E(Ω).

(2) Now assume that there are submodules S, T with 0 ⊂ S, T ⊂ M such that

θ(S) = A and θ(T ) = B. By Theorem 3.16, (S, T ) ∈ E(Γmin(M)). There

exists Γj such that (S, T ) ∈ Γj . Therefore, (A,B) =
(
θ(S), θ(T )

)
∈ θ(Γj).

(3) Assume that there is no nonzero proper submodule S ofM such that θ(S) =

A. Let θ(T ) = B for a nonzero proper submodule T of M . Then it is clear

that (A,B) ∈ E(Ω).

Therefore, Y ∪ {Ω} is a graph decomposition of Γmin(M
′). □
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Let X be an R-module and Y,Z be R-submodules of X such that X = Y ⊕ Z.

Let A be any nonzero submodule of X. For every a ∈ A, we can write a = y + z

uniquely for some y ∈ Y, z ∈ Z. We define B = {y ∈ Y |y + z ∈ A,∃z ∈ Z} and

C = {z ∈ Z|y+ z ∈ A, ∃y ∈ Y }. It is obvious that B is a submodule of Y and C is

a submodule of Z. Moreover, we can see clearly that A = B ⊕ C.

Theorem 3.21. Let X be an R-module and Y,Z be R-submodules of X such that

X = Y ⊕Z. Assume that A1 = B1 ⊕C1, A2 = B2 ⊕C2 are submodules of X where

B1, B2 are nonzero submodules of Y and C1, C2 are nonzero submodules of Z. If

(A1, A2) ∈ E(Γmin(X)), then (B1, B2) ∈ E(Γmin(Y )) and (C1, C2) ∈ E(Γmin(Z)).

Proof. First, we will prove that B1 ∩ B2 is a minimal submodule of Y . Let D be

any submodule of Y in which 0 ⊆ D ⊆ B1 ∩ B2. Note that D ⊕ C1 ⊆ A1 and

D ⊕ C2 ⊆ A2. Since the sum is direct, we have

D ⊕ (C1 ∩ C2) =
(
D ⊕ C1

)
∩
(
D ⊕ C2

)
and (

B1 ⊕ C1

)
∩
(
B2 ⊕ C2

)
=

(
B1 ∩B2

)
⊕
(
C1 ∩ C2

)
.

Therefore, we have the following conditions

D ⊕ (C1 ∩ C2) ⊆
(
B1 ∩B2

)
⊕

(
C1 ∩ C2

)
.

Since A1∩A2 =
(
B1∩B2

)
⊕
(
C1∩C2

)
is a minimal submodule, D⊕ (C1∩C2) = 0

or D ⊕ (C1 ∩ C2) =
(
B1 ∩ B2

)
⊕

(
C1 ∩ C2

)
. Hence D = 0 or D ∼= B1 ∩ B2,

especially, D = B1 ∩ B2. It implies (B1, B2) ∈ E(Γmin(Y )). By the similar way,

we can show that (C1, C2) ∈ E(Γmin(Z)). □

Corollary 3.22. If A1 = B1⊕C1 is adjacent to B′
1 ⊆ B1, then B1 is also adjacent

to B′
1.

Proof. We can write B′
1 = B′

1⊕0. Since A1 = B1⊕C1 is adjacent to B′
1 = B′

1⊕0,

by Theorem 3.21, B1 is also adjacent to B′
1.

Theorem 3.23. Assume that X = Y ⊕ Z is an R-module, X1, X2 are nonzero

submodules of X, Y1, Y2 are nonzero submodules of Y , and Z1, Z2 are nonzero

submodules of Z such that X1 = Y1 ⊕ Z1 and X2 = Y2 ⊕ Z2. If X2 is adjacent to

Y1, then X1 is adjacent to (Y1 ∩ Y2).

Proof. It is given that X2 = Y2 ⊕Z2 is adjacent to Y1. This means (Y2 ⊕Z2)∩ Y1

is a minimal submodule. Let a be an arbitrary element of (Y2 ⊕Z2)∩ Y1. Then we

can write a = y2 + z2 and a = y1 for some y2 ∈ Y2, z2 ∈ Z2, y1 ∈ Y1. Note that

y1 = y2 + z2

y1 − y2 = z2 ∈ Y ∩ Z = 0.
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Thus z2 = 0 and a = y1 = y2 ∈ Y1 ∩ Y2 and we can conclude that (Y2 ⊕Z2)∩ Y1 ⊆
Y2∩Y1. Now suppose that b ∈ Y1∩Y2. We can consider that b = b+0 where b ∈ Y2

and 0 ∈ Z2. It implies that b ∈ (Y2 ⊕ Z2) ∩ Y1. Hence Y2 ∩ Y1 = (Y2 ⊕ Z2) ∩ Y1 is

minimal. Next we will prove that Y1 ∩ Y2 is adjacent to Y1 ⊕ Z1 by showing that

(Y1∩Y2)∩(Y1⊕Z1) = Y1∩Y2. It is clear that
(
(Y1∩Y2)∩(Y1⊕Z1)

)
⊆ Y1∩Y2. Now

take any element x ∈ (Y1 ∩Y2). Then we can write x = x+0 where x ∈ Y1, 0 ∈ Z1.

Hence Y1∩Y2 ⊆
(
(Y1∩Y2)∩(Y1⊕Z1)

)
and therefore

(
(Y1∩Y2)∩(Y1⊕Z1)

)
= Y1∩Y2

which is also a minimal submodule. We can conclude that Y1 ∩ Y2 is adjacent to

Y1 ⊕ Z1 = X1. □

Corollary 3.24. If a submodule Y ′
1 of Y1 is adjacent to Y1, then Y ′

1 is also adjacent

to Y1 ⊕ Z1.

Proof. We can assume that X2 = Y1 ⊕ 0. Then by Theorem 3.23, Y ′
1 ∩ Y1 = Y ′

1 is

adjacent to Y1 ⊕ Z1. □

Theorem 3.25. Let X = Y ⊕Z be an R-module and A be a nonzero R-submodule

of X. If A = B ⊕ C where B ⊆ Y,C ⊆ Z, then deg(A) ≤ deg(B) + deg(C).

Proof. Assume that deg(A) = m and A is adjacent to Ai = Bi ⊕ Ci for i =

1, 2, · · · ,m. If Bi, Ci ̸= 0 for every i, then by Theorem 3.21, we can conclude that

B is adjacent to Bi and C is adjacent to Ci for every i. Even though there exists j

such that Bj = 0, we still have the edge (C,Cj). Therefore m ≤ deg(B) + deg(C)

and the result follows. □
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